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Abstract
Purpose of Review During infection, the human fungal pathogenCryptococcus neoformans undergoes an unusual change in size,
from small haploid yeast to large polyploid Titan cells. This transition is nowwell recognized as a virulence factor, but significant
questions remain about how Titanisation is regulated and how it influences disease progression. Progress has been impeded by
the lack of an in vitro model for the yeast-to-Titan transition, a challenge that was recently overcome by three independent groups.
Recent Findings Here, we review Titanization in the context of patient samples and animal models and set the stage for three new
reports describing in vitro Titan cell induction assays. We compare and contrast key findings, place them in the broader research
context, and identify areas of further interest.
Summary New in vitro models will allow pressing questions about molecular mechanisms driving the yeast-to-Titan transition
and their influence on drug resistance and pathogenesis to be addressed.
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Introduction

Fungal infections are an underappreciated threat to global
health, causing an estimated 1.5 million deaths each year
[1]. Infection with Cryptococcus species remains a leading
cause of morbidity and mortality among both immunocom-
promised and immunocompetent individuals [1, 2]. Disease
occurs when desiccated yeast or spores are inhaled, proliferate
in the lung, and disseminate to the central nervous system
(CNS), causing life-threatening meningitis [3, 4]. A key de-
terminate of disease progression is the Cryptococcus Titan
cell, a striking fungal morphotype induced in the lung by
host-relevant factors [5, 6••, 7••, 8, 9] (Fig. 1). This review
addresses common questions surrounding this topic and high-
lights recent developments in our understanding of the cryp-
tococcal yeast-to-Titan transition that reveal underlyingmech-
anisms of pathogenesis, drug resistance, and immune evasion.

Morphological transitions by fungi are hallmarks of path-
ogenicity that enable growth in the host microenvironment,
mediate tissue damage, and influence immune evasion and
immune cell recruitment [10–12]. Following inhalation of
spores into the lung, or upon in vitro induction, members of
the Cryptococcus species complex (C. neoformans, C.
deneoformans, C. gattii) undergo a dramatic change in cell
size from small (5–7 μm) yeast to large (> 10–100 μm)
Titan cells, evading phagocytosis [6••, 7••, 8, 9, 13] (Fig. 1a,
b). During this transition, yeasts grow isotropically and under-
go repeated rounds of endo-reduplication to form large, highly
polyploid Titan cells with distinct morphology and cell cycle
(Fig. 1c). These large cells divide their DNA asymmetrically
and produce disproportionately small haploid, diploid, or an-
euploid daughter cells [6••, 14•] (Fig. 1d). The result is an
overall population that is heterogeneous for both ploidy and
size, and this heterogeneity has important implications for
drug resistance and immune evasion [14•].

Despite their important roles in pathogenesis, Titan cells
were unrecognized as a feature of cryptococcosis until 2010
and could not be reliably generated in vitro until 2018 [6••,
7••, 15, 16••, 17]. Our lab, together with two other groups, has
recently demonstrated that the yeast-to-Titan transition can be
reproducibly triggered by growth in minimal medium and
exposure to an inducing condition: serum containing bacterial
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cell wall, serum supplemented with sodium azide, or contin-
uous mixing under hypoxia (Fig. 2) [6••, 7••, 16••]. The iden-
tification of in vitro inducing conditions, coupled with previ-
ous in vivo and in vitro work identifying regulatory signaling
pathways, demonstrates that the yeast-to-Titan transition is a
regulated developmental switch analogous to the yeast-to-
hyphal transition of dimorphic fungi [6••, 18–21]. However,
significant questions remain about the basic cell biology of
this morphotype, and how it influences host-pathogen
interactions.

How Frequently Are Titan Cells Observed
in Patient Isolates?

