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Abstract
Purpose of Review We present recent insights on S. aureus as a foodborne pathogen, thus providing readers with an update of
current findings impacting prevention and control measures.
Recent Findings Advances in disease burden assessment show the burden of S. aureus foodborne disease around the globe. In
recent years, recent research has provided valuable new data improving the understanding of the pathobiology of S. aureus
foodborne disease as well as proteomics and genomics of this foodborne pathogen. In particular, recent findings shed new light
on the role of newly described enterotoxins and methicillin-resistant S. aureus. These new findings guide the way towards
improved prevention and control strategies.
Summary S. aureus is the leading cause of foodborne intoxications worldwide. Control strategies are focused on hygiene
measures to avoid food contamination and limit S. aureus growth. Outbreak investigations remain challenging and would
strongly benefit from additional data on enterotoxin formation under stress conditions and novel tools allowing for detection
of newly described enterotoxins.
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Introduction

The genus Staphylococcus currently comprises more than 50
species all known as common colonizers of the skin and mu-
cous membranes of many animal species including humans.
One of these different species is S. aureus, so-named because
of the color of the pigmented colonies (“aureus”means golden
in Latin). S. aureus is one of the most important pathogens of
humans and animals and a leading cause of foodborne disease
around the globe. In addition, the issue of antimicrobial resis-
tance of S. aureus, in particular of Methicillin-resistant
S. aureus (MRSA), is receiving widespread attention with
important initiatives to improve reporting and develop new
strategies for prevention and control [1].

S. aureus can be considered a “heirloom disease,” that is,
one that has been passed on for millennia from person-to-
person [2]. The health of humans and animals is closely
inter-dependent and many human diseases are shared with
animals and vice versa. Molecular epidemiology suggests that
S. aureus has jumped from humans to livestock several times
in the past and has more rarely switched host species from
livestock back to people [3].

The largest ecological reservoir of S. aureus strains causing
disease in humans is the human nose. However, the skin, hair,
and mucous membranes may also be colonized. Although na-
sal carriage is strongly associated with staphylococcal infec-
tions, only a tiny minority of carriers will ever fall ill [4]. In
contrast, the high rate of human carriers contributes to the
frequent occurrence of Staphylococcal Food Poisoning, which
has largely been attributed to faulty food handling. Therefore,
control of S. aureus foodborne disease is based on hygiene
measures to avoid contamination of food. The widespread ap-
plication of approaches such as Risk Assessment and Hazard
Analysis and Critical Control Points (HACCP) and Good
Hygienic Practice (GHP) can help prevent contamination [5].

In this article, we review the current situation regarding
S. aureus as a foodborne pathogen. After describing
Staphylococcal Food Poisoning in general, we first provide an
update on all staphylococcal enterotoxin types yet described as
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well as recent developments in detection strategies for staphy-
lococcal enterotoxins. Moreover, we give an overview of out-
break investigation approaches as well as food safety and food
process criteria put in place to control S. aureus along the farm-
to-fork food chain. We then question the role of methicillin-
resistant S. aureus (MRSA) as foodborne pathogen. Finally,
we discuss these recent findings and developments and put
these into the consumer health perspective.

Staphylococcal Food Poisoning

Staphylococcal Food Poisoning (SFP) is the most prevalent
foodborne intoxication worldwide. In the USA, the Centers
for Disease Control estimate that 240,000 cases occur per
year, resulting in 1000 hospitalizations and six deaths [6]. In
Europe, the number of SFP outbreaks reported by the
European Food Safety Authority (EFSA) is rising, with 434
SFP outbreaks in 2015, which equals 10% of all outbreaks
reported [7]. The true number of SFP outbreaks is likely much
higher, as indicated by the fact that currently > 90% of SFP
outbreaks are reported by France [7].

