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Abstract
Purpose of Review Invasive fungal infections caused by the commensal yeast Candida and the ubiquitous, inhaled mold
Aspergillus have emerged as major causes of morbidity and mortality in critically ill and immunosuppressed patient populations.
Here, we review how neutrophils contribute to effective immunity against these infections.
Recent Findings Studies in mouse models of invasive candidiasis and aspergillosis and observations in hematological patients
with chemotherapy-induced neutropenia and in patients with primary immunodeficiency disorders that manifest with these
infections have highlighted the critical role of neutrophils and have identified key immune factors that promote neutrophil-
mediated effective host defense against invasive fungal disease.
Summary Neutrophils are crucial in host protection against invasive candidiasis and aspergillosis. Recent advances in our
understanding of the molecular cues that mediate protective neutrophil recruitment and effector function against these infections
hold promise for developing immune-based strategies to improve the outcomes of affected patients.
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Introduction

Neutrophils are the most abundant leukocytes in human blood
with an estimated production in the bone marrow of approx-
imately 1011 cells daily [1]. When acute infection develops,
upon their recruitment from the blood into the infected tissue,
neutrophils exert a variety of effector functions, which include
binding, phagocytosis, and intracellular killing of microorgan-
isms via oxidative and non-oxidative cytotoxic mechanisms,
extracellular degranulation of antimicrobials that are pre-
stored in specialized granules, formation of neutrophil extra-
cellular traps (NETs), and generation of pro-inflammatory and
anti-inflammatory cytokines, chemokines, and other media-
tors [2, 3].

Neutrophils represent the first line of innate immune
defense against invasive infection caused by certain fun-
gal pathogens such as Candida and Aspergillus species,
among which Candida albicans and Aspergillus
fumigatus are the most common species infecting
humans and will be the focus on our review. Instead,
other fungi such as Cryptococcus neoformans ,
Pneumocystis jirovecii, and the endemic dimorphic fungi
Histoplasma capsulatum, Blastomyces dermatitidis, and
Coccidioides immitis do not rely on neutrophils but de-
pend on an effective CD4+ T cell-macrophage cross-talk
for optimal host defense [4–9]. Indeed, patients with
acquired and inherited quantitative and qualitative neu-
trophil defects are at heightened risk for developing in-
vasive candidiasis and aspergillosis (but not cryptococ-
cosis, pneumocystosis, or endemic dimorphic fungal dis-
ease) and experiencing worse outcomes from these in-
fections [4, 5, 8].

In this review, we outline recent advances in immunologi-
cal knowledge that pertains to the mechanisms by which neu-
trophils are mobilized and become activated in the fungal-
infected tissues derived from mouse models of invasive can-
didiasis and aspergillosis and from patient cohorts at risk for
developing these infections.
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The Role of Neutrophils in Host Defense
Against Candidemia and Invasive Candidiasis

Neutrophils are indispensable for effective host defense dur-
ing invasive candidiasis in mice, and neutropenia is a well-
known predisposing factor for development of candidemia
and invasive candidiasis and for increased mortality after in-
fection in humans [4, 10–13].

Protective Neutrophil Trafficking Into C.
albicans-Infected Tissues

Mouse studies have shown that early neutrophil recruitment to
the site of infection is of critical importance for C. albicans
growth control [14, 15]. Of note, mouse tissues, such as the
spleen and liver that promptly recruit large numbers of neu-
trophils within the first 24–48 h post-infection, are able to
successfully control C. albicans proliferation [16]. In the in-
fected kidneys, the glycoprotein ICAM-1 (intercellular adhe-
sion molecule 1), which binds to integrins, is important for
mediating neutrophil adhesion and diapedesis; in agreement,
Icam1−/− mice are susceptible to systemic candidiasis and
show decreased neutrophilic infiltrates in kidney histological
sections [17, 18]. Additionally, a large number of CC- and
CXC-families of chemokines, other chemoattractants, and
pro-inflammatory mediators are highly and rapidly induced
in the C. albicans-infected kidney; however, mobilization of
neutrophils into the kidney is sluggish and this recruitment
delay is associated with an ineffective immune response and
inexorable fungal invasion within the renal parenchyma [16,
19, 20]. Thus far, the molecular cues that are responsible for
early neutrophil trafficking into the C. albicans-infected kid-
ney in vivo remain elusive.

