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Abstract Human babesiosis is a zoonotic disease caused by
protozoan parasites of the Babesia genus, primarily in the
Northeastern and Midwest USA due to Babesia microti and
Western Europe due to Babesia divergens. Parasites are trans-
mitted by the bite of the ixodid tick when the vector takes a
blood meal from the vertebrate host, and the economic impor-
tance of bovine babesiosis is well understood. The pathology
of human disease is a direct result of the parasite’s ability to
invade host’s red blood cells. The current understanding of
human babesiosis epidemiology is that many infections re-
main asymptomatic, especially in younger or immune compe-
tent individuals, and the burden of severe pathology resides
within older or immunocompromised individuals. However,
transfusion-transmitted babesiosis is an emerging threat to
public health as asymptomatic carriers donate blood, and there
are as yet no licensed or regulated tests to screen blood prod-
ucts for this pathogen. Reports of tick-borne cases within new
geographical regions such as the Pacific Northwest of the
USA, through Eastern Europe, and into China are also on
the rise. Further, new Babesia spp. have been identified glob-
ally as agents of severe human babesiosis, suggesting that the
epidemiology of this disease is rapidly changing, and it is clear
that human babesiosis is a serious public health concern that
requires close monitoring and effective intervention measure.
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Introduction

Human babesiosis is a zoonotic infection caused by Babesia
parasites transmitted by the bite of ixodid ticks that have dis-
tinct geographical distributions based on the presence of their
competent natural animal hosts, which include rodents, cattle,
and deer. The genus Babesia comprises many species of par-
asites [1], which are transmitted when the ticks takes a blood
meal from the vertebrate host [1, 2]. While parasite infection
of these natural hosts, such as in cattle, which results in bovine
babesiosis causing significant economic cost has long been
established [3, 4], the severity of human infection is rapidly
becoming apparent, whether the disease has been primarily
transmitted from a tick bite or secondarily transmitted via a
blood transfusion with infected blood [5–7], or even congen-
itally during pregnancy [8–11]. The four identified Babesia
species definitively confirmed that infect humans so far are
Babesia microti [12], Babesia divergens [13], Babesia
duncani [14, 15], and Babesia venatorum [16–19]. As sam-
pling has become expansive and techniques have become
more sensitive, there is evidence that more B. microti-like
and B. divergens-like spp. are able to cause human infection
(as detailed in [20]). However, the general life cycle within
humans remains the same; Babesia parasites are intracellular
obligates that target red blood cells, and the parasite’s ability to
first recognize and then invade host RBCs is central to the
disease pathology.

Vector Life Cycle and Transmission

The only confirmed vectors of Babesia parasites are members
of the Ixodidae family. Not all life cycles for known parasite–
vector–host groups are fully understood yet [20]. The 2-year
life cycle of Ixodes scapularis, which is endemic across most
of the eastern states of America and Canada [21–23], and its
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role in B. microti transmission has been well documented [1,
24, 25]. In brief, the larva and nymph stages both need to take
a blood meal from their rodent hosts to mature to the next
stages, and adults feed primarily on deer as a permanent food
source [1, 22, 25]. Reports show that up to 60 % of these
rodents may be infected with B. microti [26]. Newly hatched
larval stages take a blood meal from their vertebrate host at the
end of summer, usually August and September, which is when
they first acquire parasites if the host is infected. During the
winter when they are dormant and molt into nymph stages, the
parasites cross the tick gut epithelium and travel to the salivary
glands. It has been shown that these parasites require some
activation from exposure to warm-blooded hosts to generate
active sporozoites once the ticks feed again [27]. The follow-
ing summer, the nymph stages are required to feed again in
preparation for development into adults later the same year;
they now are able to transmit parasites into the vertebrate host.
It is at this stage of tick development that zoonotic infection
into the human host occurs [1]. The adult stages of
I. scapularis feed primarily on the white-tailed deer
(Odocoileus virginianus), which are not reservoirs for
B. microti but may be a direct contributor to the expansion
of ixodes ticks and babesiosis in general. B. divergens is trans-
mitted by the Ixodes ricinus tick, whose life cycle is 3 years, as
the larva, nymph, and adults each mature in a consecutive
year. Most tick-borne infections are reported between April
and October, which coincides not only with the warmer
weather when ticks are more active but also when individuals
spend more timewithin tick-infested areas. Although vaccines
are not available, prophylactic antibiotic therapy is not recom-
mended. However, preventative measures, such as suitable
clothing, insect repellants containing DEET, and prompt re-
moval of attached ticks when noticed are the best ways of
limiting exposure to bites [28].

