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Abstract The Chlamydiaceae are widespread pathogens of
both humans and animals. Chlamydia trachomatis infection
causes blinding trachoma and reproductive complications in
humans. Chlamydia pneumoniae causes human respiratory
tract infections and atypical pneumonia. Chlamydia suis in-
fection is associated with conjunctivitis, diarrhea, and failure
to gain weight in domestic swine. Chlamydial infections in
humans and domesticated animals are generally controlled
by antibiotic treatment—particularly macrolides (usually
azithromycin) and tetracyclines (tetracycline and doxycy-
cline). Tetracycline-containing feed has also been used to limit
infections and promote growth in livestock populations, al-
though its use has decreased because of growing concerns
about antimicrobial resistance development. Because Sandoz
and Rockey published an elegant review of chlamydial anti-
microbial resistance in 2010, we will review the following: (i)

antibiotic resistance in C. suis, (ii) recent evidence for ac-
quired resistance in human chlamydial infections, and (iii)
recent non-genetic mechanisms of antibiotic resistance that
may contribute to treatment failure.
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Introduction

The Chlamydiaceae are Gram-negative, obligate intracellular
bacteria with a complex developmental cycle. After the infec-
tious elementary body (EB) enters a host cell, EB-containing
endosomes fuse to form a membrane-bound, cytoplasmic in-
clusion. Within the inclusion, EB develop into larger, non-
infectious reticulate bodies (RB). RB use host cell metabolites
to grow, and divide. After 30–70 h, RB mature into infectious
EB, which are released from the infected host cell. Under
adverse environmental conditions, developing Chlamydiae
may enter a state referred to as persistence or, more recently,
as chlamydial stress or the aberrant RB phenotype [1].
Stressed Chlamydiae remain viable, but do not develop into
EB and are non-infectious. They have a characteristic appear-
ance and are termed aberrant RB/aberrant bodies (AB).
Antibiotic exposure is one stressor that can induce this re-
sponse. For example, penicillin G elicits the AB phenotype
for up to 9 months in culture. When penicillin is removed, the
Chlamydiae resume normal development and produce EB
(reviewed in [2, 3]). Exposure to other β-lactam antibiotics,
including amoxicillin, induces the AB phenotype in culture
[4] and in vivo [5].

Chlamydiae cause asymptomatic infection, as well as acute
and chronic diseases affecting different tissues, in humans and
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other animal species. Chlamydia trachomatis serovars A-D
cause trachoma, the most common infectious form of human
blindness. In 2009, there were ≈40 million cases of active
trachoma worldwide [6]. C. trachomatis serovars D-K and
L1-L3 primarily cause human genital tract infections, with
≈105.7 million cases worldwide in 2008 [7]. Manifestations
of genital C. trachomatis infection range from urethritis and
epididymitis in men to cervicitis, infertility, and ectopic preg-
nancy in women [8]. C. trachomatis may be the most costly
non-viral sexually transmitted infection, with cases from 2008
alone resulting in a total lifetime direct medical cost of≈$516
million in the US [9]. Chlamydia pneumoniae causes human
respiratory infections and atypical pneumonia. Recent sero-
positivity studies [10–12] indicate that >50 % of adults have
beenC. pneumoniae exposed, confirming earlier observations
[13]. In the USA, azithromycin (AZM) and doxycycline
(DOX) are treatments of choice for C. trachomatis infections
in adults, though erythromycin, levofloxacin, and ofloxacin
are alternatives. AZM is recommended for treatment of preg-
nant women, with amoxicillin and erythromycin as alterna-
tives [14]. Atypical pneumonia is often treated empirically
with AZM because it covers multiple organisms, including
C. pneumoniae. DOX is also a first-line antibiotic for C.
pneumoniae (reviewed in [15••]).