Clinical reports of Titan cells can be found in the literature as
early as 1973, when large encapsulated yeasts were isolated
from the lung of a young African woman [22]. In 1985, Love
et al. again reported unusually large, dimorphic cells in iso-
lates directly from the brain of a young African man [23]. In
each case, Titans were observed only immediately after isola-
tion from the patient: large cells converted back to producing a

typical homogenous yeast population upon in vitro culture on
Sabouraud or brain heart infusion agar. When mice were in-
fected with these strains, but not a laboratory control, atypical
large cells were again observed [22, 23]. Morphologically,
these large cells were reported to produce a distinct capsule
and cell wall structure compared to their yeast-phase counter-
parts, consistent with formal descriptions of Titan cells [8, 9,
22]. However, these early isolates were dismissed as atypical
until 2010 [8, 24].

Perhaps contributing to this underappreciated role, C.
neoformans Titan cells have not been reported in patient
cerebral spinal fluid (CSF), classically one of the most im-
portant sites for diagnosis of cryptococcosis. A 1985 report
of serial CSF isolates from a patient with lupus notes that
cryptococcal cells directly observed from the CSF were het-
erogeneous in cell size, and classified these cells as having
either distinct or unstructured organelles following TEM
[25]. While this is consistent with TEM of in vitro and in
vivo Titan cells [6••, 9], the few available documented cells
from these CSF isolates fail to reach the > 10-μm threshold
[25]. A subsequent 2014 analysis of serial CSF samples
from 134 patients likewise failed to identify cells > 10 μm

Fig. 1 Cryptococcus neoformans
grows as a heterogeneous
population of yeast and Titan
cells. a In vitro-induced yeast and
Titan cells counterstained with
India ink to reveal capsule. b
In vitro-induced yeast (black
arrows) and Titan (white arrows)
cells co-cultured with J77.4
macrophage-like cells. c A
schematic showing yeast- and
Titan-phase cell cycles in the
environment and in the host lung.
d A budding Titan mother with
asymmetric DNA division
(blue = calcofluor white, chitin;
red = Cse4-mCherry,
chromosomes)
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[26]. However, these authors did observe a subset of patients
with a significantly larger overall median cell body size of
8.2 μm and reported cells > 30 μm including capsule. This
highlights a key challenge when identifying Titan cells in
patient samples: Current definitions use arbitrary size cutoffs
and differ on whether to include capsule diameter, rather
than relying on a complete analysis of key morphological
features [12, 15, 27]. It remains to be seen whether crypto-
coccal cells in the CSF truly do not form Titan cells or
whether they undergo the yeast-to-Titan transition in a lim-
ited way but do not cross the > 10-μm threshold. One in-
triguing data point to consider is that cells exposed to con-
tinuous mixing (800 rpm/~ 1 g) in minimal medium and
hypoxia form Titan-like cells at a high rate in vitro (Fig.
2c) [7••]. This may be analogous to continuous mixing by
CSF flow that cells are likely to be exposed to in the CNS, a
nutritionally limited, hypoxic environment [28–30].

How Do We Define a Titan Cell?

As mentioned above, in vivo-derived Titan cells exhibit clear
morphological and ploidy alterations relative to yeast [8, 18].
In vivo, Titans can reach up to 100 μm, while typical yeast
cells are around 5 μm [8]. However, several authors have
established conflicting definitions of the minimum size

threshold, relying on arbitrary size cutoffs and differing on
whether to include capsule diameter [12, 15, 27]. In addition
to cell size, Titans exhibit increased cell wall thickness and
maintain a characteristic single, large, intracellular vacuole
that occupies the majority of the intracellular space [9].
Increased cell size is associated with increased DNA content:
in vivo Titan cells are highly polyploid—often tetraploid or
octoploid, but reaching as high as 64C—and they can produce
diploid or aneuploid daughters with normal cell size [8, 9,
14•]. In addition, Titan cells exhibit changes in important vir-
ulence factors: they have highly compacted polysaccharide
capsule and altered pathogen-associated molecular pattern
(PAMP) exposure, including altered chitin and chitosan con-
tent in the cell wall [9, 31, 32]. Titan cells are also are less
frequently phagocytosed and are more resistant to lung phago-
cyte killing and nitrosative and oxidative stress [8].

