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Abstract
Purpose of Review Fungi represent a central yet often overlooked domain of clinically relevant pathogens that have become 
increasingly important in human disease. With unique adaptive lifestyles that vary widely across species, human fungal 
pathogens show remarkable diversity in their virulence strategies. The majority of these fungal pathogens are opportunistic, 
primarily existing in the environment or as commensals that take advantage of immunocompromised hosts to cause disease. 
In addition, many fungal pathogens have evolved from non-pathogenic lifestyles. The extent of genetic diversity and herit-
ability of virulence traits remains poorly explored in human fungal pathogens.
Recent Findings Genetic variation caused by mutations, genomic rearrangements, gene gain or loss, changes in ploidy, and 
sexual reproduction have profound effects on genetic diversity. These mechanisms contribute to the remarkable diversity of 
fungal genomes and have large impacts on their prevalence in human disease, virulence, and resistance to antifungal therapies.
Summary Here, we focus on the genomic structure of the most common human fungal pathogens and the aspects of genetic 
variability that contribute to their dominance in human disease.

Keywords Fungal genome · Candida · Aspergillus · Cryptococcus · Endemic fungal pathogens

Introduction

An estimated 1.5 to 5 million species of fungi are found 
across diverse environmental conditions [1]. Many fungal 
species are symbiotic or pathogenic and thrive in close asso-
ciations with other organisms. Independently evolved from 
non-pathogens, over 8000 fungi are plant pathogens and 
around 200 are pathogenic to humans [2]. Annually, more 
than one billion people contract a fungal infection, over 300 
million people suffer from a serious fungal-related disease, 
and more than 2 million people die, making them the fifth 
largest cause of death worldwide [3, 4]. While the major-
ity of fungal infections are superficial and relatively easy to 

cure, invasive fungal infections, commonly caused by Can-
dida albicans, Aspergillus fumigatus, and Cryptococcus neo-
formans, are more difficult to diagnose and treat, resulting in 
a mortality rate that can reach 90% in immunocompromised 
individuals [5]. The increase in antifungal resistance further 
challenges our ability to treat these diseases, contributing to 
high mortality rates [5].

Very few fungal pathogens are dependent on a human 
host for its life cycle and their pathogenicity is unintended 
[2]. As opportunistic pathogens, many of the genetic traits 
required for virulence are likely not specific markers for 
causing disease and were selected for based on the patho-
gen’s ability to survive in its natural habitat. The adaptability 
of the fungal pathogen response to their host (i.e., expres-
sion of virulence factors, antifungal tolerance) is depend-
ent on their ability to generate genomic variation. Stable 
and prolonged changes to the genome—gene gain or loss, 
genomic rearrangements, horizontal gene transfer, changes 
in ploidy, and sexual reproduction—contribute to the genetic 
variability, virulence, and antifungal resistance of human 
fungal pathogens [6].

The first sequenced eukaryotic genome was fungal 
and fungi have more genomes sequenced than any other 
eukaryotic group (Table 1). Genome sizes in the fungi 
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are highly variable, ranging from 8.97 to 117.57 Mb with 
an average genome size of 36.91  Mb in Ascomycota, 
46.48 Mb in Basidiomycota, and 74.85 Mb in Oomycota 
phyla (Table 2). The depth of fungal genome sequencing 
has enabled direct comparisons between species and lin-
eages, contextualizing the genetic diversity that enables 
fungi to flourish in disparate habitats and invade plants and 
animals. This review will focus on the genomic features of 
the most prevalent human fungal pathogens (Aspergillus, 
Cryptococcus, and Candida) and endemic fungal patho-
gens (Histoplasma, Blastomyces, Coccidioides, Paracoc-
cidioides, and Sporothrix).

Aspergillus

Aspergillus is a genus of widespread and diverse filamen-
tous saprobes with clinical and agricultural significance. 
Most Aspergillus species are not pathogenic, specializing 
instead in the breakdown of botanical matter. As a genus, 
the genetic variation in Aspergillus is equal to that of the 
Vertebrate phylum; the close relatives A. fumigatus and 
A. fischerianus are as dissimilar as humans and mice [7•]. 
There are hundreds of described Aspergillus species, but 
only a fraction of them are capable of infecting humans, 
with infections primarily caused by A. fumigatus and A. 
flavus. Currently, reference genomes are available for 194 
Aspergillus species through the NCBI Genome Database 
[8].

