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Abstract
Purpose of Review Candida species are an important cause of both superficial and life-threatening systemic fungal infections.
Historically, their study has been centered around their ability to cause human disease. However, this narrow lens limits our
understanding of the overall factors that shape their evolution.
Recent Findings We argue that from the perspective of evolutionary dynamics, pathogenic traits ofCandida species contribute to
only one aspect of selection, and their roles as commensal members of the healthy human mycobiome or in the environment may
play a larger role in adaptation. We stress that our understanding of these species is lacking due to a limited geographical
sampling and minimal study of commensal fungal populations.
Summary By looking outside of the box ofmedical mycology, we can identify what we do and do not know about the factors that
shape the genetic and phenotypic diversity of Candida spp. within the variety of environments they inhabit.
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Introduction

Candida species account for the most prevalent fungal infec-
tions in the world and are a significant cause of human mor-
tality and morbidity [1]. The majority of these infections are
associated with Candida albicans, yet non-albicans Candida
species (“NACS”) are also important opportunistic pathogens.
Much of the history of Candida spp. is steeped in taxonomic
confusion. Early studies of Candida species relied upon iden-
tifying differences in morphology or metabolism, an ambigu-
ous approach for species identification and assessment of re-
latedness, given that many Candida spp. are capable of exten-
sive morphological and metabolic flexibility. This lack of

clarity has continued into the twentieth century, as the genus
Candida has been used as an umbrella term to include yeast
capable of causing human infection and lacking a convention-
al sexual cycle. It was not until 1991 when Susan Barns and
colleagues compared ribosomal DNA (rDNA) sequences and
demonstrated the phylogenetic divergence among Candida
spp. By example, Candida glabrata, the second most com-
mon human-associated Candida spp. is more closely related
to Saccharomyces cerevisiae than to Candida albicans [2].
Advances in sequencing technology and broader sampling
of isolates have enabled higher phylogenetic resolution, and
the ~ 200 identified Candida spp. belong to over 13 phyloge-
netically distinct clades [3]. A recent effort formally renamed
species based on their phylogenetic relationships, and we in-
clude the revised names in brackets for the first use of each
affected species [4] (Fig. 1). As the incidence of NACS as
human pathogens as well as the incidence of multiple
Candida spp. co-infections is increasing [6, 7], it will become
ever more critical to identify how these species are both sim-
ilar and differ.

In this review, we attempt to look outside the box of med-
ical mycology [8] to discuss what is known and what remains
unknown about the factors shaping the evolution of Candida
spp. and consider the breadth of the environmental and
human-associated conditions these species experience. We
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discuss understudied topics in genome evolution in Candida
spp., from the different organizational levels variation is ob-
served: between species, between isolates of the same species,
and between cells within individual populations.

Broadening the Lens We Use to Look
at Candida species Evolution

Much of the study of Candida spp. has been through the lens
of their capacity to cause infections in humans [9••, 10, 11••,
12] and our understanding of the factors that drive Candida
spp. evolution is likely limited by this narrow viewpoint.

Consistent with their broad phylogenetic relationships, vir-
ulence traits appear to have independently evolved inCandida
spp. Despite triggering highly similar host responses in a
whole-blood infection model, C. albicans, C. glabrata,
C. parapsilosis, and C. tropicalis displayed unique transcrip-
tional responses [13]. C. dubliniensis, a close relative to
C. albicans that is less virulent [14] and seldom isolated from
infections [1] has been used to compare with C. albicans to
identify genetic determinants of virulence. From these com-
parisons, it became apparent that several gene families that
contribute to virulence, stress responses, and filamentation
(e.g., adhesins, secreted aspartyl proteinases, subtelomeric
genes) are expanded in the C. albicans genome [15, 16]. A
critical virulence factor for C. albicans is its ability to transi-
tion between yeast and filamentous growth [17], which is
differentially regulated in C. dubliniensis [18]. Intriguingly,
in C. tropicalis and C. parapsilosis, two emerging pathogens,
filamentation is not essential for virulence and may even be
detrimental to survival [17, 19]. In C. albicans, genetic
screens and experimental evolution revealed that commensal

phenotypes are associated with reduced filamentation [20,
21••, 22], yet reduced filamentation evolves only in hosts with
reduced microbial diversity [22, 23]. In most clinical cases,
the commensal population gives rise to organisms that be-
come pathogenic [24]. The selective drivers of adaptive evo-
lution may thus emerge more from the roles as commensal
members of the healthy human mycobiome (and other envi-
ronmental niches, in some species) than from their roles in
human infection; population-level genetic variation and the
traits under selection in the context of commensalism in
Candida spp. have been understudied.