Chlamydial infections occur in a wide range of animal
species, including mammals, birds, fish, marsupials, insects,
and amoebae. Pigs are of particular economic importance and
can become infected with Chlamydia suis, Chlamydia
pecorum, Chlamydia psittaci, and Chlamydia abortus. C. suis
is the major pig pathogen, often occurring in mixed infections
with other chlamydial species. Manifestations ofC. suis infec-
tion include respiratory disease, diarrhea, conjunctivitis, and
reproductive disorders, while sub-clinical intestinal infections
may impair health and cause economic loss (reviewed in
[16]). C. suis is endemic in pig farms and wild boar popula-
tions worldwide. Though zoonotic transmission of C. suis
from pigs to humans has not yet been demonstrated [16], its
DNA has been detected in conjunctival swabs of Nepalese
trachoma patients [17] and Belgian slaughterhouse workers
[18]. However, the low amount of C. suis DNA detected in
slaughterhouse employee eye swabs may result from hand-to-
eye Bcontamination^ rather than true infection [18, 19].
Though limited information [20–22] is available concerning
antibiotic sensitivity/resistance in other veterinary
Chlamydiae, we will focus on that in C. suis because of space
constraints.

Antibiotic Resistance in C. suis

The C. suis prototype strain S45 was isolated from feces of an
asymptomatic pig in Austria in the late 1960s and is tetracy-
cline (TET) sensitive. C. suis strains are generally regarded as

genetically diverse with variations in virulence, however, ge-
nomic data to support this prediction are unavailable. Only one
partial draft C. suis genome (strain MD56 isolated from a pig
with conjunctivitis) has been published [23]. Other C. suis
strains isolated in the USA, Austria, Germany, and Italy, (ex-
cept S45) originated from pigs presenting with conjunctivitis,
enteritis, respiratory disease, or reproductive failure [16].

Tetracyclines have been used since the 1950s to treat hu-
man and animal chlamydial infections, particularly in live-
stock. In the past, l ivestock feed has been TET-
supplemented to prevent infections and promote growth.
Tetracyclines inhibit bacterial protein synthesis by binding to
the small ribosomal subunit, have broad-spectrum anti-micro-
bial activity, are inexpensive, and have low toxicity [24, 25].
However, their wide use in pig production has facilitated se-
lection of resistant bacteria, with significant implications for
human health. Increasing concerns about this practice led to a
ban of the sub-therapeutic application of tetracyclines in
Europe in the 1970s [24]. The mechanisms by which bacteria
obtain resistance to tetracyclines include efflux pumps, drug-
modifying enzymes, target mutation, and the employment of
specialized ribosomal protection proteins [25].

Genetically stable TET resistance (TetR) was first described
in C. suis strains from diseased and apparently healthy pigs in
the USA. Eight TetR strains were isolated from pig farms in
Nebraska and Iowa and homotypic TetR was retained after ten
to 15 passages in TET-free medium. Six of these eight strains
were also sulfadiazine resistant [26]. Two of these TetR strains
(R19 and R27) grew in culture at up to 4 μg/mLTET, but not
at 5 μg/mL. In contrast, C. suis S45 was sensitive to 0.25 μg/
mL TET. Chlamydial inclusions exposed to increasing TET
concentrations contained larger numbers of AB. Upon TET
removal, the AB reverted to typical RB and continued normal
development. Furthermore, C. suis R19 and C. trachomatis
L2 occupied the same intracellular vacuole when HeLa cells
were sequentially infected with both species [27].