Aspergillus fumigatus

Disease and Diversity

A. fumigatus causes the greatest number of deaths, the sec-
ond highest number of human infections, and is responsible 
for up to 90% of aspergillosis cases [9]. The global distri-
bution of A. fumigatus and its ability to grow well at 37 °C 
results in 11 million allergic reactions and over 3 million 
chronic and invasive lung infections annually [9]. Phyloge-
netic analyses separating A. fumigatus into clades have been 
inconclusive with no significant variation found between 
clinical and environmental isolates [10, 11]. However, the 
subdivision of A. fumigatus into two broad clades is sup-
ported by the uneven distribution of cyp51 (erg11) alleles, 
the target for azoles [12].

Genome

A. fumigatus was first sequenced in 2005 (strain Af293), 
with recent genomes providing telomere-to-telomere 
coverage for strains CEA10 and A1160 [13•]. Compari-
sons of the A1160, CEA10, and Af293 genome assem-
blies revealed several chromosomal rearrangements, the 
most significant occurring between chromosomes 1 and 
6 [13•]. Pan-genome analysis identified a core set of 
orthologs (69%), with 16% to 22% of the genome varying 
between strains [10]. Variation is primarily found in acces-
sory genes affiliated with transmembrane transporters, 

Table 1  Summary of the most common human fungal pathogens and their distribution

Genus Phylum Human disease caused Distribution

Aspergillus Ascomycota Aspergillosis, allergic bronchopulmonary aspergil-
losis, allergic Aspergillus sinusitis, aspergilloma, 
chronic pulmonary aspergillosis, invasive aspergil-
losis, cutaneous aspergillosis

Global

Cryptococcus Basidiomycota Cryptococcal meningitis, cryptococcosis Primarily Sub-Saharan Africa, Asia and the Pacific. 
Notably fewer cases occur in North/South America, 
the Caribbean, North Africa, the Middle East, and 
Europe

Candida Ascomycota Candidiasis, vaginal candidiasis, invasive candidi-
asis, oropharyngeal candidiasis (thrush), candi-
demia

Global

Histoplasma Ascomycota Histoplasmosis Central and Eastern United States, Central and South 
America, Africa, Asia, and Australia

Blastomyces Ascomycota Blastomycosis Primarily Eastern United States and Candida with 
fewer cases reported from Africa, the Middle East, 
India, and western North America

Coccidioides Ascomycota Coccidioidomycosis Southwestern United States, parts of Mexico and 
Central and South America

Paracoccidioides Ascomycota Paracoccidioidomycosis Mexico and Central and South America
Sporothrix Ascomycota Sporotrichosis Global, endemic in Latin America
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iron-binding activity, and carbohydrate and amino acid 
metabolism, which may explain the wide range in viru-
lence observed in A. fumigatus isolates [10]. Chronic dis-
ease isolates are more genetically diverse than strains from 
invasive aspergillosis or the environment and are more 
likely to engage in parasexual or sexual recombination, 
contributing to the development of azole resistance [10, 
14].

Aspergillus flavus

Disease and Diversity

A common plant pathogen, A. flavus produces several 
aflatoxins, causes pulmonary and systemic infections in 
humans, and can be up to 50 times more virulent than 
A. fumigatus [15]. However, infection by A. flavus is less 
common than A. fumigatus, responsible for less than 10% 
of pulmonary aspergillosis cases [16]. A. flavus forms a 
single monophyletic clade but whole genome analysis 
breaks A. flavus isolates from the USA into 3 populations, 
with population C more closely related to A. oryzae [17]. 

Populations A and B are widely distributed and have simi-
lar geographic distribution while population C is often iso-
lated from Iowa, Indiana, and Pennsylvania [17]. Notably, 
populations B and C have lower diversity than population 
A [17].

Genome

Several A. flavus isolates have been sequenced [18–20] with 
the nearly complete assembly of isolate NRRL3357 released 
in 2021 [21•]. This 37.75 Mb genome assembly completed 
7 of the 8 chromosomes from telomere-to-telomere and is 
considerably larger than other Aspergillus genomes [21•].