SFP is caused by ingestion of a sufficient amount of one or
several staphylococcal enterotoxins preformed in food during
growth of the organism (Fig. 1). Food handlers who contam-
inate food with S. aureus are the most common source of SFP
outbreaks [8, 9]. However, outbreaks were also linked to con-
sumption of raw milk or raw milk cheese originating from
dairy animals suffering from S. aureus mastitis [10].

SFP symptoms appear 0.5–8 h (on average 3 h) after con-
sumption of contaminated food [11]. There are indications that
the incubation period may depend on the age of the patient,
with earlier onset of symptoms in children and teenagers com-
pared to adults [10]. Key symptoms are nausea and violent
vomiting, often accompanied by watery diarrhea, abdominal
pain, moderate fever, and shivering. To date, the underlying
mechanisms of enterotoxigenicity and SE-induced vomiting
are still poorly understood [12••, 13]. The disease is usually
self-limiting within 24 h. However, rare cases of fatal dehy-
dration and electrolyte imbalances occur, with fatality rates
ranging from 0.03% in the general population to 4.4% in chil-
dren and the elderly [14].

Staphylococcal Enterotoxins

Staphylococcal enterotoxins (SEs) are water-soluble, structur-
ally stable, secreted polypeptides of 22–29 kDa and belong to
the family of pyrogenic toxin superantigens able to
unspecifically activate T-cells [15]. They display extreme te-
nacity in the face of stress conditions, which reliably inactivate
S. aureus. This is of particular relevance, as loss of serological
recognition, e.g., caused by heat treatment, does not guarantee

loss of emetic activity [16]. The high stability of SEs and their
resistance to most proteolytic enzymes such as pepsin and
trypsin assure that these toxins remain emetically active in
the gastrointestinal tract [16].

SE nomenclature follows an alphabetical system. Guidelines
for the description of enterotoxins were proposed by the
International Nomenclature Committee for Staphylococcal
Superantigens and include verification of gene expression and
characterization of the protein. In addition, toxins either not
tested for or lacking emetic activity in a monkey feeding assay
should not be designated SE, but “staphylococcal enterotoxin-
like superantigens (sel)” [17, 18]. SEF is missing in the current
alphabetical list of toxins, as the denomination “SEF” for the
toxic shock syndrome toxin-1 was omitted due to lack of emet-
ic activity [14, 19].

A comprehensive list of SEs providing a current overview
of emetic potential and the location of the SE genes is present-
ed in Table 1. SEs have been categorized into the classical SEs
(SEA, SEB, SEC, SED, SEE), and the newly described SEs.
The vast majority of SFP outbreaks has been attributed to the
classical SEs, although newly described SEs also elicit an
emetic response in the monkey feeding assay [39, 42] and in
the house musk shrew [40, 48, 50]. Raised awareness of their
emetic potential led to an increasing number of SFP out-
breaks, in which newly described SEs were implicated as the
causative agents [56–62]. SE coding regions exhibit high se-
quence variability [63, 64], with toxin genes located on a wide
variety of different mobile genetic elements, including a mul-
titude of pathogenicity islands, prophages, and plasmids
(Table 1). While sea and see are carried by lysogenic phages,
seb and sec are located on pathogenicity islands [65], and sed
is located on pIB485, a 27.6 kb plasmid [66]. In contrast,
many newly described staphylococcal enterotoxins are
encoded by the enterotoxin gene cluster (egc) operon [33,
34], which acts as an enterotoxin nursery generating new SE
genes through genomic rearrangements [33, 53, 67].

While over the last decades, the number of known species
of the genus Staphylococcus kept steadily growing, SE pro-
duction was for a long time exclusively attributed to S. aureus,
with enterotoxigenic coagulase-negative staphylococci being
consideredmutants or variants of S. aureus [68]. Recently, this
paradigm is shifting due to collected evidence of studies sug-
gesting that staphylococci other than S. aureus are able to form
enterotoxins and may contribute to SFP [69–71].