The stableC. suis TetR phenotype was later associated with
the resistance gene tetC [28]. Seven TetR strains from the USA
each contained one of four related, chromosomally-inserted
genomic islands. All 7 resistant isolates carried the tetC gene,
encoding a TET efflux pump, as well as the TET repressor
gene tetR. The genomic islands also shared high nucleotide
sequence identity with other Gram-negative bacterial resis-
tance plasmids. These integrated C. suis TetR genomic
island/plasmid-like elements were the first example of antibi-
otic resistance acquired in an obligate intracellular bacterium
through horizontal gene transfer. Three of the four tetC islands
also carried a novel insertion sequence homologous to the
IScs605 family of insertion sequences of Gram-negative bac-
teria. All of these genomic islands were inserted at the same
position within the chromosome of TetR C. suis strains,
interrupting a homologue of the invasion gene (inv) from the
Yersiniae [28].
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Given that most C. suis strains are TET sensitive, from
where did TetR C. suis strains acquire these genomic islands?
The chlamydial tetC islands have >99 % identity with a resis-
tance plasmid (pRAS3.2) from Aeromonas salmonicida [28].
The plasmid is integrated into the genomic island IScs605,
which also encodes the transposase responsible for integration
of these genomic islands into the chlamydial chromosome
[29]. More recently, the Gram-negative bacterium Laribacter
hongkongenesis, which is associated with human gastroenter-
itis and found in freshwater fish, has been viewed as a poten-
tial donor for IScs605. The L. hongkongenesis IScs605 shared
100 % nucleotide identity to that from C. suis. Pig industry
feeding practices that rely upon prophylactic TET delivery
and use of fish as a feeding source may have facilitated acqui-
sition of DNA from fish bacteria, like A. salmonicida or
L. hongkongenesis, byC. suis infecting the pig gastrointestinal
(GI) tract (reviewed in [30]). However, the proposed mecha-
nism of acquisition of the TetR islands by C. suis remains
speculative.

In vitro experiments have demonstrated horizontal transfer
of TetR from C. suis to human clinical strains of C.
trachomatis following co-culture. In contrast, TetR transfer
from C. suis to Chlamydia caviae, the guinea pig chlamydial
pathogen, was not observed [31]. In a more recent study ex-
amining horizontal gene transfer of 16S rRNA in prokaryotic
organisms, four strains of C. trachomatis were found to have
16S rRNA genes from C. suis [32]. These data indicate gene
transfer between C. suis and C. trachomatis occurs in nature
and increases concern that antibiotic resistance genes will be
transferred into C. trachomatis, either from C. suis or from
other Chlamydiae.

After TetR C. suis strains were described in the USA, sim-
ilar strains were reported in Italy [33], Belgium [16], and
Switzerland [34]. In Italy, 14 C. suis strains isolated from pigs
with conjunctival and/or reproductive disorders reared in four
different farms carried a tetC gene identical to tetC from the
original US strains [33]. In vitro DOX minimal inhibitory
concentration (MIC) and minimal bactericidal concentration
(MBC) values ranged from 4–8 μg/ml for 12 of these isolates.
Interestingly, two of the 14 tetC-positive C. suis strains (MS9
and MS14) showed lower MIC and MBC values (0.5 and
1.0 μg/mL, respectively) indicating partial DOX sensitivity
[33]. The same 14 C. suis isolates were later tested against
levofloxacin, DOX, and rifaximin, an antimicrobial that is
non-absorbable after oral administration and locally active
inside the intestinal tract [35]. Rifaximin showed good
in vitro activity against all 14 TetR strains, with MIC and
MBC values from 0.25–1 μg/mL. Levofloxacin MIC and
MBC values ranged from 0.5–1 μg/mL, whereas those for
DOX ranged from 4–16 μg/mL, except for the MS9 and
MS14 strains described above [35].

A recent report by Borel et al. was the first description of
TetR C. suis isolation from swine with conjunctivitis and

diarrhea on a Swiss farm. Ocular and fecal excretion was
observed both before and after TET treatment. Though clini-
cal signs disappeared after treatment, C. suis was not elimi-
nated and strains harboring the tetC gene were positively se-
lected. This rapid selection for TetR C. suis strains was sur-
prising and possibly facilitated by close contact between pigs
and TET-mediated selective pressure [34].More recently, TetR