Pathogens of Human Babesiosis

In the Americas

B. microti was first identified in the USA in 1966 [29] and in
2011; babesiosis became a nationally notifiable disease in 18
states, as its emergence, and the potential for transfusion-
associated cases were recognized [30], but the parasite itself
is currently endemic within the Midwest states of Minnesota
and Wisconsin and the northeastern corridor of New Jersey,
New York, Connecticut, Massachusetts, and Rhode Island
[25], where its main host, the white-footed mouse
(Peromyscus leucopus) is prevalent [20]. The increase in hu-
man babesiosis in the northeast corridor is highlighted in the
incidence of cases from New Jersey, where babesiosis case
reporting began in 1985. During the 1993–2001, only 8 of
21 counties reported babesiosis cases [31], but during the fol-
lowing 6 years from 2006 to 2011, the incidence of reported

cases increased 260 % with a total of 568 cases reported, and
all counties reporting at least 1 case within that time period
[32]. Further, a recent incident of B. microti infection in Can-
ada [33] and cases reported further east into Pennsylvania [34]
shows that the boundaries of transmission are clearly
expanding. On the Northwestern Coast of the USA, there have
been limited reported of babesiosis caused by B. duncani or
B. duncani-type organisms in healthy individuals [14, 15, 35,
36]. Unlike I. scapularis in the east, Ixodes pacificus is the
primary candidate, but this has not been confirmed [37], and
the natural host remains unclear [20]. Isolated and severe
cases of B. divergens-like infections have been reported in
asplenic individuals from Missouri [38], Kentucky [39], and
Washington State [40]. In South America, symptomatic hu-
man babesiosis infections have been acquired in Brazil [41],
Colombia [42], as well as asymptomatic cases of Babesia
bovis in Mexico [36].

In Europe

B. divergens, a natural pathogen of cattle, is the main pathogen
of human babesiosis in Europe [41, 43, 44], with the majority
of cases being reported in the British Isles and France [45••],
along with some cases attributed B. microti and B. venatorum,
a pathogen of roe deer (Capreolus capreolus), and all are
transmitted by the I. ricinus tick [20]. However, a case of
B. divergens in Norway [46], a case of B. microti in Germany
[47], coupled with the detection of B. microti in two asymp-
tomatic individuals in Poland [48], and B. venatorum infec-
tions reported in Germany [18], Austria, and Italy [19] show
again that these pathogens are not absolutely segregated geo-
graphically and are becoming increasingly important as path-
ogens of human disease.