In host environments, Candida spp. face complex abiotic
and biotic selection pressures. Alongside the many stresses
imposed by the host, including but not limited to nutrient
availability, oxygen levels, and immune defenses (Fig. 2),
fungal cell populations exist alongside other microbial spe-
cies, and both permissive and antagonistic interactions have
been documented [25, 26]. As part of the infection process and
during transitions between host environments (e.g., transloca-
tion from gut to bloodstream or from bloodstream to systemic
organs; Fig. 2), significant population bottlenecks occur and
limit the efficiency of selection on niche-specific traits.
Candida spp. have also been isolated from several other mam-
malian hosts, such as hedgehogs, opossums, dogs, and sheep
[27, 28] and have been collected from moist soils, fallen
leaves, oak trees, and coastal wetlands [27, 29, 30, 31••, 32••
33]. The recent discovery of C. auris isolates on the coastal
wetlands of India, including those that were multi-drug resis-
tant, points to a potential environmental source for this species
and signals that additional environmental surveillance of

Fig. 1 Phylogenetic relationship amongCandida spp. and close relatives.
The ploidy level of the majority of sampled isolates is provided in
brackets. Adapted with permission from [5]

Fig. 2 Candida cells are subjected to large population bottlenecks as they
move through different host anatomical niches, each harboring diverse
selective pressures. Within commensal sites such as the oral cavity, GI
tract, or skin, Candida cells face additional stresses imposed by the
microbiome and competition for nutrients with other species
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Candida species is needed [27, 29, 30, 31••, 32••, 33]. A
complete understanding of how different niches and environ-
ments shape the evolution of these species will require com-
prehensive surveys of different environments paired with fit-
ness measurements of Candida isolates in the diversity of
conditions they encounter.

Adaptation requires genetic variation for selection to act
on. Genetic variation in Candida spp. is primarily the result
of asexual reproduction, with many members having restrict-
ed or absent meiotic recombination programs [34, 35] and
sparse evidence for mating [5, 36••, 37]. The prevailing view
has been that limited sexual recombination could preserve the
integrity of well-adapted genomes [34, 35, 38]. This also pro-
vides an opportunity for karyotypic variation (single chromo-
some changes or whole ploidy shifts) to play a role in adap-
tation. Accordingly, in addition to point mutations (single nu-
cleotide variants, small insertions and deletions), variation in
chromosome copy number is frequently observed [5, 9••, 36••,
39, 40••, 41], and whole ploidy shifts are observed in nearly
all human-associated Candida spp. [42]. The outlier is the
haploid C. glabrata; whether the absence of ploidy-variant
isolates of C. glabrata is due to undersampling or something
specific about the genetics of this species remains unknown
[40••].

Different types of mutations occur at different rates and
impact a different number of genes (Fig. 3). The types of
mutations that arise and are selected during evolution are also
influenced by baseline ploidy, which varies among Candida
spp. (Fig. 1 [43]). For example, in diploid C. albicans, loss of
heterozygosity (LOH) events are common in clinical isolates
[10, 12, 36••] and have been identified in the C. albicans
laboratory reference strain evolved under a multitude of
in vitro and in vivo conditions [44, 45••, 46••]. LOH is also
likely to be common in other diploid NACS [47, 48]. LOH
mutations can reveal recessive alleles, though whether these
events on average are neutral or beneficial is not well resolved

(discussed below). Copy number variants of small regions or
whole chromosomes are both generated and lost at high fre-
quencies [11••], which might allow cells to bet-hedge the po-
tential benefit of increased gene copy number under certain
conditions while also being able to revert to the wild type
when the selective pressure is removed. Chromosomal aneu-
ploidy has been associated with replicative, metabolic, and
proteotoxic stress [49, 50], and aneuploidies are likely to be
temporary rather than long-term solutions. Recent genomic
analyses have shown that ancient hybridization events oc-
curred between distantly related isolates before the divergence
of C. albicans, C. africana, and C. stellatoidea, a process
hypothesized to mediate the emergence of new phenotypic
traits and to enable adaptation to new environments [51,
52••, 53]. Hence, there are many different mechanisms on
which selection can act to result in rapid genetic variation
within fungal populations.