Detection of Staphylococcal Enterotoxins

While SEs can be detected in amounts of 200 ng or more by
animal feeding assays using monkeys or the house musk
shrew, substantially lower amounts of SEs were reported to
elicit an emetic response in humans [11]. Therefore, more
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Table 1 Overview of currently
known staphylococcal
enterotoxins (SEs) and
staphylococcal enterotoxin-like
superantigens (SEls)

SE/SEl Emetic activity Location of respective SE gene References

SEA + Prophage [20–23]

SEB + SaPIs (SaPI1, SaPI2, SaPI3, SaPI4, SaPImw2, SaPIrki4) [24–26]

SEC + SaPIs (SaPIbov1, SaPIn1, SaPIm1, SaPImw2, SePI1) [27, 28]

SED + Plasmid (pIB485) [29, 30]

SEE + Prophage [31, 32]

SEG + egc, prophage [33–35]

SEH + Transposon [35–38]

SEI + egc [33, 34, 39]

SEJ + Plasmid (pIB485) [40, 41]

SEK + SaPIs (SaPI1, SaPI3), prophage [35, 42, 43, 44••]

SEL + SaPIs (SaPIbov1, SaPI3, SePI1) [42, 44••, 45, 46]

SEM + egc [33, 34, 42, 44••]

SEN + egc [33, 34, 42, 44••]

SEO + egc [33, 34, 42, 44••]

SEP + Prophage [42, 47]

SEQ + SaPI1, SaPI5 [42, 48, 49]

SER + Plasmid (pIB485) [50, 51]

SES + Plasmid (pIB485) [50]

SET + Plasmid (pIB485) [50]

SElU Questionable egc [52]

SElV Questionable egc [53]

SElW Questionable egc [53]

SElX Questionable Chromosome [54]

SElY Questionable Chromosome [55]

SaPI S. aureus pathogenicity island, SePI S. epidermidis pathogenicity island, egc enterotoxin gene cluster, SElW
former SelU-2

Fig. 1 Overview of Staphylococcal Food Poisoning
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sensitive assays are needed to be able to detect low but clini-
cally relevant amounts of SEs in outbreak investigations.

Commercially available reverse passive latex-agglutination
(RPLA) and enzyme-linked immunosorbent (ELISA) or
enzyme-linked fluorescent assay (ELFA) kits are commonly
used to screen for SEA-SEE (Table 2). These user-friendly
and fast immunological assays require only limited pretreat-
ment of the sample and allow for easy read-out either by eye
or using a photometer. However, detection in food matrices
and in particular in cheese suffers from low specificity and
sensitivity, as well as false-positive results due to matrix com-
ponents such as phosphatase and peroxidase or unspecific
binding of IgG by protein A. Affinity chromatography and
dialysis can be used to improve results through purification
and concentration of the toxin in a given sample [72].
Recently, an ISO method (ISO 19020:2017) for SE screening
in foodstuffs has been published. It comprises an extraction
step, fol lowed by concentrat ion by dialysis and
immunoenzymatic detection of SEA-SEE [73••].

While detection of SE genes does not provide any infor-
mation on the expression of SEs in the food matrix, it is often
used to complement immunological testing. Commercially
available immunological systems currently only enable
screening for SEA-SEE and cannot detect the newly described
SEs.

Detection of SE genes by PCR, whole-genome sequencing,
or DNA microarray analysis can be highly useful tools. As
demonstrated in a massive SFP outbreak in Japan caused by
reconstituted milk, PCR using DNA extracted directly from
food can still be successful, even if the organism itself was
inactivated through heat treatment [56]. However, results need
to be treated with caution, as the presence of an SE gene does
not guarantee SE formation in the food matrix. In addition, SE
genes exhibit a high degree of sequence variation, complicat-
ing the search for primers able to bind to all allelic variants of
the target gene [63].

