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Abstract Erythromycin resistance methylases (Erm) confer re-
sistance to three classes of clinically important antibiotics, the
macrolides, the lincosamides, and the streptogramins B (MLSB).
Erm methylases are located on acquired genetic elements and
are widespread in Staphylococcus and other bacterial species.
The latest erm determinants have been identified predominantly
in coagulase-negative staphylococci using whole-genome se-
quencing (WGS) and the subsequent search for sequence simi-
larity to erm methylases and specific amino acid motifs. This
review presents workflows facilitating the identification and
characterization of novel methylase genes, as well as the current
status of dissemination of erm genes and their associated genetic
elements in staphylococci. Discovery of novel antibiotic resis-
tance genes is necessary to give new insight into molecular
epidemiology of antibiotic resistance, for the establishment of
better identification and surveillance systems, as well as to con-
tinuously improve molecular diagnostic of antibiotic resistance.
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Introduction

The erythromycin resistancemethylase (Erm) ribosomal RNA
methylases are a class of enzymes which confer resistance to
macrolide, lincosamide, and streptogramin B (MLSB) antibi-
otics in bacteria. Macrolides are bacteriostatic agents, first
introduced in the 1950s in the form of erythromycin, produced
by the bacterium Saccharopolyspora erythrea [1]. Macrolides
have a 12- to 16-membered macrolactone ring which targets
the bacterial ribosome mainly through its sugar substitutions
[2–4]. Binding of the antibiotic to the bacterial ribosome ob-
structs the elongation of the nascent peptide chain and subse-
quently inhibits protein translation. Inhibition of protein syn-
thesis is a mechanism also used by the structurally distinct
antibiotic classes lincosamides and streptogramin B [2]. All
MLSB antibiotics possess overlapping binding sites and con-
tact the adenine 2058 (A2058, Escherichia coli numbering) of
the 23S rRNA, a key nucleotide for drug–ribosome interaction
[2, 5]. Generally, MLSB antibiotics are used to treat Gram-
positive bacterial infections in both humans and animals
[6–8]. Newer semisynthetic macrolide compounds have a
wider range of action also targeting Gram-negative species
like Bartonella, Bordetella, Borrelia, Campylobacter,
Chlamydia, Haemophilus, Helicobacter, Legionella,
Neisseria, Moraxella, and Shigella and some species of the
Gram-positive related Mycoplasma, Ureaplasma, and
Mycobacterium [9]. In addition, macrolides are used for their
prokinetic and anti-inflammatory properties in human and vet-
erinary medicine [10–12]. Lincosamides such as clindamycin
and lincomycin are used against Gram-positive infections, as
well as in the treatment of anaerobes, while streptogramin B
antibiotics like virginiamycin S1, quinupristin, or
pristinamycin 1A have gained importance due to their activity
against vancomycin-resistant Staphylococcus aureus (VRSA)
and vancomycin-resistant Enterococcus (VRE) [6, 13]. In
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addition, individualMLSB compounds are extensively used as
herd/flock medication to prevent or treat infectious diseases in
food-producing animals [7, 13]. The World Health
Organization (WHO) has classified macrolides as the
highest-priority critically important antibiotics for human
medicine and both lincosamides and streptogramins as highly
important drug classes for human medicine [14]. The wide-
spread use of MLSB antibiotics jeopardizes their effectiveness
by increasing the risk of selecting bacteria with acquired re-
sistance to these classes of drugs [15–17].