C. suis strains were identified in sow vaginal/rectal swabs and
boar semen obtained from four pig breeder-fattener farms lo-
cated in Israel, Cyprus, and Belgium reporting reproductive
failures. Notably, the Israeli farm used boar semen imported
from a German pig insemination center [36]. In another recent
study,C. suiswas detected via real-time PCR in vaginal swabs
from Dutch pigs with reproductive failure and in conjunctival
swabs of asymptomatic employees from a Belgian pig slaugh-
terhouse. The tetC gene was present only in Dutch porcine
C. suis isolates and not in human isolates from Belgium [19].
In an additional study, three of 15 C. suis strains isolated from
rectal swabs of Belgian slaughter pigs (from three of ten
farms) were tetC positive. However, none of the employees’
eyes harbored resistant strains [18]. Thus, whether TetRC. suis
strains infect humans, thereby potentially facilitating transfer
of TET resistance genes to human Chlamydiae, remains an
open question.

Antibiotic Resistance and Treatment Failure
in Chlamydial Species that Impact Human Health

C. trachomatis and C. pneumoniae have in vitro sensitivity to
a wide range of antibiotic classes, including macrolides, tetra-
cyclines, rifamycins, and quinolones (reviewed in [15••]).
In vitro exposure to several β-lactam antibiotics causes
C. trachomatis RB to convert to the AB phenotype [4].
When cultured in the presence of sub-inhibitory antibiotic
concentrations, C. trachomatis can become resistant to
rifamycins [via mutations in the RNA polymerase β-subunit
gene rpoB], macrolides [via 23S rRNA gene mutations], and
quinolones [via mutations in the DNA gyrase gene gyrA].
However, as of 2010, there was no convincing evidence for
in vivo development of homotypic resistance in human chla-
mydial species (reviewed in [30]). More recent studies of
chlamydial strains isolated from infected patients after therapy
have also failed to identify resistant organisms. Hong et al.
compared C. trachomatis serovar A/B strains isolated during
an Ethopian trachoma control effort. Analysis of seven strains
isolated from previously AZM- or TET-treated patients
showed no MIC increase for either drug compared to control
strains from untreated communities [37]. A larger study con-
firmed these results, with none of 15 strains isolated post-
treatment failure showing DOX or AZM resistance after a
Tanzanian mass-treatment program [38•]. Additionally, a
study of 24 C. trachomatis genital strains collected in
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Croatia, which has the highest AZM use in Europe, identified
no AZM- or DOX-resistant strains [39]. Similar studies con-
ducted from 1994–2000 on C. pneumoniae strains isolated
from patients with community-acquired pneumonia also re-
vealed no evidence for homotypic resistance (reviewed in
[15••]). Thus, despite the observation of acquired TetR in
C. suis, human chlamydial species have, fortunately, not yet
crossed this Rubicon.

Published data suggest that treatment failure is a significant
problem during human chlamydial infections. For example,
Golden et al. observed an 8 % failure rate using recommended
treatment regimens for genital C. trachomatis infection in
women who had not reported subsequent sexual activity
[40]. More recently, 13.7 % of women experienced treatment
failure for C. trachomatis genital infection, despite reporting
no post-treatment sexual contact and full medication compli-
ance [41]. A recent review suggests treatment failure rates
from 5–23 %, depending upon the patient population exam-
ined [42]. Although it remains difficult to discriminate from
post-treatment reinfection or lack of treatment compliance,
most retrospective studies suggest true treatment failure oc-
curs in humans [43]. Since homotypic antibiotic resistance has
not yet been documented inC. trachomatis orC. pneumoniae,
investigators are exploring alternative mechanisms including
the following: (i) development of heterotypic antibiotic resis-
tance (perhaps due to slower growth in certain environments
or entry into a stress response in which the organisms are
refractory to antibiotic treatment) and (ii) infection of anatom-
ic sites where Chlamydiae are protected from antibiotics.
Notably, these mechanisms are not mutually exclusive and
could occur in vivo, increasing the difficulty of determining
which (if any) contribute to treatment failure.