Outbreak Investigations

In general, well-established approaches such as the ten steps
of an outbreak investigation recommended by the European
Centre for Disease Prevention and Control [74] are applicable
to SFP outbreaks: (i) confirm outbreak and diagnosis, (ii) de-
fine a case, (iii) identify cases and obtain information, (iv)
describe data collected, (v) develop hypothesis, (vi) test hy-
pothesis (analytical studies), (vii) conduct microbiological in-
vestigation and additional studies, (viii) implement control
measure, (ix) communicate results including outbreak report,
and (x) evaluate and update procedures. However, SFP out-
breaks often present with particular challenges that merit
consideration.

Ideally, competent authorities suspecting a SFP out-
break due to characteristic clinical symptoms will obtain
samples of food, food handlers (nasal swabs), and patients
(feces), as well as comprehensive questionnaires provid-
ing data on diseased and non-diseased persons. Bacterial
isolation and identification will be followed by fast and
comprehensive strain typing and characterization, e.g.,
using whole-genome sequencing [75], DNA microarray
profiling [76], or Fourier-transform infrared spectroscopy
[77]. In the simplest of scenarios, one enterotoxigenic
S. aureus strain present in food at numbers ≥ 105 CfU/g
can be matched to an isolate from a patient sample and will
be further confirmed as the cause of the outbreak by de-
tection of high levels of SEs in the respective food item, as
well as fitting questionnaire results. However, real-life
SFP outbreak investigations often become far more
challenging.

Questionnaire data may be incomplete, unreliable (e.g.,
recall bias), or unavailable. Isolation of staphylococci from
patient samples may have been unsuccessful and little or no
food leftovers may be available for sampling. In the case of
outbreaks associated with heated foods or long-ripened
cheese, a large amount of highly stable SEs could have been
produced in the food prior to subsequent food treatment
steps that inactivated the organism itself [59•, 78, 79]. High
levels of emetically active SEs could therefore still be pres-
ent in foods that do not allow for isolation of the causative
strain.

However, as S. aureus frequently carries enterotoxin genes,
isolation of multiple different enterotoxigenic S. aureus strains
from food samples and nasal swabs is possible. In addition,
enterotoxigenic staphylococci other than S. aureus could be
detected. Even with the help of cutting edge equipment, it is
often highly difficult or impossible to determine, which one or
which combination of these strains had contributed to the
production of sufficient levels of one or more SEs leading
to SFP. If however, resources are scarce, spa typing of
coagulase-positive isolates can be used to discriminate strains
[80, 81]. The enterotoxin gene profile can subsequently be
determined by PCR and will, if possible, be matched to SE
detection results in food.

In many outbreaks, strains harboring both classical and
newly described enterotoxin genes can be detected.
However, SE detection is only feasible for classical SEs, as
there are currently no commercially available immunologi-
cal detection methods for the newly described SEs.
Therefore, if even small quantities of classical SEs are de-
tected in food/feces, an outbreak will likely be attributed to
these enterotoxins, even if genes encoding newly described
SEs are present. However, if no classical SEs are detected,
the outbreak will likely not be reported, as many investiga-
tors question the relevance of newly described SEs for SFP
outbreaks.
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Increased awareness of these challenges could lead to im-
proved outbreak reporting and could significantly extend the
limited current knowledge of SFP outbreaks.

Food Standards to Combat S. aureus
in the Food Chain

SFP has been associated with poor food hygiene, inadequate
equipment cleaning, cross-contamination by raw ingredients or
after a heating process, and time/temperature abuse during
food processing [82–84].Mitigation strategies that help control
the risks must take into account factors such as variability in
primary production, food processing, and cooking practices
[85] as well as variability of SE production in various food
products [86]. One effective approach to control S. aureus in
the food chain is based on the establishment of specific food
standards. The Codex Alimentarius Commission, a body that
was established in early November 1961 by the Food and
Agriculture Organization of the United Nations (FAO), and
later joined by the World Health Organization (WHO), now
acts as the international body to develop and coordinate
standards that safeguard the food supply and food trade.
Codex has prepared a document entitled “Principles
and Guidelines for the Application of Microbial Risk
Assessment” (http://www.fao.org/docrep/004/y1579e/
y1579e05.htm), which became the reference standard for
international trade. Moreover, the EU and individual
countries in Europe such as the Netherlands and Germany, as
well as the USA, have initiated various microbial risk analyses
targeting different questions based on this document. At the
core of all these microbial risk analyses, the presence of the
pathogen as well as the level of the pathogen must be
determined to be able to assess the potential for an
undesirable outcome [86–88]. To this end, each nation has