In Africa and Asia

B. divergens-like infections have been reported in on the Ca-
nary Islands [22], and other, as yet uncharacterized babesia
species, have been reported in Egypt and Mozambique, South
Africa [22, 40, 49]. B. microti-like organisms have been re-
ported in Taiwan [50, 51], Japan [52], and South Korea [53],
and a definitive case of B. microti was identified in Australia
[54–57]. However, it is clear that in recent years, there has
been a steady and significant increase of new tick-borne in-
fections in People’s Republic of China, and the incidence rate
of these infections is rising with certain regions [58]. Ixodes
persulcatus is considered the main vector throughout People’s
Republic of China, and the historical cases of babesiosis have
been attributed to either B. microti or B. divergens but have
been sporadic [17, 59–61]. Yet two recent reports demonstrate
the seriousness of this emerging zoonosis in this region. First-
ly, the China–Myanmar border is highly endemic area for
malaria. Reports of human babesiosis due to B. microti from
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this region [58, 61, 62] show that in areas where co-infections
with other tick-borne infections and malaria occur, differential
diagnoses are essential to determine whether the causative
agents of disease are Babesia or Plasmodium spp. This is
especially important as the therapeutic regimes for these par-
asites are different, and Babesia parasites are not known to
respond to anti-malarials. If babesiosis infection is
misdiagnosed as malaria and treated with standard anti-
malarials, it would appear the parasites were drug-resistant.
Secondly, a systematic review of 2912 participants from pa-
tients attending a hospital in Mudanjiang City, Heilongjiang
Province, in northeastern China, identified 32 confirmed cases
of B. venatorum, presenting with fever, anemia, thrombocyto-
penia, chills, sweats, headache, myalgia, or arthralgia, and 16
probable or asymptomatic cases, suggesting an asymptomatic
infection rate of ~30 % [16]. B. venatorum is phylogenetically
related to B. divergens. The disease profile among these 48
individuals significantly differs from those of the European
cases in that all European cases were asplenic individuals
presenting with severe disease, yet the cohort in the People’s
Republic of China presented a broad range of disease severity,
where none of the 48 cases had a splenectomy. This suggests
that pathogen virulence may differ greatly between endemic
regions and intense, broad range investigations into these
emerging pathogens in differing endemic regions are neces-
sary to understand the full scope of disease and implement
appropriate treatment regimens at the local level.

Pathogen Life Cycle in Humans

When Babesia spp. sporozoites are first injected into the hu-
man host, they target the host RBCs immediately, unlike
Plasmodium spp. which are required to undergo an exoeryth-
rocytic phase in hepatic cells. Further, infected RBCs re-
main circulating in peripheral blood stream, including
regularly passing through the hosts’ spleen, and do not
sequester to the fine capillaries of the bone marrow or
organs. It is the parasite’s ability to first recognize and
then invade host RBCs that is central to human babesi-
osis and the parasites invade RBCs using multiple com-
plex interactions between parasite proteins and the host
cell surface, which are not fully elucidated yet [63–70].
Once inside the RBC, the parasite begins a cycle of
maturation and growth. The early stages of the cycle
are morphologically indistinguishable from Plasmodium
spp., with both appearing as ring-like parasites. Replica-
tion occurs by budding, where one ring forms divides
into two, often referred to as Bfigure eight^ form. Bud-
ding may occur again, giving ride to the tetrad form
know as a BMaltese Cross^ [65]. Both these morpholog-
ical forms are unique to Babesia spp. and are the basis of
definitive diagnosis by microscopy, especially if
Plasmodium spp. are also suspected. Once the parasites

have concluded division, the resulting merozoites egress
from the RBCs, destroying it in the process and seek
new, uninfected RBCs to invade, perpetuating the intra-
cellular cycle of infection.

Clinical Disease

Infections vary greatly in their presentation and are dependent
on a multiple of factors, such as parasite species, age, and
immune competency of the host. Although individuals of
any age can harbor parasites, the burden of disease pathology
is associated with age, with severe symptoms presenting in
neonates, usually due to congenitally transmitted infection
[8–11] or, to older adults, possibly due to depressed cellular
immunity inhibiting the ability to prevent mild infections de-
veloping into severe disease [45••, 71, 72]. Further, individ-
uals of any age that are immunocompromised, particularly
those which are asplenic, are greater risk from presenting with
severe, acute disease, compared to healthy immune competent
individuals.