Heterotypic resistance, in which a subset of individual or-
ganisms within a population exhibit reduced antibiotic sensi-
tivity, is one proposed mechanism for treatment failure in
humans (reviewed in [42, 44]). Such resistance can be con-
ferred by phenotypic changes in a stressed bacterial population.
Bhengraj et al. isolated C. trachomatis strains from recurrently
infected female patients that had in vitro MIC values for AZM
and DOX of up to 8 μg/ml, compared to 0.12–0.25 μg/ml for a
sensitive serovar D control strain. In the absence of genetic
data, the authors postulate heterotypic rather than homotypic
resistance [45]. O’Neill et al. recently published a sensitivity
and genomic analysis of two clinical C. trachomatis strains
(IU824 and IU888) previously reported to be TetR. MIC and
titer assays revealed that neither strain exhibited phenotypic
TetR in vitro. Whole genome sequencing did not reveal any
known TetR element, although single nucleotide polymor-
phisms were observed in the 23S ribosomal RNA (rRNA) gene
in both strains. The authors concluded that the observed resis-
tance was heterotypic and unlikely to result from genetic
changes [46]. Thus, it seems likely that heterotypic resistance
contributes to treatment failures observed in humans.

Several recent cell culture studies have also illuminated
mechanisms by which developing Chlamydiae might escape
antibiotic action. Törmäkangas et al. infected Calu-3 human
lung epithelial cells cultured on either semi-permeable inserts
(polarized orientation) or plastic dishes (flat, non-polarized
cultures) with C. pneumoniae. Polarized Calu-3 cultures pro-
duced fewer infectious EB than did Bflat^ cultures, suggesting
that C. pneumoniae development differs when host cells are
grown in the more biologically relevant polarized condition.
Notably, the DOX MBC (minimal antibiotic concentration
that eliminated EB production) was >33-fold higher in polar-
ized compared to flat Calu-3 cells, indicating that
C. pneumoniae is less antibiotic sensitive when growing in
polarized cells [47]. Oxygen concentration also alters chla-
mydial antibiotic sensitivity in culture. Although MICs for
DOX, AZM, moxifloxacin, and rifampin for C. trachomatis
L2 are essentially identical under normoxic (20 % O2) and
hypoxic (2 % O2) conditions; MBC assays reveal that DOX
and AZM are significantly less effective at reducing EB titer
during hypoxia. In contrast, moxifloxacin and rifampinMBCs
are similar under hypoxic and normoxic conditions. Hypoxia
upregulates expression of the host cellular ATP-binding cas-
sette (ABC) transporter protein MDR-1, which may reduce
the anti-chlamydial effect of DOX [48]. Interestingly, when
cultures of non-replicating, interferon-γ-stressed
C. trachomatis are used as drug targets, DOX is more efficient
at reducing EB production under hypoxic, compared to
normoxic, conditions [49]. Therefore, local differences in O2

concentration or infected host cell developmental state could
provide protected Bpockets^ within infected tissues where
Chamydiae can survive antibiotic exposure.

In culture, chlamydial stress response initiation halts the
developmental cycle and the Chlamydiae enter a reversible,
non-replicating but viable state. Entry into the AB phenotype
also increases resistance of (i) C. pneumoniae to AZM and
ofloxacin [50], (ii)C. trachomatis serovar E to AZM [51], and
(iii) C. trachomatis L2 to DOX [52]. Stressed chlamydiae are
more AZM-resistant in vivo as well. Developing Chlamydiae
within the genital tract of Chlamydia muridarum-infected,
amoxicillin-treated mice enter the stressed state [5].
Furthermore, the AZM therapy failure rate increases from
9 % in productively infected animals to 22 % in mice infected
with amoxicillin-stressed Chlamydiae [53•]. Chlamydial
forms with morphologic alterations consistent with stress in-
duction have been observed in tissue samples from
chlamydia-infected humans [54, 55, 56•], pigs [57] and mice
[5, 58]. Notably, nutrient-starvation, as well as interferon and
β-lactam antibiotic exposure, all induce chlamydial stress in
culture (reviewed in [2, 3]) and occur in vivo. Thus, variation
in local conditions may also increase treatment failure in vivo
via chlamydial stress-induced heterotypic resistance [42, 44].