developed policies and standards regarding acceptable levels
of pathogens in a variety of food products, e.g., specific food
safety standards for the enumeration of coagulase-positive
staphylococci (CPS) and/or S. aureus, as well as for the
presence/absence of SE in food. For instance, in the EU, var-
ious food safety and process hygiene criteria on CPS and SEs
have been established according to Commission Regulation
(EC) No. 2073/2005 on microbiological criteria for foodstuffs
(http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=
CELEX:02005R2073-20140601&from=EN). A food safety
criterion defines the acceptability of a product or a batch of
foodstuff placed on the market and was established in the EU
for a variety of cheeses, i.e., (a) cheese made from rawmilk, (b)
cheese made from raw milk that has undergone a lower heat
treatment than pasteurization and ripened cheese made from
milk that has undergone pasteurization or a stronger heat treat-
ment, (c) unripened soft cheese made from milk that has un-
dergone pasteurization or a stronger heat treatment, as well as
formilk powder andwhey powder.When testing a 25 g sample
for SEs, these foods must yield a negative test result. On the
other hand, the EU has established different process hygiene
criteria not applicable to products placed on the market but
measuring the functioning of the production process and set-
ting an indicative contamination value above which corrective
actions are required to maintain the hygiene of the process in
compliance with food law. Food categories for which process
hygiene criteria were set in the EU include milk and dairy
products (various cheeses—for details see a–c above; milk
and whey powder) and fishery products (i.e., shelled and
shucked products of cooked crustaceans and molluscan shell-
fish). Within those categories of foods, the hygiene parameter
is CPS (Commission Regulation (EC) No. 2073/2005 on mi-
crobiological criteria for foodstuffs: http://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:02005R2073-
20140601&from=EN).
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Table 2 SE detection kits. The
table provides an overview for
commonly used commercially
available kits for SE detection

Approach
Assay ID SEs detecteda Timeb

(h)
Sensitivityc

(ng/mL)
Provider

RPLA SET RPLA SEA, SEB, SEC,
SED

24 0.5 Oxoid

ELISA RIDASCREEN® SET SEA, SEB, SEC,
SED, SEE

3 0.25 R-Biopharm

3 M® TECRA® Staph
Enterotoxins

SEA-SEE 4 0.5 3 M®

Transia® plate SET SEA-SEE 1.5 0.2 Raisio
diagnos-
tics

ELFA VIDAS® SET2 SEA-SEE 1.5 0.25 bioMérieux

aWhile some kits provide only a yes/no answer for the presence of classical enterotoxins (SEA-SEE), others are
able to identify which enterotoxin is present in the sample
b Time expenditure for analysis of an already extracted sample
c Sensitivity varies based on matrix tested and extraction technique used
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MRSA in Food