Compared to A. fumigatus, there is significantly less 
genetic diversity among the clinical isolates of A. flavus. 
Remarkably similar to that of its closest relative, A. oryzae, 
only 43 genes are unique to A. flavus [22]. A. flavus produces 
carcinogenic secondary metabolites known as aflatoxins, 
absent from its close relatives. Furthermore, the regulatory 
proteins of aflatoxin biosynthesis are necessary for A. flavus 
asexual development [23].

Table 2  A summary of the sequenced genomes for the most common human fungal pathogens

*  Speciation of Histoplasma capsulatum has been studied and new naming for the subspecies has been suggested by Sepulveda et al.[97]

Genus Species Genome sequence status Genome size Chromosomes/contigs Plody References

Aspergillus fumigatus Complete 29 Mb 8 chromosomes Haploid [13•]
flavus Chromosome 37 Mb 8 chromosomes Haploid [18, 19, 21•]

Cryptococcus neoformans Chromosome 19 Mb 14 chromosomes Haploid [32•]
gattii Chromosome 17.5 Mb 14 chromosomes Haploid [25, 36]

Candida albicans Chromosome 14 Mb (haploid assembly) 8 chromosomes (haploid 
assembly)

Diploid [45–47, 49]

glabrata 
(now 
Naka-
seomyces 
glabrata)

Chromosome 12.3 Mb 13 chromosomes Haploid [65•, 66]

tropicalis Chromosome 14.6 Mb 7–12 chromosomes Diploid [71•, 72]
parapsilosis Scaffold 13 Mb 8 chromosomes Diploid [74]
krusei (now 

Pichia 
kudri-
avzeveii)

Chromosome 10.4–11.4 Mb 4–6 chromosomes Diploid [80, 81]

auris Chromosome 12 Mb 5–7 chromosomes Haploid [85]
Histoplasma capsulatum* Chromosome 31–40 Mb 6–12 chromosomes Haploid [102•]
Blastomyces dermatitidis Scaffold 66.6 Mb 25 scaffolds/591 contigs Haploid [105]

gilchristii Scaffold 75.3 Mb 100 scaffolds/1791 contigs Haploid [105]
Coccidioides immitis Scaffold 27 Mb 6 scaffolds/10 contigs Haploid [112]

posadasii Chromosome 28 Mb 9 chromosomes Haploid [114•]
Paracoccidioides brasiliensis Scaffold 29 Mb 57 scaffolds/556 contigs Haploid [108]

lutzii Scaffold 33 Mb 110 scaffolds/672 contigs Haploid [109]
Sporothrix brasiliensis Scaffold 33 Mb 13 contigs Haploid [119•]

schenckii Contig 32 Mb 16 contigs Haploid [121, 122]
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Cryptococcus

A basidiomycete, Cryptococcus yeasts are found world-
wide in soil, bird-droppings, decaying wood, and trees. 
Cryptococcus is the etiological agent of one of the most 
lethal fungal infections, cryptococcosis and fungal menin-
goencephalitis [24]. The vast majority of infections, up to 
95%, are caused by the globally distributed C. neoformans 
although cases caused by C. gattii are increasing annually 
[24]. C. gattii is a primary human pathogen, causing dis-
ease in both immunocompetent and immunocompromised 
individuals [24]. C. gattii is endemic in tropical climates, 
with climate change likely playing a role in the Pacific 
Northwest outbreaks [25].

Cryptococcus species are typically haploid with a 19 Mb 
genome on 14 chromosomes. However, changes in ploidy, 
hybrid genomes, and chromosome duplications are not 
uncommon and karyotype variation has occurred in strains 
over the course of infection [26]. C. neoformans and C. 
gattii share a genetic identity of ~ 85%; however, hybrids 
between the two species have been reported, increasing the 
genetic variability of the genus [27]. Multilocus sequence 
typing has identified 5 major molecular types of C. neo-
formans and 4 major molecular types of C. gattii [28•]. 
Genomic rearrangements and changes in chromosome 
length in Cryptococcus likely contribute to chronic infec-
tion, adaptation to the host, and antifungal resistance [29, 
30].