Population Structure Reflects Primarily
Neutral Rather Than Adaptive Processes

Population structure captures genetic variation at the species
level and reflects evolutionary processes and demographic
history. The population structure of Candida spp. and other
fungal taxa has been assessed using short tandem repeat
markers (e.g., microsatellite typing, variable number tandem
repeat), sequence variation in the ITS locus, multilocus se-
quence typing (MLST), and whole-genome sequencing.
Whole-genome sequencing offers the highest ability to differ-
entiate among isolates and to capture genome-wide diversity;
the high costs and time required for analysis have restricted its
broad use for answering phylogenetic questions, though this is
likely to change in the future. InC. albicans, MLST analysis is
preferred over ITS or microsatellite typing since the data is
unambiguous, is reproducible, and can be directly compared

Fig. 3 Size of observed genetic variations relative to the time needed to
generate them in haploid or diploid fungal cells. Colored arrows indicate
the ratio between the genetic size and the time needed to generate these
events. For example, aneuploidy can arise within single cell divisions and

affects entire chromosomes. At the opposite spectrum, SNPs/indels
arising within single divisions affect a small number of single
nucleotide positions. Reversible genetic changes are indicated by
double-end arrows
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among research groups and isolate collections [54]. For
C. glabrata [55, 56] and the C. parapsilosis species complex
[57], microsatellite typing provides higher discriminatory
power and has been more widely used. In C. tropicalis, mi-
crosatellite typing and MLST analysis provide similar dis-
criminatory power [58].

Currently, only four Candida spp. are represented in the
PubMLST database, the public database for molecular typing
and microbial genome diversity (https://pubmlst.org/). The
distribution of isolates in all four species is skewed by the
source of isolation, with bloodstream and oropharynx
isolates being the most common (Fig. 4 [59]). We currently
lack a complete picture of how population structure maps to
environment or geography at the global level since the
geographical distribution of deposited isolates is also
skewed. The majority of isolates have been deposited from
Asia (mainly China, Taiwan, and Iran), Europe (mainly the
UK, France, and Spain), and North America (mainly the
USA). Nevertheless, MLST studies in all species repeatedly
indicate local clustering with frequent gene flow (e.g., C.
tropicalis [60–65], C. glabrata [66–69], C. albicans
[70–79]). A small number of existing phylogenetic analyses
using whole-genome sequences of a global set of isolates were
overall consistent with the MLST studies (C. albicans [36••],
C. glabrata [80], C. tropicalis [81]). Phylogenies thus appear
to primarily reflect neutral processes such as geography and
gene flow rather than selection. Despite a small number of
interesting associations between phenotypes of interest and
sequence types (STs), the majority of studies have failed to
detect STs associated with anatomical source, patient health
status, or phenotypes of interest such as drug susceptibility
(C. albicans [36••, 82–84], C. glabrata [55, 56, 66, 68, 80,
85], C. tropicalis, [60, 62, 63, 65], C. parapsilosis [86–88]).
Furthermore, environmental isolates typically cluster with

clinical isolates (C. tropicalis [81, 89], C. krusei (referred to
as Pichia kudriavzevii when isolated from the environment)
[90], C. albicans [31••, 36••], C. glabrata [91], C.
parapsilosis [87]).

Selection can act on isolates within specific niches to alter
virulence or infection-related traits. However, it remains chal-
lenging to disentangle how biased sampling influences poten-
tially spurious associations when looking for correlations be-
tween phylogenetic clusters and isolate characteristics. For
example, in C. albicans isolates from animals, the most com-
mon ST is ST172 (6.5% of animal isolates, versus 0.12% of
all other isolates), yet all come from Hungary. In contrast, the
five ST172 isolates from the UK, India, Germany, France, and
China were collected from oral, vaginal, and systemic infec-
tions. Distinguishing whether clustered isolates are genuinely
different for specific traits of interest requires significant ad-
ditional global sampling, such as the recent tour de force to
acquire environmental yeast isolates [32••].