One of the most common mechanism of resistance to
MLSB antibiotics is the chemical modification of the bacterial
23S rRNA by monomethylation or dimethylation of A2058
by Erm rRNA methylases [18]. Erm methylases add up to
three methyl groups to nucleotides at positions 2057, 2058,
and/or 2059 of the 23S rRNA [19, 20]. However,
dimethylation of A2058 is the most common mechanism
found in bacteria and efficiently prevents the binding of
MLSB antibiotics, including the macrolide derivates ketolides
(e.g., telithromycin) [16, 18, 20, 21]. Erm methylases are
encoded by erm genes which are either constitutively
expressed or induced in the presence of 14- and 15-
membered macrolides [22]. Inducible MLSB resistance is reg-
ulated by a region upstream of the erm mRNA start codon. In
staphylococci, this regulatory region consists of open reading
frames (orfs) coding for either one or two leader peptides, of
which one harbors the conserved IVFI or MRNVD amino
acid motif [23–26]. The secondary structure of this leader
mRNA embeds the ribosomal binding site and start codon of
the erm gene in a hairpin structure, which prevents its expres-
sion. Binding of inducer macrolides such as erythromycin to
the ribosome results in attenuated translation of the leader
peptide mRNA, subsequently causing the ribosome to stall
[26]. Translational attenuation causes a rearrangement of the
mRNA hairpin secondary structure, releasing the ribosomal
binding site and the start codon of the erm gene thus allowing
translation of the methylase [27, 28]. As a result, isolates ex-
pressing an inducible phenotype can remain susceptible to
lincosamides, streptogramin B, 16-membered macrolides, or
ketolides if no macrolide is present [25]. However, selection
of mutants constitutively expressing the erm gene may rapidly
occur when lincosamides, streptogramin B, or ketolides are
being used [9, 22]. Other mechanisms conferring resistance to
all or individual classes of MLSB antibiotics are listed in Table
1 and were not taken into consideration in this review.

The genus Staphylococcus comprises more than 50 species
which are subdivided into two groups depending on their abil-
ity to coagulate plasma [29, 30]. The coagulase-positive staph-
ylococci include S. aureus, Staphylococcus argenteus,
Staphylococcus delphini , Staphylococcus hyicus ,
Staphylococcus intermedius, Staphylococcus lutrae,
Staphylococcus pseudintermedius, Staphylococcus schleiferi
subsp. coagulans and Staphylococcus schweitzeri, while all

other species belong to the group of the coagulase-negative
staphylococci (CoNS). Staphylococci are naturally found on
the skin and mucous membranes of mammals, as well as in
diverse environmental sources [30, 31]. They can turn into
major opportunistic pathogens in humans and animals and
cause a wide variety of infections ranging from skin and soft
tissue infections to bacteremia [30, 32, 33]. In general, S.
aureus and other coagulase-positive staphylococci are the
main staphylococcal pathogens [33]. However, during recent
years, some of the CoNS have emerged as an important cause
of nosocomial infections in human medicine as well as in
veterinary medicine where they have been increasingly asso-
ciated with bovine mastitis, as well as with several types of
infections in companion animals [33–36]. Due to the acquisi-
tion of multiple resistance mechanisms, antimicrobial therapy
became limited with some staphylococcal species
representing a serious threat for human and animal health
[23, 36–41]. As β-lactams and other critically important clas-
ses turned out to be increasingly ineffective in the treatment of
staphylococcal infections, macrolide and lincosamide classes
gained importance as alternative antimicrobial treatment op-
tions [42].

Due to the alarming increase of antibiotic resistance in
bacteria over the last decades, the WHO has declared the
current state of antimicrobial resistance a global health secu-
rity threat [43]. Worldwide surveillance of antibiotic-resistant
bacteria in humans, animals, and the food chain, and the re-
duction of inappropriate use of antimicrobial drugs are the
essential proposed actions to control the spread of antimicro-
bial resistance [43]. To successfully monitor resistance, it is
crucial to know all mediators and reservoirs of antibiotic re-
sistance. In the last 5 years, novel MLSB resistance genes have
been mostly detected in bacteria of animal origin [44–47].
These novel genes consisted of erm(43), erm(44), and
erm(45) from different Staphylococcus species and erm(46)
from Rhodococcus equi and were all detected using whole-
genome sequencing (WGS) and subsequent sequence
analysis.

Possible workflows useful for the discovery and character-
ization of novel erm genes using WGS are described in this
review. Furthermore, the current state of distribution of erm
genes in bacteria, as well as their location on different genetic
elements in Staphylococcus sp., is presented, offering an up-
dated baseline for future characterization of novel erm genes
and of erm-containing genetic elements.