Cryptococcus neoformans

Genome

Both the reference strain H99 and a recently completed 
ungapped genome of C. neoformans VNII span 19 Mb 
across 14 chromosomes [31, 32•]. Comparisons between 
C. neoformans and C. gattii genomes found 2 large inver-
sions, 3 translocations, and extensive rearrangements in C. 
neoformans [30, 33•].

C. neoformans undergoes ploidy changes during sexual 
development and in response to various environmental and 
host cues [26]. During infection, the haploid C. neoformans 
can form polyploid titan cells [34] and form diploid blasto-
spores during unisexual reproduction [26]. These genomic 
variations correspond with phenotypic differences and alter 
transcriptional regulation, signal transduction, and glycolysis 
pathways, impacting the course of infection [35]. Segmen-
tal aneuploidy has been detected on multiple chromosomes, 
which conferred azole resistance in some isolates during 
host infection [26]. Aneuploidy formation in C. neoformans 
may be related to an increased rate of transposon movement 
[29].

Cryptococcus gattii

Genome

The most complete C. gattii assembly contains 14 chromo-
somes and 18.4 Mb with eight internal gaps [36]. A num-
ber of other strains and variants have been sequenced, but 
they remain incomplete scaffolds. The genome structure is 
highly conserved across C. gattii variants, on average only 
a 7% sequence divergence among C. gattii VGI and VGII 
genomes [36]. Between all four C. gattii variants, ~ 87% of 
the genome has been identified as a core set of genes [37]. 
The limited genome evolution of C. gattii has not changed 
genome size or structure but instead acted on conserved gene 
families, like drug transporters, and gene expansions that 
likely facilitate survival in the human host [37].

Candida

Candida encompasses non-pathogenic species, harmless 
commensals or endosymbionts, and pathogens of humans 
and plants. Several Candida species can cause superficial 
infections, systemic fungemia, or invasive candidiasis. C. 
albicans, a normal constituent of the human skin, gastro-
intestinal, and genitourinary tracts, causes the majority of 
Candida bloodstream infections but other non-albicans 
Candida species, including C. glabrata, C. parapsilosis, 
C. tropicalis, C. krusei, and C. auris are responsible for an 
increasing number of cases [38]. Resistance to commonly 
used antifungals may explain the rise in cases caused by 
other Candida species [39].

A polymorphic fungus, Candida is able to express sev-
eral different morphologies. Generally, the environmental 
yeast-phase of Candida species switches to a multicellular 
filamentous form during infection [40]. The highest genetic 
diversity is observed in species that are most frequently 
human commensals—C. albicans, C. tropicalis, and C. 
glabrata [41]. Below, we discuss the genome characteris-
tics of C. albicans, non-albicans Candida, and the emerging 
pathogen C. auris.

Candida albicans

Disease and Diversity

C. albicans is the most prevalent human fungal pathogen. 
It is the fourth most common hospital acquired infection 
in the USA and responsible for nearly half a million life-
threatening infections annually, primarily in immunocom-
promised individuals [42]. Multi-locus sequence typing split 
C. albicans into 17 predominantly clonal populations that 
separate independent of geography [43]. In C. albicans, C. 
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tropicalis, and C. parapsilosis, the CUG codon is translated 
to serine instead of leucine [44]. C. albicans demonstrates 
a wide range of morphological forms—yeast, true hyphae, 
pseudohyphae, and chlamydospores—that likely aid in its 
survival, growth, and dissemination throughout their mam-
malian host as a commensal and pathogen.

Genome

Multiple sequencing efforts have assembled the diploid C. 
albicans genome [45–47]. Long-read sequencing generated 
a haploid assembly of pathogenic C. albicans [48] and a dip-
loid assembly for environmental C. albicans [49]. C. albi-
cans is naturally diploid with a 14 to 16 Mb haploid genome 
organized into eight pairs of chromosomes [45]. However, 
C. albicans can maintain stable ploidy states ranging from 
haploid to tetraploid [50•].