The Potential Influence of Heterozygosity

Considerable heterozygosity exists in the diploid species (Fig.
1), but it remains unclear whether this is meaningful in the
context of adaptation. Allelic heterozygosity has been quanti-
fied as the average frequency of polymorphisms across the
genome (i.e., number of SNPs per base [92]) and as nucleotide
diversity (i.e., the average number of nucleotide differences
per site between two DNA sequences in all possible pairs
[36••]). Early C. albicans whole-genome studies noted a high
level of heterozygosity compared to sexually reproducing spe-
cies and speculated that allelic differences might have clinical
consequences [84, 92]. Since then, Candida spp. allelic vari-
ation has often been interpreted through an adaptive lens.

Fig. 4 Proportion of Candida isolates deposited in the PubMLST
database based on geographic location (A) and source of isolation (B).
The total number of isolates for each species as of January 2021 is

indicated in brackets below the species name. The number of
researchers that have deposited sequences also differs by species: C.
albicans, 76; C. glabrata, 14; C. tropicalis, 25; C. krusei: 7
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However, heterozygosity levels among diploid, asexual
Candida spp. vary widely. C. albicans and C. tropicalis have
similar levels of heterozygosity, with ~ 0.5% positions in the
genome being heterozygous [45••, 81], ~ 70-fold higher than
that observed in C. parapsilosis [93] (with the caveat that
fewer C. parapsilosis strains have been examined).

Heterozygosity is theoretically advantageous from the per-
spective of evolvability. The effect size of many beneficial
mutations is at least partially masked by a wild-type allele
(i.e., the effect size of a beneficial allele as a homozygote is
larger than as a heterozygote). If a particular SNP is beneficial
in a specific environment, loss of heterozygosity (LOH) can
provide a rapid route to homozygosity. LOH has been ob-
served in both C. albicans and C. lusitaniae following micro-
evolution in clinical and laboratory studies as an efficient
mechanism by which cells become drug-resistant [9••, 10,
94] or increase their fitness in mammalian hosts [22, 23].
Similarly, in serial isolates recovered from patients with recal-
citrant C. albicans infections, LOH events between early and
late isolates were associated with increased drug resistance
[10]. Although some specific LOH events have been linked
directly to adaptive phenotypes, differences in LOH rate in
different environments may also reflect different genome-
wide mutation rates under different conditions [44, 45••].
For example, de novo LOH events reached higher frequencies
in the host and under stressful conditions relative to growth in
rich media in C. albicans [44, 45••, 46••], consistent with
stress-induced mutagenesis observed in higher eukaryotes
[95]. However, in the majority of patient-derived isolates,
LOH tracts appear to be neutral [96••]. It remains challenging
to evaluate the fitness consequences of specific tracts as LOH
can span single polymorphisms to whole chromosomes, and
studies often lack matched isogenic strains with these partic-
ular configurations.

There is some evidence for selection to maintain heterozy-
gosity to avoid exposing recessive deleterious alleles that ac-
cumulate neutrally in the genome [97–99]. Heterozygosity at
specific genomic regions may have direct consequences on
biological processes. For example, heterozygosity at the
mating-type locus (MTL) reduces the capacity for mating in
C. albicans cells. [100, 101]. The majority of C. albicans
clinical isolates are MTL heterozygous, and they are more
virulent in mice compared to closely related MTL homozy-
gous isolates [102, 103]. However, selection for polymor-
phism and selection against LOH should not be conflated.
Determining whether there is selection to maintain polymor-
phisms per se requires finding significant correlations between
genome-wide polymorphism levels and phenotypes of inter-
est. In a set of 21 C. albicans isolates, a significant correlation
was found between genome-wide heterozygosity and growth
in nutrient-rich media at 30 °C, but not at 37 °C, nor growth in
other examined conditions [39]. Furthermore, there was no
association between heterozygosity and C. albicans virulence

in a murine or insect infection model [39], nor with
C. orthopsilosis virulence in an insect model [104]. While
higher levels of heterozygosity have been observed in clinical
i so la tes compared to envi ronmenta l i so la tes of
Saccharomyces cerevisiae, high levels of heterozygosity in
Candida spp. do not seem to be tied to selection in the context
of human infections; C. albicans strains isolated from oak
trees displayed higher heterozygosity levels than clinical iso-
lates from the same clades [31••]. While heterozygosity may
be theoretically advantageous, there remains little to no em-
pirical data supporting whether (or not) selection for broad
polymorphism contributes to differences among isolates, es-
pecially in the context of clinically relevant phenotypes.