In vitro induction protocols have established a more parsi-
monious definition for Titans with four key criteria: (1) cell
body size > 10 μm; (2) cell ploidy > 2C; (3) the presence of a
single, large vacuole; and (4) altered cell wall and capsule [6••,
7••]. However, these criteria may require further refinement.
For example, despite inclusion of the capsule in the Titan cell
definition, capsule itself is not required for Titanization [6••].
In addition, definitions based on increased mother ploidy (>
2C) and cell size (> 10 μm) should also include asymmetric
division of DNA and the production of disproportionately

Fig. 2 Schematic showing three new in vitro Titan cell induction
protocols. a Induction of Titan cells through pre-growth in minimal
medium followed by exposure to 10% serum. b Induction of Titan-like
cells through pre-growth in minimal medium followed by exposure to

serum + sodium azide. c Induction of Titan cells through continuous
shaking under hypoxia. Relevant references for each method are
indicated
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small daughter cells. Large “Titan-like” cells (> 10 μm) divide
DNA symmetrically and produce proportionate daughters,
similar to yeast-phase budding [6••, 7••]. In some cases, these
buds fail to fully divide, accumulating defects in cytokinesis
[6••]. Finally, these definitions have relied on work with theC.
neoformans H99 isolate, which may skew understanding of
underlying diversity across the species complex [7••]. Future
work shouldmore fully define the yeast-to-Titan switch across
clinical and environmental isolates. Despite these limitations,
we will rely on these four criteria throughout this work.

How Do Titan Cells Influence Disease
Outcome?

Typically, cryptococcosis patients are immunocompromised
and present either with cryptococcal meningitis, diagnosed
by visualization of yeast in CSF, or are Cryptococcus antigen
(CrAg) positive upon diagnosis of HIVor during routine mon-
itoring upon immune suppression [2, 33]. Cryptococcal men-
ingitis arising from infection with C. neoformans accounts for
15% of HIV-related deaths [17, 34]. This represents an unac-
ceptably high mortality rate: among HIV patients with low
CD4+ counts, only approximately 6% are positive for crypto-
coccal antigen. Overall, an estimated 278,000 cases of cryp-
tococcal meningitis occur annually in HIV-positive patients,
with 65% mortality [34]. While HIV status is the most fre-
quent predisposing factor, cryptococcosis is also associated
with solid organ transplant, particularly in patients receiving
T cell depletion therapy or calcineurin inhibitors [33]. Among
solid organ transplant patients, the overall incidence of cryp-
tococcosis is 5%, and mortality attributed to cryptococcosis in
transplant patients is 14% [33, 35]. Importantly, up to 20% of
C. neoformans-infected patients have no identifiable underly-
ing disease and this trend is consistent worldwide [36–38].

Cryptococcus infection begins in the lung, but cryptococcal
pneumonia is often neglected in estimates of morbidity and
mortality. In non-HIV/non-transplant (NHNT) patients, as well
as in cyclosporin-treated transplant patients, there is an in-
creased incidence of cryptococcal pneumonia in the absence
of disseminated infection [27, 35, 37, 39]. While CNS involve-
ment is predictive of poor outcome, pulmonary infection can
also be fatal: Cryptococcal pneumonia was diagnosed upon
autopsy in 7% of a cohort of patients who succumbed to respi-
ratory disease and can be the cause of rapid respiratory failure
upon introduction of antifungal therapy in patients with HIV
[40, 41]. Finally, infection with the emerging pathogen
Cryptococcus gattii is characterized by pulmonary
cryptococcoma [42]. Taken together, there is growing evidence
that cryptococcal pneumonia is an under-recognized challenge
that is both a precursor to cryptococcal meningitis and a pre-
dictor of morbidity and mortality in its own right [43].