B. microti infections in healthy individuals are usually si-
lent and asymptomatic, with very low or undetectable levels
of parasites [45••, 73], especially in younger age groups, as
shown by sero-prevalence data from endemic regions, ranging
from about 6 [74] to 16 % [75], and the numbers of actual
reported cases and as such the disease prevalence is probably
underestimated. However, in 2011, babesiosis became a re-
portable disease in 18 of the USA, and in that year alone,
1124 cases were reported [30]. Although the long-term effects
of circulating parasites are not well understood, the greatest
risk of asymptomatic infection is the ability to donate blood
and contribute to transfusion-transmitted babesiosis. Mild dis-
ease caused by B. microti usually presents with intermittent
fever, general malaise, and weakness, often accompanied with
chills, sweats, headache, anorexia, and myalgia and upon ex-
amination, patients often have splenomegaly and hepatomeg-
aly. In patients that were hospitalized with severe B. microti
infection, death occurred in about 10 % of cases [76, 77]. But
if patients are splenectomized or are immune-compromised in
other ways, such as with HIV infection, or are receiving im-
munosuppressive therapy, or are elderly, then the severe
symptoms, usually high fever (40–41 °C), chills, night sweats,
myalgia, hemolytic anemia, and hemoglobinuria are more
likely to develop.

Although comparative animal studies have indicated
B. duncani may be more virulent than B. microti [78], it re-
mains unclear from the clinical data what the true virulence of
B. duncani truly is as the few reported cases range in severity
from asymptomatic to fatal, the same disease spectrum as
B. microti [15, 44]. The few B. venatorum cases in Europe
[19, 32] would indicate this parasite causes a moderate to
severe infection; however, the larger studies of this species
performed in China show that approximately a third of the
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confirmed B. venatorum cases were asymptomatic, nearly half
of which were children, and the median age of individuals
infected was 45 [40], a prevalence profile very similar to
B. microti infection.

B. divergens infections are much rarer than B. microti, with
less than 50 cases having been reported so far throughout
Europe [4, 20, 25, 43, 45••], but cases present with much
greater severity pathology, usually with hemoglobinuria as
the presenting symptom, but jaundice due to hemolysis,
vomiting, and diarrhea are often present, and the toxins and
anoxia, resulting from the hemolysis and the host immunolog-
ical response, may cause respiratory, cardiac, renal, or hepatic
failure [4, 41]. As such, they require immediate treatment and
are treated as medical emergencies.

Transfusion-Transmitted Babesiosis

Almost 5 million individuals receive a blood transfusion each
year in the USA [7]. The current blood banking safeguards to
prevent transmission of babesia through the blood supply
which relies on a blood donor questionnaire to self-identify
any previous history of babesiosis [5]. Although individuals
that answer affirmatively to such queries are barred immedi-
ately and indefinitely from donating, the effectiveness of self-
identified screening measures are limiting due the fact that
individuals may be asymptomatic for disease and thus remain
parasitemic and infectious carriers. Further, as asymptomatic
individuals can harbor parasites for extended periods of time,
they are able to contribute to the donor pool at any time, and
not during the seasons associated with tick-borne infections,
TTB cases occur year round. And as recipients of blood prod-
ucts are immunocompromised to some degree in the very
nature of requiring a donated unit, they are at greater risk of
developing severe disease. In areas of highest prevalence,
studies suggest that there is a transmission risk of 1 per 601
blood units [79]. Since 1980, there have been approximately
162 reported cases of babesiosis, which included 12 fatalities
from 2005–2008, making it the most frequent transfusion-
transmitted infection [5, 7, 80], and the Food and Drug Ad-
ministration (FDA) reporting that 3.6 % of all transfusion
related fatalities from 2005 to 2010 were due to TTB [81].
Unlike many other blood-borne pathogens such as HIV and
hepatitis, there are no licensed screening technologies avail-
able in order to detect Babesia spp. in the blood supply, and
studies have shown that B. divergens parasites can survive the
routine cold-storage all donated blood is subjected to for up to
31 days and still yield high end point parasitemia [82]. Al-
though there are no current pathogen reduction and/or inacti-
vation technologies that are commercially available to use
against Babesia, a promise has been made in this area. The
greatest hurdle to overcome is inactivating the parasite inside
the red cell while ensuring the absolute competency of the
cells themselves. These technologies, such as the Mirasol