Important insights into organ-specific neutrophil accumu-
lation during invasive candidiasis have been recently derived
fromCARD9 (caspase recruitment domain-containing protein
9) deficiency, a rare autosomal recessive primary immunode-
ficiency disorder (PID) that manifests with fungal-specific in-
fection susceptibility without predisposition to non-fungal in-
fections, malignancy, atopy, or autoimmunity [21••, 22–24].
Strikingly, CARD9-deficient patients develop invasive candi-
diasis that has a unique tropism for involvement of the central
nervous system (CNS) while typically sparing the kidney,
liver, or spleen that are commonly affected in patients with
iatrogenic immunosuppression who develop invasive candidi-
asis [13, 24].

CARD9 is an adaptor protein that relays signals down-
stream of several C-type lectin receptors (CLRs), such as
dectin-1, dectin-2, dectin-3, and mincle that recognize carbo-
hydrates on the fungal cell wall [ 22, 25, 26]. CARD9-
deficient mice and humans exhibit a CNS-specific and
fungal-specific inability to mobilize neutrophils during infec-
tion, whereas neutrophil recruitment into the fungal-infected

kidney and bacterial-infected CNS is intact in CARD9 defi-
ciency [21••]. The defect in neutrophil accumulation in the
CARD9-deficient C. albicans-infected CNS is attributed to
defects in the production of the CXC chemokines CXCL1,
CXCL2, CXCL5, and CXCL8 (IL-8) in the C. albicans-in-
fected CNS by resident glial cells and recruited myeloid
phagocytes, while cell-intrinsic neutrophil chemotaxis and
survival are intact [21••]. In addition to the significantly im-
paired trafficking to the infected CNS, the small numbers of
neutrophils that are recruited into the tissue exhibit a defect in
killing of unopsonized C. albicans yeast forms, which further
contributes to infection susceptibility in these patients [21••,
27]. Recent clinical reports indicated that a small number of,
but not all, CARD9-deficient patients benefited from adjunct
immunotherapy with granulocyte-macrophage colony stimu-
lating factor (GM-CSF) or granulocyte-colony stimulating
factor (G-CSF) [28–31]; because these colony stimulating fac-
tors are known to exert pleiotropic effects on recruitment and/
or effector function of neutrophils and other myeloid phago-
cytes including microglia, future work will be needed to ex-
amine whether the benefit seen in these patients relates to
overcoming the aforementioned neutrophil recruitment and/
or function defects.

Anti-C. albicans Neutrophil Effector Functions

Assembly of the nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase complex at the neutrophil phagosomal
membrane and activation of myeloperoxidase (MPO) result
in generation of reactive oxygen species (ROS), which along
with the NADPH oxidase-induced K+-flux-mediated activa-
tion of neutrophil proteases within the phagosome are thought
to be responsible for pathogen (including C. albicans) killing
[32, 33]. Moreover, calcineurin-mediated, NFAT (nuclear fac-
tor of activated T cells)-independent signaling, and Mac-1/
Vav/PKCδ (protein kinase delta) activation, both dependent
on the CLR dectin-1, contribute to ROS formation in mouse
neutrophils [34–37]. In addition to the dectin-1 dependent
activation, Mac-1 (also known as integrin αMβ2 or CR3)
can also directly bind to C. albicans and regulates phagocy-
tosis and intracellular Candida killing [38, 39]. Consonant
with the important roles of oxidative killing mechanisms,
NADPH oxidase- and MPO-deficient mouse and human neu-
trophils exhibit impaired C. albicans killing capacity and pa-
tients with chronic granulomatous disease (CGD) caused by
mutations in any of the five subunits of the NADPH oxidase
complex and those with complete MPO deficiency occasion-
ally develop spontaneous invasive candidiasis [33, 40, 41,
42]. In addition to ROS, reactive nitrogen species (RNS, such
as peroxynitrite ONOO−) are also candidacidal as has been
shown for macrophages in response to opsonized and
nonopsonized C. albicans [43]. Neutrophils also produce
peroxynitrite in response to bacterial components and
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cytokines [44, 45]. However, whether C. albicans induces
peroxynitrite production by neutrophils requires further inves-
tigation. However, the vast majority of CGD- and MPO-
deficient patients who lack ROS production by neutrophils
never develop the infection despite lifelong ubiquitous expo-
sure to C. albicans commensal organisms, implying that lack
of phagocyte ROS production in humans can be largely com-
pensated in vivo by non-oxidative killing mechanisms of C.
albicans. Recent studies have uncovered two important mo-
lecular signals involved in non-oxidative C. albicans killing.
The endoplasmic reticulum transmembrane protein Jagunal
homolog 1 (JAGN1) that modulates neutrophil N-glycosyla-
tion and the chemokine receptor CXCR1 were both shown to
mediate cell-intrinsic neutrophil granulogenesis, degranula-
tion, and non-oxidative C. albicans killing without affecting
neutrophil recruitment from the blood into C. albicans-infect-
ed organs [46••, 47]. Of importance, similar to Cxcr1-deficient
neutrophils, the dysfunctional CXCR1-T276 allele was found
to mediate degranulation and non-oxidative C. albicans kill-
ing in human neutrophils and was an independent risk factor
for development of disseminated candidiasis in intensive care
unit patients who suffered from candidemia [46••].