How might Titan cells contribute to these different disease
processes? Dissemination from the lung occurs either via
transcytosis or paracellular crossing of the lung epithelium
or via phagocytosis and Trojan Horse-type dissemination (re-
cently reviewed by [4]). In vivo and in vitro observations
suggest that the morphological transition from yeast to Titan
cell may contribute to pulmonary vs. disseminated disease [5,
6••]. In murine models of infection, Titan cells are associated
with escape from the lung, crossing of the blood-brain barrier,
and a non-protective immune response [5, 27, 32, 44]. Mice
infected with low-Titanizing clinical isolates or mutants with
Titanization defects exhibit differences in disease progression
[5, 6••]. In these mice, dissemination to the brain is delayed, if
not entirely prevented. However, it is not simply that Titans
enable dissemination: Infection with cells that are hyper-
Titanizing (otc1Δ or usv101Δ) prolongs the pulmonary phase
and delays dissemination [5, 6••, 45].

How can these two observations be reconciled? First,
Titans themselves are phagocytosed at low rates due to their
large size (Fig. 1b) [8]. Thus, strains that produce more Titan
cells are predicted to be less phagocytosed and disseminate
more slowly (otc1Δ, usv101Δ). Moreover, daughters of Titan
cells can themselves Titanize, further renewing the Titan pop-
ulation [6••]. In the case of the transcription factor USV101, a
negative regulator of the yeast-to-Titan switch, we speculate
that the progressive increase in the proportion of Titan cells
relative to small cells generated by the usv101Δ mutant con-
tributes to reduced dissemination to the brain [6••]. In addi-
tion, the presence of Titans reduces uptake of small cells
through an unknown mechanism [9, 44]. However, under in
vivo or in vitro Titan-inducing conditions, a heterogeneous
population of daughter cells ranging from 2 to 7 μm is also
observed [6••, 7••, 8, 9, 16••, 19]. These small cells simulta-
neously arise from normal yeast-phase budding and through
asymmetric Titan budding and represent the majority of the
infecting population [6••]. Additionally, Titan cells produce
daughters at a more rapid rate (~ 60 min/bud) than yeast-
phase cells [7••, 9]. Together, this increases the proportion of
small daughter cells available to be phagocytosed and dissem-
inated relative to a Titan-deficient strain. This may partially
explain the association of Titans with dissemination, as both
hypo-Titanizing and hyper-Titanizing mutants that exhibit re-
duced dissemination also show reduce lung CFUs compared
to their wild-type parents [5, 45]. Perhaps the most significant
finding is that, similar to Titans themselves, Titan daughters
are more resistant to stress than their yeast-phase sisters, likely
due to their altered ploidy [14•]. It remains to be seen whether
Titan daughters undergo transcytosis or paracellular crossing
at altered rates relative to yeast daughters, but it is clear that
they are more resistant to killing by phagocytes and more
likely to be drug resistant, thereby mediating pathogenesis.

Given the above differences in disease presentation in dif-
ferent populations, it is tempting to speculate that Titanizing
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strains are more likely to be observed in clinical compared to
environmental isolates. However, when we examined the
Titanization capacity of environmental isolates and clinical iso-
lates from an HIV patient cohort in Zambia, we found no asso-
ciation with clinical or environmental origin or clade [6••, 46].
Likewise, the capacity to form Titans has been observed in all
three major species (C. neoformans, C. deneoformans, C.
gattii) [7••]. This points to the yeast-to-Titan transition being a
conserved and widely occurring mechanism to facilitate adap-
tation to and evasion of environmental stress [6••].

How Are Titan Cells Induced?

One of the biggest challenges impeding efforts to understand the
contribution of Titan cells to disease has been the lack of an in
vitromodel for their induction. Thanks to thework of threemajor
collaborations spanning the field of Cryptococcus research, we
now have three robust induction protocols that identify three
independent inducing signals: microbial, host-derived, and phys-
ical (Fig. 2) [6••, 7••, 16••]. Continuing the tradition established
by the original Titan cell papers, these three methods were pub-
lished back to back to back in a single journal. Although there are
differences in inducing signal between the variousmethods, there
are also common themes, including cell density, nutrient avail-
ability, and oxygen limitation.