Another intriguing possibility is that chlamydiae infecting
specific anatomical sites are protected from antibiotics. These
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tissues then serve as a reservoir from which the genital tract is
Breseeded^ after treatment cessation. Recent work has provid-
ed compelling data indicating the GI tract is one such
protected site. Natural GI infection by chlamydial species that
infect animals is well documented (reviewed in [59••]). In an
extension of previous studies demonstrating long-term chla-
mydial GI colonization in mice [60, 61], Yeruva et al. demon-
strated that oral inoculation with as little as 100 IFU of
C. muridarum established GI infection in mice for at least
75 days pi [62]. A single oral 80-mg/kg AZM dose eliminated
vaginal EB shedding from C. muridarum vaginally infected
mice but failed to eradicate infectious EB from cecal tissue in
orally infected animals. HPLC analyses indicated AZM levels
in cervical and cecal tissue were similar, suggesting similar
drug penetration in both tissues. Conversely, DOX treatment
eliminated both genital shedding from vaginally infected mice
and cecal EB production in orally infected mice. The authors
concluded that: (i) chlamydiae harbored within the GI tract are
more AZM resistant than those in the genital tract and (ii)
DOX more effectively eradicates GI chlamydial infection.
They also hypothesized that infectious Chlamydiae shed from
the GI tract after AZM treatment may re-infect the genital tract
[63••]. Over 70% of women with genital chlamydial infection
tested positive for rectal infection in the absence of reported
anal-receptive intercourse [64, 65], which is consistent with
prediction that GI/genital auto-inoculation occurs in humans.
Importantly, AZM treatment failure in rectal infectionsmay be
as high as 22 % [66]. Both a recent meta-analysis [67••] and a
mathematical modeling study [68] support use of DOX rather
than AZM for C. trachomatis rectal infection treatment.
Though the need for additional case controlled studies was
stressed, this recommendation was also echoed in a recent
review by Hocking et al. [44].

In humans, genital to GI chlamydial transmission seems
most likely to occur during oral sex, though if pharyngeal
colonization occurs [69], such contact could also promote GI
to genital transmission. In contrast, post-treatment GI to gen-
ital auto-inoculation in womenmost likely results from genital
contact with EB-containing GI secretions (reviewed in [59••]).
If so, post-treatment auto-inoculation should be more frequent
in women than men—which is supported by data demonstrat-
ing lower treatment failure in genitally infected men than
women [40]. In female mice, auto-inoculation is likely medi-
ated by contaminated GI secretions (GI to genital) or
grooming (genital to GI). Recent in vivo imaging studies,
however, suggest an additional route. Luciferase-expressing
C. muridarum rapidly colonizes the murine GI tract for up to
100 days after vaginal inoculation. When auto-inoculation is
prevented by fitting mice with Elizabethan collars, or
Chlamydiae are introduced directly into the upper genital
tract, GI infection is still observed. These data suggest that
C. muridarummay spread to the GI tract via a systemic route,
though the authors point out that C. muridarum and

C. trachomatis may differ in this respect [70•]. However, it
seems prudent to evaluate whether systemic spread of
C. trachomatis from the genital tract to the GI tract occurs in
humans.

Conclusions

The recent emergence of TetR C. suis strains raises concerns
that pigs might be a reservoir for chlamydial TetR determi-
nants. However, detailed assessments of (i) the distribution
of TetR chlamydial strains in wild and domestic pigs, and (ii)
herd-related risk factors associated with TetR acquisition are
lacking. The possibility that other animalChlamydiae, such as
C. abortus or C. psittaci, carry TET (or other) resistance de-
terminants is also unexplored. Finally, the largely-
environmental chlamydia-like organisms (CLOs), are also
emerging pathogens [71•]. Those CLOs tested to date appear
to have antibiotic resistance patterns similar to those of the
traditional Chlamydiaceae, with the exception of Estrella
lausannensis, which carries a single mutation in the 23S
rRNA gene and i s AZM-res i s t an t [72] . Unl ike
C. trachomatis, CLOs are also generally fluoroquinolone re-
sistant [73, 74]. Thus, additional studies are needed to deter-
mine whether chlamydial veterinary pathogens and environ-
mental CLOs can transfer antibiotic resistance genes to C.
suis, C. trachomatis, or C. pneumoniae.