Search for Novel erm Methylases

Phenotypic Criteria The likelihood of the presence of an erm
gene can be evaluated by the phenotypic observation of either
resistance to both erythromycin and clindamycin or resistance
to erythromycin and inducible resistance to clindamycin. An
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inducible MLSB phenotype can be visualized in vitro by
performing D-Test or by MIC determination of clindamycin
in the presence of 4 μg/ml of erythromycin [48, 49]. In the
presence of an inducible phenotype, it can be assumed that the
strain contains an erm gene, whereas a constitutive resistance
phenotype may also be associated with other resistance mech-
anisms (Table 1).

Genetic Approach to Identify an erm DeterminantWhole-
genome sequencing has become more accessible during re-
cent years due to increased user friendliness, efficiency,
cost-effectiveness, and an increase in the number of facili-
ties offering WGS services [50–52]. Compared to the clas-
sical shotgun cloning and subsequent phenotypic screening
for the identification of candidate genes, WGS is signifi-
cantly faster and therefore became the method of choice to
identify novel MLSB candidate genes in bacterial genomes.
However, rapid preliminary screening of bacteria for the

presence of already known resistance mechanisms should
still be considered. In general, the detection of acquired
MLSB resistance is easier than that of resistance conferred
by ribosomal mutations. Identification of ribosomal muta-
tions calls for specific detection methods, since several op-
erons of ribosomal genes are dispersed through the bacterial
genome (Table 1)[53, 54]. Currently, microarrays represent
an efficient and affordable tool to assign an acquired phe-
notype to known resistance genes [55, 56]. The recently
described microarray of Strauss et al. is among the most
suitable for allocating acquired resistance, as it can detect
a l l cu r r en t ly known MLSB methy la se genes in
Staphylococcus as well as most other genes associated with
MLSB resistance in Gram-positive bacteria [55]. If no asso-
ciation with a known resistance genotype can be made using
such a microarray, there is a strong suspicion that the inves-
tigated strain contains a novel resistance mechanism and
WGS becomes inevitable.

Table 1 Mechanisms conferring
resistance to macrolides,
lincosamides and streptogramin
B, as well as to other antibiotics

Mechanism Mutation/gene familya Resistance
phenotypeb

Selected
references

Mutation 60S ribosomal protein [proteins
L4 and L22]

MLS [54, 88]

23S rRNA [around adenine 2058] MLSB [19, 54]

Efflux by ATP-binding-cassette
(ABC) family transporters

car M [89]

eat LSAP [90]

lsa LSAP [90]

msr MSB [91, 92]

ole M [93]

sal LSA [94]

srm M [89, 95]

tlc M [89, 96]

vga LSAP [71, 97]

Efflux by major facilitator superfamily
(MFS) transporters

cmr MRTON [98]

lmr L [99]

mdf MRTPhAF [100]

mdt MLST [101]

mef M [102]

mre M [103]

Esterases ere M [104]

Lyases vgb SB [105]

Phosphorylases mph M [106]

Transferases lnu L [107, 108]

vat SA [109, 110]

RNA methyltransferases cfr LSAPOPh [111]

erm MLSB [70]

a Information on novel MLS resistance genes can be found in the nomenclature center (http://faculty.washington.
edu/marilynr/), which is regularly updated by Dr. Marylin C. Roberts, University of Washington, Seattle, WA
bMLS antibiotics are represented in bold. M, macrolides; L, lincosamides; S, streptogramins; SA, streptogramin
A; SB, streptogramin B; P, pleuromutilins; R, rifampicins; T, tetracyclines; N, novobiocin; Ph, phenicols; A,
aminoglycosides; F, fluoroquinolones; O, oxazolidinones
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Nowadays, several WGS technologies for bacterial whole-
genome sequencing are available including Illumina®MiSeq
(Illumina, San Diego, CA), IonTorrentTM PGM (Life
Technologies, Guilford, CT), PacBio® RSII (Pacific
Biosciences, Menlo Park, CA), and MinIONTM (Oxford
Nanopore Technologies, Oxford, UK) [57, 58]. In general,
techniques generating long read lengths, such as IonTorrent
and PacBio, are recommended for de novo sequencing of new
erm determinants which can be located on genetic elements
that may contain several copies of repeat elements, such as
insertion sequences (IS) and extensive direct or tandem re-
peats [59].