Two independent phagolysosomal mechanisms for C.
albicans killing were recently characterized in human neutro-
phils as a function of C. albicans opsonization by evaluating
patients with various PIDs [48••, 49]. On one hand, killing of
opsonized C. albicans is dependent on the NADPH oxidase
system as well as Fcγ receptors and protein kinase C (PKC).
On the other hand, killing of unopsonized C. albicans occurs
independently of the NADPH oxidase system and relies on
c omp l eme n t r e c e p t o r 3 (CR3 ) , CARD9 , a n d
phosphoinositide-3-kinase (PI3K). While both killing mecha-
nisms in human neutrophils depend on functional Syk activity,
the CLR dectin-1 is dispensable. This observation is in keep-
ing with the absence of invasive candidiasis in patients with
CLEC7Amutations that result in functional dectin-1 deficien-
cy and underscores the differences in molecular factors in-
volved in fungal recognition and killing between mouse and
human neutrophils [50]. Of interest, autophagy appears large-
ly dispensable for C. albicans killing [51], while the precise
role of NETs in regulating the balance between anti-C.
albicans resistance and immunopathology in vivo requires
further investigation [52, 53].

Elegant recent studies have uncovered an intricate cross-
talk between tissue-resident and recruited mononuclear
phagocytes and NK cells that boosts neutrophil fungicidal
activity in C. albicans-infected tissues via the production of
GM-CSF by NK cells. On one hand is IL-23p19 produced by
resident dendritic cells via activation of Syk [54, 55] and on
the other hand is IL-15 produced by recruited inflammatory
Ly6Chi monocytes via type I interferon activation [56••, 57],
which both promote the production of GM-CSF by NK cells
that leads to enhanced neutrophil candidacidal activity. In fact,

a recent randomized clinical trial indicated that administration
of GM-CSF in recipients of allogeneic hematopoietic stem
cell transplantation (HSCT) may protect from invasive fungal
infection (primarily invasive candidiasis)-related mortality
[58].

Neutrophil-Mediated Immunopathology
During Invasive Candidiasis

Although neutrophils are crucial for host defense during
candidemia and invasive candidiasis, neutrophil-mediated
control ofC. albicansmay come at the cost of immunopathol-
ogy and tissue injury. In agreement with that, excessive neu-
trophil accumulation inmouse renal tissue is detrimental in the
late phases of the infection [14], and leukotriene B4-driven
intravascular neutrophil clustering and occlusion in mouse
lung tissue result in neutrophil-mediated capillaritis, pulmo-
nary hemorrhage, and hypoxia [59•]. Pathogenic neutrophil
effects may be seen in patients with renal candidiasis and in
a subset of neutropenic patients with hepatosplenic candidia-
sis during neutrophil recovery; strikingly, these patients occa-
sionally require administration of corticosteroid therapy given
the worsening of their clinical status [60, 61]. The chemokine
r e cep to r CCR1 , t he TEC ty ro s i ne k in a s e , t h e
endoribonuclease MCPIP1, the interleukin IL-17C, and the
suppressor of TCR signaling (STS) phosphatases are implicat-
ed in neutrophil-mediated immunopathology in infected tissue
[19, 62, 63–67], while galectin-3 signaling is deleterious via
cell-intrinsic impairment in neutrophil ROS formation [68].
These data indicate that pharmacological inhibition of these
pathways may represent targeted therapeutic strategies in se-
lected patients with invasive candidiasis.