Recent studies suggest treatment failure during human gen-
ital infection results from incomplete eradication of simulta-
neous chronic GI infection, which re-establishes genital tract
infection after therapy. Rank and Yeruva proposed a number
of interesting mechanisms by which Chlamydiae in the GI
tract might escape AZM therapy [59••]. However, it is also
important to consider the role of (i) varied local GI O2 or
nutrient concentrations, (ii) infection of GI cells in different
developmental states, and/or (iii) induction of AB formation
by stressors in the GI environment, the latter of which is con-
sistent with the observation of C. suis AB within the GI epi-
thelium of infected pigs [57]. It seems likely that Chlamydiae
infect multiple host cell types/locations within the GI tract,
which vary in physiological status and/or extracellular envi-
ronment. In certain host cell types or nutrient-rich areas, chla-
mydial development would progress rapidly—releasing infec-
tious EB. In other host cell types, or more stressful micro-
environments, chlamydial development would be slowed or
halted by the stress response—which could provide a
treatment-resistant reservoir of Chlamydiae. Thus, further dis-
section of the mechanisms by which Chlamydiae establish
chronic GI infection and evade antibiotic action is warranted.
More importantly, though DOX appears more effective than
AZM for eradicating GI/rectal chlamydial infection [63••,
67••], more extensive case-controlled studies in humans are
a high priority.
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Though many advances in understanding chlamydial biol-
ogy have been made over the last decade, the spectrum of
effective anti-chlamydials has remained nearly unchanged
(reviewed by [15••]). Sustained AZM therapy has also been
associated with increased adverse cardiovascular events in
patients [75], raising the possibility that higher or repeated
AZM doses to eliminate GI carriage might be contraindicated.
Finally, emergence of homotypic antibiotic resistance in hu-
man Chlamydiae remains a threat. Thus, development of nov-
el anti-chlamydials is a high priority. The dozens of recently
identified candidates are beyond the scope of this review but
include type III secretion (T3S) inhibitors, chlamydial enzyme
inhibitors, and compounds that block essential host cell func-
tions. For example, modified forms of a salicylidene
acylhydrazide T3S inhibitor inhibit C. muridarum, C.
pneumoniae, and C. trachomatis serovar D inclusion devel-
opment and EB production in culture [76]. The peptide
deformylase inhibitor GM6001 inhibits C. trachomatis L2
inclusion development in culture and reduces vaginal shed-
ding from C. muridarum-infected mice by >100-fold [77].
The antiviral compound ST-669 also reduces C. muridarum,
C. trachomatis L2, and Chlamydia caviae growth in culture,
possibly by a host lipid droplet-dependent mechanism [78].
Interestingly, exposure to JO146, an inhibitor of the chlamyd-
ial protease HtrA, significantly reduces C. trachomatis EB
production when stressed chlamydiae re-enter developmental
cycle [79]. JO146 also inhibits growth of C. trachomatis clin-
ical strains in culture [80]. Thus, if chlamydial stress induction
contributes to treatment failure in vivo, HtrA inhibitors
might be used to increase AZM therapy success.
Though recent studies indicate that peptidoglycan
(PPG) synthesis inhibitors disrupt cell division in both
Chlamydiae and CLO [81••, 82], caution in targeting
PPG synthesis as a potential drug target is warranted
due to the observation that β-lactams induce chlamydial
stress [4, 83, 84]. Regardless, given the recent rectal/GI
infection data, it is particularly important that potential
anti-chlamydials be tested for efficacy in animal models
of GI and genital infection before proceeding to clinical
trials.
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