Subsequent screening of the generated sequence contigs
for putative erm genes using bioinformatic tools is straightfor-
ward. By current nomenclature, Erm methylases are defined
novel if they have ≤79 % amino acid homology with any
known methylase (http://faculty.washington.edu/marilynr/
MLSnomenclatureCenter.pdf) [8]. Novel Erm methylases
can be detected by BLAST alignment of either their amino
acid or nucleotide sequence with known erm determinants
[60]. Several freely available online tools, such as ResFinder
and ARG-ANNOT, are also useful to detect novel resistance
genes based on DNA/amino acid homology [61]. Searching
for a specific conserved amino acid motif is an alternative to
the detection of putative Erm homologies. The majority of the
erm methylases contain the PROSITE rRNA adenine
dimethylase signature pattern PS01131 (Fig. 1) [44].
Exceptions to this rule are Erm(I), Erm(N), Erm(Z), Erm(32)
, Erm(37), and Erm(41), which are found in Streptomyces and
Mycobacteria and are suspected to be monomethylases, rather
than dimethylases [20, 62]. To also include these additional
erm methylases, a modified version of the PS01131 signature
has been proposed by Schwendener and Perreten, allowing the
detection of all known Erm methylases except Erm(32) (Fig.
1). Bioinformatic tools such as Scan Prosite (http://prosite.
expasy.org/scanprosite/) or MOTIF (http://www.genome.jp/
tools/motif/) can be used to search for such a specific Erm
signature pattern. However, DNA sequences of entire
contigs have to be first translated into all six amino acid
reading frames and each frame must be screened individually.

Proof of Functionality The function of MLSB resistance can
only be attributed to a newly detected methylase gene after
demonstration of an association between the gene and the
phenotype. To demonstrate its expression in vitro, the gene
can either be inactivated in the original strain generating a
MLSB susceptible knockout mutant or transformed into a
MLSB susceptible host generating a MLSB-resistant
transformant. Replacement of genes in field strains of
Staphylococcus can be impaired by a low transformation effi-
ciency and/or the presence of restriction modification systems;
therefore, expression in a laboratory strain like S. aureus
RN4220 is more frequently used [63, 64]. Recently,

S. aureus–E. coli shuttle vectors pBUS1-HC and pBUS1-
Pcap-HC have been shown to be suitable for expression of
erm genes under control of their own promoter and the strong
constitutive promoter of S. aureus type 1 capsule gene 1A [45,
46, 65]. Of note, inducibility will be kept only if the erm gene
is still under control of its own regulatory sequence including
the leader peptide region. On the other hand, the erm gene will
be expressed constitutively in the absence of the leader pep-
tide region [45, 46].

Identification of Regions Flanking erm Genes WGS pro-
vides further information on the regions flanking a novel gene
and facilitates the characterization of the acquired genetic el-
ement carrying the new erm gene. For instance, plasmids can
be identified by the presence of rep-genes, circularized se-
quence, or by a higher coverage [66]. Elements integrated into
the bacterial chromosome can be identified by alignment of
the erm-containing sequence region with that of a MLSB-sus-
ceptible strain of the same species. This allows identification
of both the integrated element and the integration site, as well
as the adjacent housekeeping genes. PCR with primers de-
signed from the putative flanking housekeeping genes can
be used to identify additional susceptible strains lacking the
integrated element. Such PCR experiments will further assist
the identification of the chromosomal integration site in
MLSB-susceptible strains for which no whole-genome se-
quence is available. The presence of inverted and direct re-
peats, which are directly linked to transposases and integrases,
is a further indication of foreign element integration.