The Role of Neutrophils in Host Defense
against Aspergillosis and Other Invasive Mold
Infections

Neutrophil depletion in mice renders them highly susceptible
to invasive pulmonary aspergillosis [4, 7]. In keeping with
these experimental observations, neutropenia is a well-
established risk factor for development of invasive aspergillo-
sis and suffering a worse outcome after infection in hemato-
logical malignancy patients and HSCT recipients [69]. In fact,
patients with prolonged neutropenia and treatment-refractory
invasive fungal infections (including aspergillosis) are occa-
sionally treated with granulocyte transfusions, which when
given in high doses may protect from infection-related mor-
tality [70]. In addition, G-CSF and GM-CSF have been used
extensively in neutropenic hematology patients to decrease
the duration of neutropenia and ameliorate its impact on in-
fection (including fungal) susceptibility, although convincing
data on the impact of this intervention in improving patient
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survival are lacking [71]. Recent evidence in mice indicates
that macrophage colony-stimulating factor (M-CSF), but not
G-CSF, instructs myeloid commitment in hematopoietic stem
cells via direct activation of the myeloid transcription factor
PU.1, and results in earlier enhanced production of mature
myeloid donor cells post-transplantation and improved sur-
vival of transplanted mice when infected with A. fumigatus
[72•]. These preclinical findings show promise for the poten-
tial use of M-CSF to decrease the duration of neutropenia and
the incidence of invasive aspergillosis (and other infections) in
HSCT recipients, and clinical studies are warranted to exam-
ine the efficacy of this intervention in patients.

Protective Neutrophil Trafficking Into A.
fumigatus-Infected Tissues

Mouse studies have defined the molecular factors that mediate
protective neutrophil recruitment in the A. fumigatus-infected
lungs. Elegant studies from the Hohl and Obar labs have de-
fined two distinct waves of signaling events that drive traffick-
ing of neutrophils into the lungs [73•, 74•]. Early on, the first
wave involves MyD88 expression on lung epithelial cells,
which promotes the production of the CXC chemokines
CXCL1 and CXCL5. Operating upstream of MyD88 signal-
ing to recruit neutrophils is the IL-1α-IL-1β/IL-1R axis, not
Toll-like receptors [73•, 74•, 75]. The second wave involves
CARD9 expression on hematopoietic cells in the lung, which
drives the production of the CXC chemokines CXCL1 and
CXCL2. Both neutrophils and CCR2-expressing monocytes
contribute to CXC chemokine production during lung infec-
tion. In line with the critical role of the production of CXC
chemokines in promoting protective neutrophil recruitment
are the findings byMehrad and colleagues, which showed that
neutralization of these CXC chemokines impairs neutrophil
trafficking and A. fumigatus growth control in the lung, and
that over-expression of CXCL1 in mice protects against inva-
sive pulmonary aspergillosis [76]. Consonant to these findings
in the lung, CXCL1 was also shown to be critical for protec-
tive neutrophil recruitment in the A. fumigatus-infected cornea
[77]. Another chemoattractant signal that was recently shown
to mediate protective neutrophil trafficking into the A.
fumigatus-infected lung is eicosanoid leukotriene B4 (LTB4)
via binding to its receptor LTB4R1 [78]. Specifically, LTB4 is
produced early on during A. fumigatus infection by radiosen-
sitive hematopoietic cells in the lung via a pathway that is, at
least in part, dependent on hypoxia inducible factor 1α (HIF-
1α).

The reliance on both IL-1R/MyD88 and CARD9 signaling
for neutrophil recruitment into the A. fumigatus-infected lung
may account for the clinical observation that invasive pulmo-
nary aspergillosis is not seen in patients with inherited
MYD88 or CARD9 deficiency, as each of these pathways
may be able to compensate for the lack of the other in humans

[23, 79, 80]. Of note, CARD9-deficient patients have been
reported to develop extrapulmonary aspergillosis involving
the CNS and intra-abdominal tissues while sparing the lungs
[81•]. This observation identifies CARD9 deficiency as the
first known inherited or iatrogenic condition that predisposes
to strictly extrapulmonary aspergillosis. Interestingly,
CARD9-deficient neutrophils do not exhibit impaired anti-A.
fumigatus effector function. Instead, impaired accumulation
of neutrophils in the extrapulmonary infected tissue was evi-
dent in affected patients, indicative of a neutrophil mobiliza-
tion defect. Because CARD9-deficient patients with
extrapulmonary aspergillosis do not have peripheral neutrope-
nia nor do their neutrophils have cell-intrinsic chemotaxis de-
fects [81•], the aforementioned observations suggest that im-
paired production of neutrophil-targeted chemoattractant mol-
ecules (CXC chemokines and/or other) in extrapulmonary tis-
sue may drive susceptibility to aspergillosis in CARD9
deficiency.