The Black Box of Within-Population
Heterogeneity

Relatively little is known about the extent of genetic diversity
in fungal populations within an individual host. Sequencing-
based methods have identifiedCandida spp. as frequent mem-
bers of the mycobiome of several human niches, including the
gastrointestinal and vaginal tracts, oral cavity, and lungs
[105]. Work from the early 1990s found that strains from the
same individual isolated from different body sites are typically
highly similar but not genetically identical [106]. This led to
the common assumption that hosts are colonized by clonal
isolates. However, this work has major limitations, including
the small number of individuals and isolates examined, and
sequencing methods that only reflected a small fraction of the
genome.

Later work showed that healthy hosts could simultaneously
harbor multiple diverse genotypes [84, 107], indicating that
colonization is a dynamic process and that microevolution
may shape the population structure of the colonizing isolates.
C. albicans isolates were found to differ at a single or limited
number of MLST loci during commensal growth in the gas-
trointestinal or genital tracts, with variation often associated
with LOH [84, 108]. Host infection microevolution studies
demonstrate that colonizing isolates differ through multiple
LOH following infection [109, 110]. Examining C. albicans
from 40 secondary infections identified 50 diploid STs, with
LOH as the source of variation between isolates [70]. The tract
size of LOH events can be used to distinguish between mitotic
recombination, resulting in gene conversion, and break-
induced replication, resulting in the homozygosis of partial
or whole chromosomes. Both were detected within colonizing
populations or following murine passage [111, 112] in exper-
imental evolution studies that utilized different mouse models
of commensalism or infection. LOH and chromosomal copy
number variation frequently arose and rapidly resulted in ex-
tensive heterogeneity within cell populations impacting
C. albicans fitness. For example, chromosome 7 trisomy
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was associated with increased fitness during colonization of
the mouse gastrointestinal tract [45••], and chromosome 6
trisomy was repeatedly selected during infection of the mouse
oral cavity [21••].

Recent whole-genome sequencing of C. albicans isolates
from healthy individuals revealed a high degree of variation
[96••]. An oral sample from a single individual contained
several isolates differing from each other by multiple, short
LOH tracts [96••]. Similarly, widespread genetic variation
was detected in C. glabrata isolates from single individuals,
with hundreds of nonsynonymous single nucleotide
polymorphisms (SNPs) identified between isolate pairs and
occasional aneuploidy events [40••]. Interestingly, C.
glabrata SNPs were enriched in genes encoding cell wall
proteins [40••], and these gene families are also a hotspot for
C. albicans genetic variation during in vitro evolution [45••].
Temporal heterogeneity in Candida lusitaniae (Clavispora
lusitaniae) isolates from bronchoalveolar lavage samples
from a patient with cystic fibrosis has also been documented
[9••]. Here, isolates derived from a common ancestor differed
by hundreds of SNPs and indels, and a hotspot for mutations
was observed in MRR1, a transcription factor regulating the
expression of antifungal drug transporters. Mutations in
MRR1 were shown to protect fungal cells from particular
host and bacterial factors and indirectly selected for
subpopulations resistant to antifungal drugs [9••].

The development of azole resistance in serial clinical iso-
lates provides an excellent example of how microevolution
can follow diverse routes to the acquisition of drug resistance.
A comparison of C. albicans isolates before and after the
development of azole resistance found that isolates differed
by thousands of SNPs, yet azole resistance was primarily at-
tributed to persistent and recurrent LOH [10]. Aneuploidy,
particularly of chromosome 5, was also frequently, yet tran-
siently, observed [10]. Since drug resistance in these clinical
isolates often coincides with fitness costs in the absence of
antifungals [10], the hypothesis is that aneuploidy extends
the window for other beneficial mutations with smaller fitness
costs to arise, at which point selection to maintain the aneu-
ploidy would be lost.

Conclusion

In commensal or pathogenic contexts, Candida spp. have
many mutational pathways available and exhibit extensive
genetic variation, which can promote survival under fluctuat-
ing conditions of nutrient availability, drug exposure,
microbiome competition, and immune surveillance.
Outstanding questions remain regarding the nature of the re-
lationships established between coexisting isolates and how
genetic heterogeneity impacts commensalism and pathogenic-
ity. Future studies are necessary to determine to what extent

this genetic variation reflects selection or genetic drift in the
respective environments.
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