Distribution of erm Genes and Their Association
With Acquired Genetic Elements

The erm genes are widely distributed in Gram-positive, Gram-
negative, aerobic, and anaerobic genera (Fig. 1) [8, 16].
Among the 38 currently described erm genes in bacteria, 12
have been identified in the genus Staphylococcus using PCR,
hybridization, or sequence analysis. They consist of erm(A),
erm(B), erm(C), erm(F), erm(G), erm(Q), erm(T), erm(Y),
erm(33), erm(43), erm(44), and erm(45) [39, 45, 46] (Fig. 1
and Table 2). To date, the presence of all erm genes in
Staphylococcus has been confirmed by sequence analysis, ex-
cept for erm(F), erm(G), and erm(Q) [37, 67, 68]. Of note, the
Erm determinants confirmed to be present in staphylococci by
sequence analysis all clustered into the same branch of the
Erm dendrogram (Fig. 1). Searching the GenBank and litera-
ture revealed that erm(A), erm(B), and erm(C) are the most
widespread erm genes in the different staphylococcal species,
as well as in a multitude of other bacterial genera (Table 2).
The broad distribution of erm(A), erm(B), and erm(C) can be
explained by their association with mobile genetic elements
with a high potential for dissemination, like broad-host-range
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plasmids and transposons, whereas other erm genes are locat-
ed on specific elements integrated into the chromosome.
These integrated elements seem to be rather species specific
or have lost their transfer machineries.

The erm(A) gene has been identified in a multitude of S.
aureus strains and in CoNS (Table 2). The spread of erm(A) in
Staphylococcus is mediated by transposon Tn554 and its rel-
atives such as Tn6133, which belong to the high-frequency
and site-specific transposable elements [69–71]. Tn554-like
transposons integrate into a specific chromosomal attachment
site but may also use alternative integration sites, such as those
present on acquired genetic elements like SCCmec elements
and plasmids [72, 73].

Erm(B) is the most widespread methylase in different bac-
terial genera and is also common in a multitude of staphylo-
coccal species (Table 2). Spread of erm(B) is mediated by
Tn917/Tn551 and Tn5405-like transposons [40, 74]. Those
non-site-specific transposons easily conglomerate into larger
transposal structures and promiscuously integrate into the
chromosome and plasmids, offering further vessels for trans-
portation and broad host distribution of erm(B) [75–78].

The erm(C) gene which is the most frequently annotated
among staphylococcal species is commonly found on small
plasmids (Table 2). Although these small plasmids are not
self-transmissible, they contain mobilizing genes which con-
tribute to their dissemination [79].

Fig. 1 Phylogenetic relatedness and alignment of the ribosomal RNA
adenine dimethylase signature (PROSITE pattern PS01131) of all 38
Erm methylases (modified from Schwendener et al. [44]). Complete
amino acid sequence (Acc. no.) of Erm methylases were used for
dendrogram construction and were chosen from the species for which
the protein was initially described (species). Clustering of Erm amino
acid sequences was performed by BioNumerics 7.5 (Applied Maths).
The comparison settings were standard algorithm for pairwise
alignment, open gap penalty 100 %, unit gap penalty 0 %, and the
unweighted-pair group method using average linkages. The PS01131
signature pattern, with amino acids acceptable for one given position

listed between square brackets and x for any amino acid followed by
the possible repetition range between parentheses, is defined as
[LIVMAC]-[LIVMFYWT]-[DE]-x-G-[STAPVLCG]-G-x-[GAS]-x-
[LIVMF]-[ST]-x(2,3)-[LIVMA]-x(5,8)-[LIVMYF]-x-[STAGVLC]-
[LIVMFYHCS]-E-x-D. In the figure, invariant amino acids are shaded
black, highly conserved amino acids dark grey, and less conserved posi-
tions light grey. A modified PS0113 signature to recognize most Erm
methylases would be [LIVMACT]-[LIVMFYWT]-[DE]-x-G-
[STAPVLCG]-G-x-[GAS]-x-[LIVMF]-[ST]-x(2,3)-[LIVMA]-x(5,8)-
[LIVMYF]-x-[STAGVLC]-[LIVMFYHCS]-E-x-[DH]. Erm(32) is listed
but does not contain a complete PS01131 signature