First, cell density has a clear and reproducible impact on
Titanization across in vivo and in vitro models. Mice infected
with a lowmultiplicity of infection (MOI) (104/ml) or present-
ing with asymptomatic infection exhibit a higher rate of en-
larged cells [8, 9]. This was recapitulated in all three reports of
in vitro Titan and Titan-like cell induction, where increased
cell density reduces Titanization frequency and cell size [6••,
7••, 16••]. Interestingly, there appears to be a lower limit to the
MOI effect, at least in the physical induction protocol (Fig.
2c): the frequency of cells > 10 μm is reduced at lower MOI
(37% at 106 vs. 10% at 104) when induced by continuous
mixing under hypoxia [16••]. However, induction frequency
and size increase progressively at MOI < 106 in the presence
of serum alone or serum + sodium azide inminimal medium at
37 °C in 5% CO2 (Fig. 2a, b) [6••, 16••].

One possible explanation for this is that density-dependent
expression of secreted factors inhibits the yeast-to-Titan switch.
Cryptococcus neoformans Qsp1 is a density-dependent secret-
ed protein involved in protease expression and cell wall remod-
eling [47]. Loss of QSP1 results in an increase in the size and
frequency of Titan cells during hypoxic growthwith continuous
mixing [16••]. We likewise observed an increase in the frequen-
cy of Titan cells produced by the qsp1Δ mutant in our assay
(unpublished results). However, while Qsp1 activity partially
explains suppression of Titanization at high density, deletion of
qsp1Δ does not cause constitutive Titanization in the absence
of an inducing signal [16••].

Another density-dependent signal, pantothenic acid (PA),
may positively regulate Titanization, with the frequency of
Titan cells increasing upon exposure to physiologically relevant
sub-micromolar concentrations [16••]. However, exposure tomi-
cromolar concentrations inhibits Titanization. PAwas originally
identified as a factor in conditioned medium from stationary
cultures that was able to increase growth rate in a density-
dependent manner [48]. It remains to be seen whether the impact
of PA on growth rate is sufficient to explain its impact on Titan
frequency, or how PA interacts with Qsp1.

Second, low density alone is not sufficient to prime cells for
Titanization: nutrient availability both before and during induc-
tion influences outcome (Fig. 2). When cells grown in rich me-
dium (YPD) were used as the inoculating culture at low density
(5 × 106 or 1 × 104/ml), true Titan cells were not observed, even
when cells were washed thoroughly in PBS to remove any se-
creted signal [6••]. Rather, large cells (> 10 μm) that produced
proportionally sized daughters and accumulated cytokinesis de-
fects could be observed at 104/ml. Although these cells exceed
the 10-μm cutoff, we do not consider them to be true Titan cells
because of these defects. In contrast, growth in minimal medium
(YNB + 2% glucose) followed by low-density inoculation into
10% serum was sufficient to induce true Titan cells (Fig. 2a)
[6••]. The impact of nutrients on induction was also reported
by Hommell et al. and Trevijano-Contador et al., who note that
pre-growth in either YPD or Sabouraud broth likewise inhibits
induction of Titan-like cells [7••, 16••]. Interestingly, cells inoc-
ulated into a diluted minimal medium (5% Sabouraud buffered
with MOPS and 5% FBS + 15 μM sodium azide) during induc-
tion produce proportionally sized daughter cells and also exhibit
significant cytokinesis defects [7••]. Growth in Sabouraud has
also been reported to inhibit the production of robust capsule,
suggesting that nutrient availability is profoundly linked to the
repression of virulence factor expression in this fungus [49].

Third, consistent with a role for nutrients and hypoxia in
inducing Titanization, the cAMP/PKA pathway that mediates
both of these signals is central to each of the in vitro protocols
and is required for Titanization in vivo [6••, 7••, 16••, 18].
Elegant work from Choi et al. showed that perturbation of
PKA1/PKR1 regulation is sufficient to generate spontaneous
Titans in vitro [19]. Patient isolates with PKR1 truncations can
be hyper-Titanizing in some instances, although the effect was
dependent on genetic context [16••]. Despite this, activation of
the cAMP/PKA pathway alone is not sufficient: pkr1Δmutants
do not constitutively form Titans, and the addition of exogenous
dcAMP does not induce spontaneous Titanization [6••, 19].