system utilizing riboflavin and ultraviolet light to inactivate
B. microti [83, 84], and the S-303 inactivation system [85]
have become significantly more reliable in maintaining red
cell integrity while making headway in preventing blood-
borne pathogens from being transmitted through donated
blood. The significant advantage of these technologies is they
are being designed as Bin bag^ treatments that can be ubiqui-
tously applied to all units, without significantly increasing the
processing steps between donor and recipient, thus keeping
processing costs to a minimumwhile maximizing the safety of
the donor pool.

Diagnosis and Treatment of Babesiosis

Direct Detection

The observation of parasites within Giemsa- or Wright-
stained blood films remains the classic method of diagnosis,
but it can be difficult to directly observe parasites less than
about 0.1 to 0.5 % parasitemia, thus lacks the sensitivity re-
quired by some asymptomatic and chronic cases [20]. How-
ever, parasitemias greater than 5 % are rarely observed in mild
cases, so serial smears are recommended inmild cases, though
have been known to reach as high as 85 % in asplenic indi-
viduals [86]. The intracellular trophozoites and the extracellu-
lar merozoites which can sometimes be observed, especially
in vitro conditions, are usually ring or oval shaped, with red or
pink chromatin and blue/purple cytoplasm (see Fig. 1). De-
spite the range in size of various Babesia spp., from ~1 to
~5 μm, it is generally impossible to distinguish Babesia spp.
morphologically from each other [87], resulting in the need to
develop more sensitive detection assays based on polymerase
chain reaction (PCR). The early ring stages of development
can be indistinguishable from some blood stages of
Plasmodium spp., and the differential diagnosis is the obser-
vation of the tretrad or BMaltese Cross^ forms (left panel,
Fig. 1). As the symptoms of human babesiosis and malaria

Fig. 1 Left panel standard asynchronous in vitro culture of B. divergens
in human RBCs with classic morphological ring (1), BFigure eight^ (2),
and Maltese Cross (3) forms. Right panel B. microti parasites from a
symptomatic individual
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are often similar, this differential diagnosis is essential, espe-
cially in regions where these pathogens are known to coexist,
especially as the trophozoites, schizonts, and particularly ga-
metocyte stages of Plasmodium spp. can be more easily rec-
ognized if present in peripheral blood smear, meaning co-
infections can be easily overlooked.

The PCR particularly real-time or quantitative (qPCR)
based on the 18s rRNA gene is much more sensitive
than microscopy and are becoming common for the de-
tection of B. microti, where the limits of pathogen de-
tection are about ~100 gene copies, equivalent to about
5–10 parasites/μL [88, 89], and PCR technology lends
itself to high-throughput screening more readily than
microscopy. One drawback of the qPCR method is the
need for a standard curve for each assay, and as yet, no
multiplex exists to detect multiple species per sample.
Adaptations to the qPCR method include the droplet
digital PCR (ddPCR), where the amplification reaction
containing the DNA sample, fluorescently labeled probe,
is divided into many microscopic reaction droplets, each
containing one or less copies of the target DNA. This
technology has recently been applied to the detection of
B. microti and B. duncani and was shown to discrimi-
nate B. microti from B. duncani at a limit of limits of
detection of ~10 gene copies [90].