46 Curr Clin Micro Rpt (2016) 3:42–52



The remaining erm genes detected in Staphylococcus sp.
have been mainly associated with single species. For instance,
erm(T) and erm(Y) were found in S. aureus, erm(33) in
Staphylococcus sciuri, erm(43) in Staphylococcus lentus,
and erm(45) in Staphylococcus fleurettii (Table 2). The only
exception is erm(44), which has been detected in
Staphylococcus xylosus and Staphylococcus saprophyticus
(Table 2). However, one erm(44) gene from a S. saprophyticus
of human origin and one erm(44) from a S. saprophyticus
isolated from sewage were found to share 77 % amino acid
homology with each other and 81 and 84 % homology to the
original erm(44), respectively. This suggests a different epide-
miological origin [80]. The erm(T), erm(Y), and erm(33)
genes are all located on plasmids between 12 and 20 kb in

size, and erm(T) has also been found integrated into the chro-
mosome (Table 2) [81]. The erm(33) is additionally linked to
Tn554 located on a plasmid, most likely due to its relation to
erm(A) [82].

The more recently described erm genes erm(43), erm(44),
and erm(45) were found on so far unknown integrated ele-
ments. The erm(43) gene is located on an acquired fragment
flanked by long direct repeats at a specific chromosomal site
in S. lentus [44]. Structures like the erm(43)-carrying fragment
arguably form a novel group of mobile genetic elements,
which are also present in other species and associated with
different resistance genes [83].

The recently discovered erm(44) was located in the
genome of an integrated prophage in S. xylosus [45].

Table 2 Macrolide-lincosamide-streptogramin B resistance genes identified in staphylococci and their dissemination in other bacterial genera

Gene Distribution in Staphylococcus sp.
(Reference and /or GenBank accession number)a,b

Distribution in other bacterial genera
(Reference and /or GenBank accession number)a

erm(A) S. aureus (X03216) [112], S. epidermidis (CP000029) [113], S.
hyicus [114], S. hominis [115], S. sciuri [142],
S. lentus [116], S. cohnii [117], S. capitis [118], S. warneri [118],
S. simulans [118], S. rostri [128]

Actinobacillus, Streptococcus [16], Bacteroides, Helcococcus,
Peptostreptococcus, Prevotella [8], Listeria (AGN12846),
Lactobacillus (WP_002360844), Bacillus (WP_041902801),
Gracilibacillus (WP_018930853), Aerococcus (CP002512),
Nocarida (KM194593), Oceanobacillus (BA000028)

erm(B) S. aureus (Y13600) [119], S. hyicus (HE662694) [120], S. lentus
(U35228) [121], S. (pseud)intermedius (AF299292) [122], S.
sciuri (NG_041678) [123], S. epidermidis, S. haemolyticus
[124], S. hominis [115], S. cohnii [123], S. chromogenes, S.
warneri [125], S. schleiferi [116], S. simulans [126],
S. xylosus [127], S. equorum [118],
S. fleurettii [129]

Actinobacillus, Clostridium, Escherichia, Enterococcus, Klebsiella,
Neisseria, Pediococcus, Streptococcus, Wolinella [16],
Acinetobacter, Aerococcus, Arcanobacterium, Bacillus,
Bacteroides, Citrobacter, Corynebacterium, Enterobacter,
Eubacterium, Fusobacterium, Gemella, Haemophilus,
Lactobacillus, Micrococcus, Pantonea, Peptostreptococcus,
Porphyromonas, Proteus, Pseudomonas, Ruminococcus, Rothia,
Serratia, Treponema [8], Lactococcus (AB290882), Macrococcus
(AP009486), Eggerthella (AP012211), Campylobacter
(KC876752), Salmonella (KR091911), Listeria (JX535233),
Nocardia (KM194594), Weissella (KF245590)

erm(C) S. aureus (V01278) [130], S. chromogenes (U82607) [131], S.
haemolyticus (Y09002) [132], S. simulans (AF019140) [133], S.
epidermidis (M12730) [134], S. hominis (Y09001) [132], S.
saprophyticus (AM159501) [135], S. equorum (X82668) [132],
S. arlettae (JF834911),S. cohnii (JQ219851) [123], S. hycicus
(JF968543) [136], S. lentus (AJ888003) [137] S. sciuri, S.
warneri [132],S. capitis [118],S. (pseud)intermedius [138], S.
gallinarium, S. xylosus [132]