How Does the cAMP Pathway Regulate
Titanization?

The cAMP/PKA pathway is a central regulator of C.
neoformans pathogenesis: cAMP/PKA regulates melanin
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production and capsule structure, and mutants deficient in this
pathway are avirulent [50–52]. cAMP-deficient mutants are
rapidly cleared from the lung, complicating efforts to study its
role in virulence. Despite this, the influence of cAMP/PKA on
Titanization was first described in vivo, building from the initial
observation that Titan cell production increases upon coinfec-
tion with cells of oppositemating type [8]. Later, it was reported
that the ste3α pheromone receptor and the G protein-coupled
receptor Gpr5 are required for Titanization [18]. Both receptors
interact with Gα protein Gpa1, which signals via the adenylyl
cyclase Cac1 to generate cyclic AMP and relieve Pkr1-
mediated negative regulation of Pka1 [50, 53]. Gpr5, Cac1,
and Pka1 are required for in vitro Titan induction, and targets
of this pathway, including the Rim101 andGat201 transcription
factors, also regulate Titanization [6••, 16••, 18].

Previous work has demonstrated that CnCac1 adenylyl cy-
clase activity is stimulated by bicarbonate and the β-carbonic
anhydrase Can2, which is essential for growth in ambient
CO2, but no activity has been previously attributed to CAN1
[54]. Consistent with cAMP/PKA regulation, loss of CAN1
increases the frequency of Titan-like cells [7••]. Although the
specific mechanism underlying the can1Δ phenotype remains
uncharacterized, oxygen tension influences Titanization in all
three in vitro systems (Fig. 2) [6••, 7••, 16••].

This may speak to the intersection of cell cycle events and
the yeast-to-Titan switch. It is well established that O2 limita-
tion causes C. neoformans to decouple DNA synthesis and
bud emergence [55, 56]. During hypoxic growth in rich me-
dium, cells arrest in G2, post synthesis but prior to budding.
Release into fresh rich medium triggers synchronized bud
emergence for a single cell cycle, although this synchrony
quickly collapses. In contrast, it appears that hypoxic growth
in minimal medium prompts G1-S cycling in the absence of
bud emergence (Fig. 1c), leading to the accumulation of a high
percentage of Titanmothers [7••]. Subsequent release into rich
or minimal medium enables bud emergence. Consistent with
this, loss of the cell cycle-responsive transcription factor
USV101 increases the frequency at which cells make the
yeast-to-Titan switch [6••, 45]. We have recently reviewed
progress on the interaction of the cell cycle with C.
neoformans virulence and suggest that Titanization is similar-
ly regulated at the level of the cell cycle [57]. A mechanistic
understanding of how the above conditions influence these
events is clearly needed.

Finally, accumulating evidence suggests a role for the mi-
tochondrion in regulating fungal pathogenesis in general and
the yeast-to-Titan switch in particular [58]. Perhaps most sig-
nificant are the observations that perturbation of the mitochon-
drion, through the addition of the complex IVinhibitor sodium
azide or through iron limitation, significantly increases the
frequency of Titan-like cells [7••]. It is intriguing that the
mitochondrion also influences capsule growth, another
cAMP/PKA, and iron-regulated phenotype [59]. Moreover,

transcription factors that influence capsule production
(USV101, RIM101, GAT201) also influence Titanization
[6••, 7••, 18, 45, 60]. Both RIM101 andGAT201 are negative-
ly regulated by Usv101 and are targets of the cAMP/PKA
pathway [45, 61]. In addition, the SAGA complex protein
Ada2, which is a target of both cAMP and Gat201, is also
required for both capsule and Titanization [7••, 60]. While
the specific mechanisms by which these signals are integrated
with mitochondrial function remain to be explored, these ex-
periments are now within reach due to the development of in
vitro Titanization assays.

How Do Host Dynamics Contribute
to Titanization?

It is clear that the lung is particularly suited to Titan induction
[6••, 8, 9]. From a microbial perspective, the lung is likely to
be a hypoxic environment, particularly within fungal lesions
[62]. However, host-relevant factors have also been shown to
influence Titanization.