Chromosomal rearrangements, aneuploidy, point muta-
tions, and loss of heterozygosity (LOH) contribute to C. 
albicans genome plasticity and have been extensively 
reviewed [51, 52, 53•]. C. albicans is heterozygous with 
more than 1% nucleotide divergence between isolates [54]. 
Excessive polymorphisms are present on chromosomes 5 
and 6 with low instances of polymorphism found on chromo-
somes 3 and 7 [45]. Host pressures and other stressors, like 
exposure to antifungals, can result in a temporary increase 
in C. albicans ploidy, driving diploid cells up to 16N [55]. 
In patients treated with azoles, C. albicans aneuploidy fre-
quency increased over time [56]. Additional stressors may 
also lead to non-disjunction events as C. albicans often loses 
chromosome 5 when forced to grow on sorbose and strains 
that are resistant to fluconazole have frequently lost chromo-
some 4 or gained chromosome 3 [57].

Although the vast majority of mutational events occur 
somatically, mating and parasexual mating are strong driv-
ers of genetic diversity in C. albicans [58]. C. albicans pri-
marily reproduces through asexual clonal division, but the 
machinery needed for mating and meiosis has been retained 
[59•]. However, the products of diploid C. albicans mating 
are tetraploid and carry out “concerted chromosome loss” 
by losing chromosomes at random until they reach a near-
diploid genome [60, 61].

Non‑albicans Candida (NAC) species

The non-albicans Candida (NAC) species C. glabrata, C. 
tropicalis, C. parapsilosis, and C. krusei are increasingly 
responsible for candidiasis globally [39]. C. glabrata and 
C. krusei were recently renamed as Nakaseomyces glabrata 
and Pichia kudriavzevii, respectively; however, we have 
maintained the former naming scheme in this review article 
to align with previously published literature. Their preva-
lence varies with geographical location, with C. glabrata 

infections highest in Asia–Pacific and Europe, whereas C. 
tropicalis are the top infection in Africa and the Middle East, 
and C. parapsilosis is the predominant cause of infection in 
North American and Latin America [38].

Candida glabrata (Nakaseomyces glabrata)

Typically a harmless commensal, C. glabrata can cause 
superficial mucosal and serious disseminated infections in 
older, immunosuppressed patients, and those with diabe-
tes [62, 63]. Phylogenetically, C. glabrata is more closely 
related to Saccharomyces cerevisiae than C. albicans [64]. 
A haploid fungus, the completed genome of C. glabrata has 
13 chromosomes with a total size of 12.3 Mb [65•, 66]. Most 
of the genomes sequenced recover between 97.3 and 98.7% 
of the genes annotated in the reference genome, showing 
little variation in gene content [67]. Genetic variation in C. 
glabrata results from changes in copy number variation, 
aneuploidy, or single-nucleotide polymorphisms and affects 
biofilm formation, GPI-anchored cell wall adhesins, and pro-
tease expression [65•, 68].

Candida tropicalis

C. tropicalis is a globally distributed opportunistic fungal 
pathogen found in numerous ecological environments [69]. 
Primarily infecting neutropenic patients, C. tropicalis is the 
most common cause of candidiasis in Southeast Asia and 
Africa and second most common species in Central and 
South America [69]. C. tropicalis isolates are genetically 
diverse and have arisen from disparate environments, with 
no clear geographic separation [70]. First sequenced in 2009, 
the diploid C. tropicalis genome is 14.6 Mb across seven 
pairs of chromosomes [71•]. Interestingly, early research 
identified 12 chromosomes in C. tropicalis with chromo-
somal length polymorphisms between three strains, suggest-
ing that chromosomal rearrangements occur frequently in C. 
tropicalis [72]. Like C. albicans, C. tropicalis has a known 
parasexual cycle that often results in a high level of ane-
uploidy [73]. Single-nucleotide polymorphisms and copy 
number variants, including ERG11 and TAC1, were present 
in fluconazole-resistant isolates, indicating that stress and 
selection pressure are mechanisms through which C. tropi-
calis may acquire resistance [70].