Actinobacillus, Bacillus, Eubacterium, Lactobacillus, Neisseria,
Streptococcus, Wolinella [16], Actinomyces, Bacteroides,
Corynebacterium, Enterococcus, Haemophilus, Micrococcus,
Prevotella, Peptostreptococcus [8], Capnocytophaga (JQ886176)

erm(T) S. aureus (FN390947) [139] Lactobacillus [16], Streptococcus [8], Erysipelothrix (KM576795),
Haemophilus (KC405064), Bacillus (AHN52258)

erm(F) S. aureus, S. haemolyticus, S. (pseud)intermedius, S. lentus,
S. sciuri [67]

erm(Y) S. aureus (AB014481) [140]

erm(33) S. sciuri (AJ313523) [141]

erm(43) S. lentus (HE650138) [44]

erm(44) S. xylosusx (HG796218) [45], S. saprophyticus (KJ728533)
[86], (LN623525)

erm(45) S. fleurettii (LN680996) [46]

a GenBank search was performed September 2015
bGenes identified by sequencing are shown in bold, while genes detected by PCR only are shown in regular typeface
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This prophage ΦJW4341-pro was the first to be fully se-
quenced and has been found to have naturally incorporat-
ed a resistance gene in Staphylococcus. The integration of
bacterial DNA into phage genomes can lead to selective
advantages for the phage host and was extensively de-
scribed for virulence and other fitness-enhancing genes
[84, 85]. With the detection of erm(44), the phenomenon
of spreading genetic information via bacteriophages has
gained in importance in the field of antimicrobial resis-
tance dissemination. Although no active transduction of
ΦJW4341-pro was observed, the occurrence of erm(44)
in different S. xylosus from bovine mastitis suggests
spreading of this gene by phage ΦJW4341-pro.
Recently, erm(44) has also been identified on acquired
chromosomal fragments in a human and environmental
S. saprophyticus isolate using WGS (Table 2) [86]. The
diverse flanking regions of the genetically distinct
erm(44) genes support the suggested individual acquisi-
tion of those genes without direct transfer between S.
xylosus and S. saprophyticus (Table 2) [86].

The erm(45) gene is another novel methylase gene detected
on a phage related fragment [46]. It has been identified in a S.
fleurettii strain isolated from bovine milk using WGS. This
erm(45)-containing genetic island consists of open reading
frames and a structure similar to those found in phage or the
phage-associated S. aureus pathogenicity islands (SaPIs) [87].
Although capable of circularization, this island was not ob-
served to bemobilized by either conjugation or transformation
into S. aureus and its ability to disseminate is still unknown.

Conclusions

The recent discoveries of novel erm genes emphasize the role
of staphylococci as a large reservoir of MLSB resistance
genes. Staphylococci seem to have a particular ability to ac-
quire new genes through multifaceted mechanisms, including
plasmids, transposons, genomic islands, and bacteriophage or
bacteriophage-related elements.WGS has already widely con-
tributed to the detection of so far unknown and large mobile
genetic elements in staphylococci and other bacteria.
Considering the ability of bacteria to rapidly adapt to foreign
environments such as antimicrobial selective pressure, it is
crucial to have tools for the rapid identification of new emerg-
ing resistance genes. Rapid detection of novel resistance genes
from different ecological and clinical niches is of major im-
portance for the continuous improvement of antibiotic resis-
tance surveillance programs and diagnostics, as well as for
well-targeted and prudent use of antibiotics.
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