Host IgM levels have been implicated in in vivo Titan
induction in the context of B cell inactivation [63]. T cell
function has also been implicated: TH2-tilted C57BL/6J mice
exhibit increased Titanization compared to TH1-tilted CD1
mice, and TH2 responses are associated with poor outcome
[27, 32, 64]. Although the mechanisms driving fungal mor-
phogenesis in these models remain unexplored, increased
Titanization was associated with significant accumulation of
the TH2-type cytokine IL4, increased eosinophilia, more
abundant capsule IgM antibodies, and increased total IgE in
sera [27].

Finally, the lung microbiome may influence Titanization:
we have established that the bacterial cell wall component
peptidoglycan is a key active component of serum sufficient
for Titan cell induction [6••]. Healthy and diseased lungs are
colonized by a robust bacterial microbiome [65, 66]. Upon
inhalation of infectious spores or yeast, C. neoformans may
sense this complex microbial environment and respond
through a morphological transition from yeast to Titan form
[6••]. The interaction of these microbial and host factors with
fungal morphogenesis and drug resistance will have implica-
tions for disease progression and treatment.

How Do Titan Cells Contribute to Disease
Progression?

Regardless of inducing condition, the yeast-to-Titan transition
occurs within the first 24 h of exposure. In mouse models of
infection, Titan cells can be observed in the lung 1 day post-
infection and comprise up to 20% of fungal cells recovered
through bronchio-alveolar lavage on day 3 [8]. When induced
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by mixing, or exposure to host-relevant ligands, Titan cells
can be observedwithin the first 24 h, and overall size increases
through continued culture.

Infection directly with Titan cells leads to increased lung
fungal burdens early in infection [5].

In vivo, the overall median cell size decreases from 30 to
10 μm over the course of infection [67]. A similar phenome-
non is observed during in vitro induction, with the relative
proportion of small cells increasing more rapidly than the
number of Titan cells over time [6••, 7••]. In addition to chang-
es in cell size, Titans exhibited altered cell wall: chitin levels
increase, while chitosan and other PAMP levels decrease, and
this promotes a non-protective TH2 response [31, 32].

Up to 20% of patients may suffer from mixed infections
with multiple serotypes, and there is evidence of the emer-
gence of stable diploid serotype D or AD hybrid strains from
patient isolates [17]. Sexual reproduction, through either
bilateral or same-sex mating via the production of mono-
or dikaryotic hyphae and the development of sporulating
basidia, has never been observed in vivo for C. neoformans
[68]. However, as mentioned above, Titan frequency in-
creases during coinfection with strains of opposite mating
type [8]. Both hybridization and Titanization lead to funda-
mental changes in cell ploidy that are likely to have signif-
icant implications for drug resistance. For example, 60% of
patients will experience fluconazole resistance over the
course of treatment [69]. Fluconazole resistance has been
linked to the emergence of aneuploidy in chromosome 1,
mediating increased gene dosage of the lanosterol 14α-
demethylase ERG11 and drug exporter AFR1 [24]. While
it is possible that exposure to fluconazole directly induces
aneuploidy, as has been observed in vitro, the impact of
Titanization on drug resistance in patients has not been in-
vestigated [70•]. However, it is clear that Titans exposed to
fluconazole in vitro exhibit an increased frequency of aneu-
ploidy and fluconazole resistance [14]. In addition, in vitro-
induced Titan mothers produce aneuploid and diploid
daughters at a high frequency even in the absence of chem-
ical stress [6••]. Therefore, Titanization presents multiple
possible mechanisms towards aneuploidy and drug
resistance.

Concluding Remarks

With the development of robust in vitro induction protocols,
the yeast-to-Titan transition has moved from an unusual host-
specific virulence factor to a highly regulated morphological
transition with profound implications for health and disease.
Although many unanswered questions remain, we are now
poised to investigate the basic biology of these cells to under-
stand the molecular mechanisms underlying cryptococcal
morphogenesis, drug resistance, and pathogenesis.
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