Candida parapsilosis

In contrast to most other Candida species, C. parapsilosis 
cases are higher in neonates [63]. C. parapsilosis infec-
tions are increasing because of its global distribution, broad 
range of virulence factors, and antifungal resistance. The 
completed diploid genome of C. parapsilosis has 8 chro-
mosome pairs spanning 13 Mb [74]. With low levels of 
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heterozygosity, there is little evidence for significant diver-
sity among C. parapsilosis isolates [74, 75]. Multi-locus 
sequence typing divided C. parapsilosis into three distinct 
species: C. parapsilosis, C. orthopsilosis, and C. metapsi-
losis [76]. Additional sequencing of clinical strains discov-
ered hybrids between these species with major translocations 
occurring between C. parapsilosis and C. orthopsilosis chro-
mosomes [77]. In both C. parapsilosis and C. orthopsilosis, 
expansion of cell wall gene families for the creation of bio-
films have been associated with increased virulence [78].

Candida krusei (Pichia kudriavzevii)

C. krusei is an opportunistic fungal pathogen of high medi-
cal importance because of its natural resistance to flucona-
zole [79]. Causing invasive candidiasis in immunocompro-
mised individuals, C. krusei responds poorly to antifungal 
therapies and has a mortality rate up to 58% [79]. While 
genetically split into two clusters, different populations of C. 
krusei co-exist in the same geographic environment [79]. A 
diploid, highly heterozygous yeast, the first assembly of C. 
krusei contained 626 contigs covering 10.4 Mb [80]. PFGE 
analysis estimates that C. krusei has 4 to 6 chromosomes and 
a genome size of 11.4 Mb [81]. Compared to other Candida 
species, C. krusei is understudied and the genomic mecha-
nisms supporting its high genetic diversity have not been 
investigated. Exposure to antifungal agents is believed to act 
as a selection factor and may play a role in the evolution of 
C. krusei biofilm formation [79].

Candida auris

Disease and Diversity

C. auris represents a newly emerging human fungal infection 
that poses a significant threat as it rapidly develops resist-
ance to antifungals and spreads easily through hospital envi-
ronments on skin and surfaces. C. auris mainly manifests as 
a bloodstream infection, but it is also found in wound and 
ear infections [82]. Diagnosing a C. auris infection requires 
molecular methods, which is not always feasible, contribut-
ing to an underestimation of the global spread of C. auris 
[82]. C. auris is a thermotolerant, multidrug-resistant asco-
mycete, with 80.8% of strains showing resistance against 
fluconazole, 38.1% against voriconazole, and 26.2% against 
amphotericin B [83].

First described in 2009, C. auris has spread across six 
continents with outbreaks occurring in more than 30 coun-
tries [82, 83]. Genomic analyses have confirmed a near-
simultaneous evolution of C. auris in multiple areas around 
the world [84•]. C. auris has been separated into 5 geneti-
cally distinct, geographically distributed clades: South Asian 

(Clade I), East Asian (Clade II), African (Clade III), South 
American (Clade IV), and Iranian (Clade V) [84•, 85].

Genome

The majority of C. auris assemblies remain highly frag-
mented and inconsistently annotated. A haploid ascomycete, 
C. auris has a 12.1 to 12.7 Mb genome spread across five 
to seven chromosomes [86•]. Each clade differs from the 
other four by tens of thousands of single-nucleotide poly-
morphisms, but exhibits a highly clonal population structure 
within the clade; on average less than 70 single-nucleotide 
polymorphisms within each geographic cluster, even in iso-
lates thousands of miles apart [84•, 87]. Comparisons of 
Clades I through IV (comparisons with Clade V have not 
been reported) show a high level of similarity, with a shared 
98.7% nucleotide identity [86•]. Clade II is the most rear-
ranged with two inversions and nine translocations but is 
most similar to Clade III with a 99.3% shared identity [86•]. 
Conservation of C. auris as a species complex is supported 
by their more distant relationship to other Candida species; 
on average 88% similar to its closest relatives, C. haemulo-
nii, C. duobushaemulonii, and C. pseudohaemulonii [86•].

C. auris genome variation results from changes in copy 
number and gain or loss of chromosomes as there is no evi-
dence for alterations in ploidy states [87]. These mutations 
contribute to differences in antifungal resistance between 
C. auris clades and increased virulence. Compared to other 
Candida species, C. auris has higher resistance to cationic, 
cell wall, and oxidative stressors and can maintain viability 
and higher proteinase and phospholipase activity at 42 °C 
[88].