MRSA has been a major threat for public health worldwide.
During the last decade, an expansive spread of MRSA with
livestock origin along the farm-to-fork food chain has been
shown (reviewed in [89]). Livestock-associated (LA)-MRSA
evolved independently from common Hospital- or
Community-Associated MRSA usually found in humans
[90] and mainly belong to S. aureus clonal complex CC398
and associated spa types t011 and t034. However, also other
CCs such as CC1, CC5, CC97, and CC130 are found in live-
stock around the globe [91]. Soon after its discovery, LA-
MRSA emerged among humans indicating a zoonotic trans-
mission from animals to humans [92–94]. Therefore, it is im-
portant to monitor MRSA from farm-to-fork and to compare
isolates from livestock and food with those from humans.
Also, the EFSA has suggested to monitor the occurrence and
diversity of MRSA in primary production, including at
slaughter, while monitoring in food may also help with the
assessment of consumers’ exposure via this route [95]. In
addition, EFSA stated that antimicrobial susceptibility data
on MRSA isolates are useful in directly informing on the
emergence of strains of potential public health significance
but can also provide important epidemiological information
on the spread of particular strains between the animal and
human populations, particularly when investigated in con-
junction with molecular typing data [95]. For instance, in
Germany, a monitoring system for zoonotic bacteria in the
food chain was established in 2009 to fulfill the requirements
of directive 2003/99/EC [96]. The general aim of the moni-
toring system is to investigate the prevalence of zoonotic bac-
teria such as MRSA along the different food chains and to
collect isolates of the different bacterial classes for further
characterization, for example, typing and antimicrobial resis-
tance testing. Sampling plans cover various steps along the
food value chains, starting from primary production to retail
level and targeting different zoonotic bacteria. According to
this monitoring over the years 2009–2015, MRSA is highly
prevalent along the farm-to-fork food chain in Germany in-
cluding raw meat at retail with mean prevalences of 38%
(turkey meat), 24% (broiler meat), 13% (pork), and 11%
(veal), respectively (Bundesamt für Verbraucherschutz und
Lebensmittelsicherheit, 2010–2016: https://www.bvl.bund.
de/EN/01_Food/_01_tasks/02_OfficialFoodControl/06_
ZoonosesMonitoring/ZoonosesMonitoring_node.html).
Other countries report similar findings [97–101]. However,
the presence of MRSA in/on food intended for human con-
sumption may not necessary render MRSA a foodborne path-
ogen [102]. Firstly, as those clonal lineages present in the
farm-to-fork chain do not or only at a very minor percentage
carry SE encoding genes [83, 103]. Secondly, the number of
MRSA present in the food may be very low, too [104]. On the
other hand, some cases of LA-MRSA carriage in humans

cannot be explained by livestock contact [105]. Thus, one
could speculate that humans might have acquired such
MRSA colonization via contaminated food. Very recently,
poultry meat, mainly from turkey meat, has been considered
as a probable source of infections in humans with a novel
hybrid LA-MRSA CC9/CC398 genotype [106•, 107].
Moreover, it was suggested that LA-MRSA subpopulations
may have become adapted to humans [106•]. The high plas-
ticity, the acquisition of different genetic elements related to
host adaption, antimicrobial resistance, and virulence as well
as its complex epidemiology need to be considered in any
future research on MRSA along the farm-to-fork food chain.

Conclusion

S. aureus is a serious threat to human health and one of the
main challenges to the food industry. The prevalence of
Staphylococcal Food Poisoning remains high around the
globe, and advances in disease burden assessment are show-
ing the enormous burden of S. aureus foodborne disease.
Several advances in detection, prevention, and control of
S. aureus were seen in recent decades: The increase in
whole-genome sequence data for S. aureus is transforming
our understanding of population diversity, disease spread,
and emergence. The exclusive use of the amount of colony
forming units present in a food sample in order to determine
the risk associated with a food item has shown to be unreli-
able, stressing the crucial need for methods enabling SE de-
tection directly in food. Molecular and immunological
methods are increasingly used in diagnosis of S. aureus and
SE detection and very recently, the first international method-
ology standard for SE detection in food has been published
targeting SEA-SEE. As novel evidence has led to an increased
understanding of the relevance of newly described SEs in SFP
outbreaks, suitable detection systems and standards targeting
SEs other than SEA-SEE are urgently needed.

S. aureus is also a very dynamic bacterial organism that is
in continuous evolution, as seen for instance by the emergence
of zoonotic MRSA of livestock origin. The high capacity of
S. aureus to acquire mobile genetic elements, which encode
key proteins for host adaption, in addition to antimicrobial
resistance or virulence characteristics, need also be considered
from a consumer health perspective.
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