Anti-A. fumigatus Neutrophil Effector Functions

Following their recruitment into the A. fumigatus-infected in-
fected tissue, neutrophils uptake fungal conidia for intracellu-
lar destruction and inhibit the extracellular growth of larger
fungal hyphal elements that cannot be internalized. Pentraxin-
3 (PTX3) is a soluble collectin that covers the surface of A.
fumigatus conidia in the alveolar spaces and promotes their
uptake by mouse neutrophils and control of aspergillosis in
mice [82]. Mechanisms include (a) deposition of complement
and phagocytosis via CR3 and Fcγ receptor 2A (CD32) and
(b) activation of myeloid differentiation protein 2 (MD-2) and
TIR-domain-containing adapter-inducing interferon-β signal-
ing (TRIF) [83, 84]. In keeping with the mouse findings, dys-
functional PTX3 polymorphisms in humans are associated
with impaired neutrophil uptake of A. fumigatus conidia and
increased risk for development of invasive aspergillosis in
HSCT and solid organ transplant recipients [85–87].

Neutrophils employ distinct mechanisms for A. fumigatus
conidial and hyphal killing. For instance, in the mouse lung
where rapid neutrophil deployment prevents conidial germi-
nation to hyphal elements, conidial killing does not depend on
the neutrophil granule protein calprotectin (S100A8/A9),
which acts to sequester zinc and manganese fromA. fumigatus
cells. Instead, in the mouse eye, germination of conidia to
hyphae occurs, at least in part due to the sluggish mobilization
of neutrophils to the infected tissue, and neutrophil-mediated
inhibition of A. fumigatus hyphal growth requires calprotectin
[88].

In mouse lung neutrophils, A. fumigatus conidial killing
depends at large on neutrophil-intrinsic NADPH oxidase ac-
tivity that results in induction of fungal apoptosis-like pro-
grammed cell death via modulation of the A. fumigatus anti-
apoptotic protein, AfBIR1, a homolog of human SURVIVIN
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[89••]. In humans, CGD is the “signature” PID that underlies
A. fumigatus infection susceptibility as these patients have a ~
40% lifetime risk for developing the infection; a unique pre-
disposition has been observed for infection with Aspergillus
nidulans, a species of Aspergillus that is not seen in patients
with iatrogenic immunosuppression, for reasons that remain
largely unknown [79]. In contrast to NADPH oxidase-
dependent ROS production, neutrophil MPO or serine prote-
ase activation does not appear essential for anti-A. fumigatus
neutrophil killing in mice and, in agreement with that, MPO-
deficient patients and patients with Papillon-Lefèvre syn-
drome who are deficient in cathepsin C do not develop inva-
sive aspergillosis [4, 79, 90, 40].

Importantly, compensatory killing mechanisms do exist in
phagocytes in the absence of NAPDH oxidase, which is
reflected in the clinical observation that ~ 60% of CGD pa-
tients never develop invasive aspergillosis despite ubiquitous
daily exposure to airborne Aspergillus conidia. One of these
non-oxidative burst-dependent pathways involves iron se-
questration by lactoferrin, which is present within neutrophil
secondary granules [91]. Of note, the pattern of mold infection
susceptibility in CGD patients has also unveiled the mold-
specific dependence on neutrophil oxidative versus non-
oxidative cytotoxicity for effective host defense; indeed, while
CGD patients are at high risk for aspergillosis, they rarely
develop infection by the ubiquitous molds Rhizopus or
Fusarium species, indicating that these fungi can be effective-
ly controlled by neutrophil non-oxidative cytotoxic mecha-
nisms in the absence of oxidative burst [79]. In Rhizopus spe-
cies and other Mucorales fungi, which not only cause infec-
tions in patients with neutropenia but also characteristically
infect patients with diabetic ketoacidosis (DKA), it was re-
cently shown that ketone bodies impair the anti-Rhizopus kill-
ing capacity of neutrophils; this neutrophil function defect
along with the ketone body-, hyperglycemia-, and acidosis-
induced up-regulation of fungal CotH and endothelial cell
GRP78 that collectively promote Rhizopus angioinvasion
shed light to the unique propensity of patients with DKA to
develop mucormycosis, while they are not susceptible to other
mold infections [92–94].