C. auris genomes have conserved mating loci, but only 
one of the two mating types, MTLa or MTLα, have been 
detected in each clade [83]. Mating between clades has not 
yet been reported, but in countries where multiple clades 
have been identified, mating may occur where MTLa and 
MTLα strains are no longer geographically separated [83, 
88].

Endemic Fungal Pathogens

Thermally dimorphic fungal pathogens, which alter their 
morphology and virulence in response to temperature, are 
responsible for hundreds of thousands of infections and 
deaths annually [89]. Globally distributed, but geographi-
cally and ecologically restricted, these organisms exist in the 
environment as saprotrophic hyphae that transition to para-
sitic forms (yeasts or spherules) in mammalian hosts [90]. 
These pathogens are all found within the phylum Ascomy-
cota, but are spread across a number of orders, exemplifying 
the convergent evolution of dimorphism and pathogenesis in 
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fungi [90]. Assessing the global burden of these diseases is 
difficult, but mortality rates can reach up to 70% for infected 
individuals [89]. Below, we discuss the genome character-
istics of the thermally dimorphic fungi: Histoplasma, Blas-
tomyces, Coccidioides, Paracoccidioides, and Sporothrix.

Histoplasma

The fungal pathogen Histoplasma is found on every conti-
nent. It causes mild flu-like symptoms in most people but 
the infection may develop into a life-threatening systemic 
disease, especially for immunocompromised individuals. 
Previously, Histoplasma was divided into three varieties 
based on clinical presentation, morphology, and geographic 
distribution: H. capsulatum var. capsulatum, responsible 
for pulmonary histoplasmosis; H. capsulatum var. duboisii, 
responsible for African histoplasmosis; and H. capsulatum 
var. farciminosum, responsible for equine histoplasmosis 
[91]. H. capsulatum associates with river valleys, particu-
larly in the Central and Eastern United States and Central 
and South America, while H. duboisii is primarily found in 
Africa [92].

Phylogenetic analyses have revealed at least eight clades 
that are tightly associated with specific geographical regions: 
North American classes 1 and 2 (NAm 1 and NAm 2), Latin 
American groups A and B (LAm A and LAm B), Eurasian, 
Netherlands, Australian, African [93, 94], and a recently 
identified Indian lineage [95]. The LAm groups were later 
divided into six phylogenetic groups [96]. Speciation and 
admixture have been shown between Histoplasma isolates 
[97–99]. Comparative genetic analyses have suggested new 
nomenclature for H. capsulatum as four new subspecies: 
H. capsulatum (Panama or H81 lineage), H. mississippien-
sis (NAm 1), H. ohiensis (NAm 2), and H. suramericanum 
(LAm A) [97].

Early studies identified 5–7 chromosomes [100]. The 
original genome assembly contained > 3000 contigs span-
ning 43.5  Mb across the highly repetitive Histoplasma 
genome (strain G217B) [101]. Completed assemblies of 
5 Histoplasma strains revealed genomes ranging in size 
from 31 to 40 Mb due to differences in repeat content with 
extensive synteny among geographically segregated isolates 
[102•]. The observation of transposon and transposon-
embedded gene upregulation in the yeast phase of strain 
G217B suggests that repetitive DNA may play a role in the 
dimorphic lifestyle [102•].

Blastomyces

Blastomyces dermatitidis and Blastomyces gilchristii are the 
etiological agents of blastomycosis, an invasive fungal infec-
tion in humans. Identifying the environmental niche that 

Blastomyces inhabits has proven elusive, but epidemiologi-
cal data suggests that Blastomyces species live in soil and 
wet, decaying wood [103]. B. gilchristii is primarily found in 
Canada and the Northern United States [104]. B. dermatiti-
dis is endemic to Eastern North America, found throughout 
northern Ontario to the Mississippi and Ohio River Valleys, 
but its range is expanding toward the Appalachian Moun-
tains and the Eastern United States [103]. The genome of 
B. dermatitidis is incompletely sequenced, with four strains 
represented by up to ~ 4000 scaffolds. Only one isolate of 
B. gilchristii has been sequenced with a genome scaffold 
of ~ 1800 contigs. Compared to other fungi, the gene content 
of Blastomyces species is highly conserved, but the genome 
contains large, highly variable repetitive long terminal repeat 
transposon regions [102•, 105]. An increase in gene copy 
number is likely associated with gene expression changes in 
proteases, antioxidants, and trace metal acquisition which 
are involved in host interactions and virulence [105].

Paracoccidioides

Paracoccidioides brasiliensis and Paracoccidioides lutzii 
are responsible for paracoccidioidomycosis, a disease that 
forms granulomas in the nose, sinuses, and skin. Up to 80% 
of cases occur in Brazil with the severity of disease increas-
ing in HIV and immunocompromised patients [106]. Four 
genomes of P. brasiliensis and one genome of P. lutzii 
have been sequenced and assembled to the scaffold-level 
with ~ 2000 contigs [106, 107]. Paracoccidioides species 
have haploid genomes that vary from 29.1 to 32.9 Mb and 
are highly divergent [107–110]. Gene family expansions spe-
cific to Paracoccidioides include the fungal-specific kinase 
family and genes encoding secreted proteins, with gene 
losses in cell wall and carbohydrate metabolism detected 
across dimorphic fungal pathogens [107, 111].

Coccidioides

Coccidioides immitis and Coccidioides posadasii are the 
etiological agents of coccidioidomycosis, also known as val-
ley fever. Endemic to the Southwestern United States and 
Mexico, it is estimated that 60% of infections are asymp-
tomatic with less than 1% of patients developing dissemi-
nated disease [112]. Morphologically identical, C. immitis 
and C. posadasii are genetically distinct [112, 113]. There 
are 5 scaffold genome sequences with at most ~ 4000 contigs 
available for C. immitis and 13 genome sequences available 
for C. posadasii with one recent chromosome-level reference 
genome released [112, 114•]. Genomes for both C. immitis 
and C. posadasii are ~ 28 Mb organized into 9 chromosomes 
[114•]. Hybridization has occurred between the two spe-
cies, mainly from C. posadasii to C. immitis, transferring 
coding genes that likely function in immune evasion and 
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cell wall biosynthesis [112, 115]. C. posadasii is divided 
into two main clades: Clade I isolates are found in Arizona 
and Clade II isolates are found in Texas and South America 
[116]. Phylogenetic analyses of Coccidioides species have 
proven useful in molecular epidemiology studies [117].

Sporothrix

The common route of Sporothrix infection introduces spores 
through a cut or wound in the skin, as opposed to pulmo-
nary routes. S. brasiliensis, S. schenckii, and S. globosa are 
found worldwide, but are endemic in Peru and Asia, which 
experience a higher incidence of disease [118]. There is a 
high level of similarity between Sporothrix genomes with 
an average sequence identity of 97.5% between S. schenckii 
and S. brasiliensis [119•]. There is one assembly for S. bra-
siliensis with 13 contigs spanning 33.2 Mb [106, 119•]. The 
S. globosa genomes have only been assembled to the scaf-
fold-level with at most 571 contigs for the 33.5 Mb genome 
[120]. The S. schenckii genome has been assembled to 16 
contigs, covering 32.8 Mb [121, 122]. S. schenckii has the 
greatest genetic variation and evidence of genetic recombi-
nation, but all Sporothrix species have lost polysaccharide 
lyase genes suggesting that they have switched from plant 
to animal hosts [119•].

Conclusion

Fungal genomics has been gaining importance in recent 
years. More than 50% of research articles cited in this 
review were published within the last 5 years, underlining 
the attainability of fungal genome sequencing and analysis 
tools. Accordingly, the next steps that will expand upon our 
understanding of fungal genetic diversity are to (1) gener-
ate complete telomere-to-telomere sequences for all notable 
pathogens and their non-pathogenic relatives, (2) expand the 
number of strains and isolates sequenced by carrying out 
clinical and environmental population level analyses, and 
(3) establish a system for identifying and detecting emerg-
ing pathogens. With our current understanding of genetic 
diversity in the fungi, a single or few reference genomes is 
insufficient for describing the full range of variation present 
in the population. With the reduction in cost of long-read 
sequencing, the number of complete fungal genome assem-
blies will continue to increase. The subsequent limiting fac-
tor will be characterizing the impacts of genetic variability 
on gene expression, translational efficiency, and function, 
which may shed light onto the molecular mechanisms of 
fungal pathogenesis.
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