Mouse neutrophils express RORγt upon A. fumigatus ex-
posure, which requires IL-6 and IL-23 signaling and is critical
for expression of IL-17A, dectin-2, and IL-17RC by neutro-
phils. IL-17A/IL-17RC acts in an autocrine manner to pro-
mote neutrophil oxidative cytotoxicity and to protect against
A. fumigatus keratitis in mice [95]. In humans, inherited defi-
ciency in IL-17-dependent immunity, such as that seen with
mutations in IL17F, IL17RA, IL17RC, or ACT1, is dispensable
for anti-Aspergillus host defense. Instead, human IL-17 defi-
ciency impairs immunity at the mucocutaneous barrier and
predisposes to chronic mucocutaneous candidiasis, cutaneous
staphylococcal disease, and pulmonary bacterial infections
[96, 97].

Recent elegant studies in the Rivera lab uncovered a critical
role for CCR2-expressing monocyte and neutrophil cross-talk
in the A. fumigatus-infected mouse lung for priming of ROS
production and fungicidal activity by neutrophils [98••, 99].
Specifically, the type III interferons IFN-λs are produced in
vivo by recruited inflammatory Ly6Chi monocytes via the
generation of type I interferon and act on neutrophils to pro-
mote their antifungal effector functions in the infected lung. In
agreement, mice with neutrophil-specific deletion of IFNLR1
are highly susceptible to invasive aspergillosis and adoptive
transfer of CCR2+ monocytes or exogenous administration of
recombinant IFN-α and IFN-λ rescues the impaired neutro-
phil effector function seen in CCR2-depletedmice, which lack
monocyte influx in the infected lung [98, 99]. Therefore, type
I/III interferons orchestrate monocyte-neutrophil crosstalk to
prime neutrophil fungicidal activity during pulmonary asper-
gillosis [98••, 99], reminiscent of the cross-talk between NK
cells and neutrophils that is orchestrated by IL-15/IL-23/GM-
CSF for priming neutrophil fungicidal activity during renal
candidiasis [56••, 55, 54].

Independent mechanisms for killing of A. fumigatus co-
nidia versus hyphae were recently characterized in human
neutrophils by evaluating patients with various PIDs [49,
100••]. Sensing of A. fumigatus conidia involves CR3 but
not dectin-1, which drives PI3K-dependent non-oxidative in-
tracellular conidial killing. When conidia escape from killing
and germinate into hyphae, their extracellular destruction re-
quires antibody-mediated opsonization, sensing via Fcγ re-
ceptors, and signaling via Syk, PI3K, and PKC to drive
NADPH oxidase-mediated ROS production. Of interest, al-
though A. fumigatus hyphae induce NET formation in human
neutrophils, which depends on intact NADPH oxidase, NETs
do not contribute to A. fumigatus killing, in agreement with
the dispensable role of NETs in host defense in a mouse model
of ocular aspergillosis [101].

Conclusions

Invasive infections by Candida and Aspergillus species have
emerged as significant causes of infection-related mortality in
vulnerable patients with acute illness and iatrogenic immuno-
suppression [7, 69, 102]. The high fatality rates of these infec-
tions despite administration of antifungal therapy and the con-
tinuously expanding patient populations at risk for such infec-
tions highlight the unmet medical need for development of
better diagnostic and therapeutic interventions in order to im-
prove the prognosis of these infections [12, 69, 103, 104].
Neutrophils play a critical role in host defense against invasive
candidiasis and aspergillosis via their rapid deployment to the
site of fungal invasion and by mediating fungal destruction
using a panoply of effector mechanisms. Better understanding
of the molecular cues that instruct recruitment and effector
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function of neutrophils to the fungal-infected tissues should
help devise immune-based strategies with a goal to comple-
ment conventional antifungal therapy and improve the out-
come of infected patients.
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