Indirect Detection

As chronic infections do not always present with ob-
servable levels of parasites, serological testing, usually
in the form of immunofluorescence assay, can be used
to support clinical diagnostics of human babesiosis.
Nearly all asymptomatic chronic B. microti infections
seroconvert in immunocompetent individuals, but the
presence of anti-B. microti antibodies merely suggest
an infection at some point in time, as B. microti-specific
IgG titers of 1:64 have been detected up 12 months
after the parasite infection has cleared. However, IgG
titers exceeding 1:1024 have been shown to correlate
well with acute B. microti infection and is an accurate
indicator of recent infection, as well as the presence of
Babesia-specific IgM [91••, 92]. In severe cases, such as
B. divergens-infected or immunocompromised individ-
uals, serology is rarely performed as the sudden onset
of disease pathology and need for treatment prevents the
host from generating anti-Babesia antibodies, and direct
detection methods are usually suitable for diagnosis. Al-
though sera from individuals infected with B. microti
and B. duncani do not cross react with antigens of other
Babesia spp., it has been shown that sera from
B. venatorum and B. divergens-like infections does cross
react with B. divergens antigens, meaning, a sero-
positive tests for B. divergens would also need further

investigation to determine which of these three species
was the causative agent [25, 45••].

Treatment

Treatment for mild babesiosis is clindamycin for 7–10 days in
B. divergens and B. venatorum [22, 45], with the addition of
quinidine or quinine for B. duncani. As the drug-related tox-
icity for quinine can be significant [93], intravenously admin-
istered quinidine is a recommended alternative [44, 45••]. In
mild B. microti infections, a 7–10-day course atovaquone plus
azithromycin is the combination of choice after it was shown
this is was just as effective but with fewer side effects com-
pared with the clindamycin/quinine combination [94]. Indeed,
atovaquone plus azithromycin was successfully used to treat a
B. venatorum infection in Germany [18], suggesting that in-
vestigation into the most effective and most tolerable treat-
ments are necessary. It is also suggested that chronic B. microti
parasite-positive but asymptomatic infection lastingmore than
3 months are also treated with this same combination [95••].
However, in immunocompromised individuals or any severe
case with symptoms of severe hemolysis, renal or hepatic
distress, compromised respiratory function, or a parasitemia
greater than 10 %, regardless of species, a 10-day course of
intravenous clindamycin plus quinine coupled with exchange
transfusion is the recommended course of treatment [41, 44,
96]. The additive measure of exchange transfusion swiftly
removes the parasitized RBCs from the host circulation, re-
solving any pathologies arising from anemia, such as low
hematocrit and circulating toxic metabolites which released
into the host’s circulatory system from the cyclical destruction
of the RBCs.

Drug Resistance

Although the two main treatment regimens of clindamycin/
quinine or atovaquone plus azithromycin appear to remain
effective in general, problems with speed of response to ther-
apy and parasite persistence have been reported both in Eu-
rope [18] and in the USA [97], though parasite drug resistance
itself is not suspected in these cases, and highlights the need to
monitor patient parasitemia throughout treatment. However,
three incidents of drug resistance to atovaquone/azithromycin,
as defined by parasite relapse after more than 28 days of anti-
babesial treatment, in immunocompromised patients with
B. microti has been reported [95••]. The authors note that they
usedmore stringent definitions of resistance than is commonly
used for other parasites such as malaria. The results highlight
the need to robustly and systematically assess anti-babesial
drugs and compounds where possible. Recent in vitro studies
with artemether and lumefantrine showed a positive synergis-
tic interaction of these compounds against Babesia gibsoni
[98] and compounds that directly target the pathways of
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parasite DNA and RNA synthesis of B. gibsoni and B. bovis,
such as mycophenolate mofetil, mizoribine, ribavirin, and 7-
nitroindole, directly inhibit in the in vitro propagations of
these parasites.

Conclusions

The clinical epidemiology of human babesiosis appears to be
changing, and this increased awareness will improve the man-
agement of local incidence of disease. The pathology of ba-
besiosis is a direct consequence of the cyclical replication of
parasites in RBCs. Like malaria, the parasite’s ability to first
recognize and then invade host RBCs is central to the disease
process, and thus the invasion step provides a vulnerable point
in the parasite’s life cycle. The recent publication of the
B. divergens [99••] and B. microti [100••] genomes will great-
ly assist the discovery of therapeutic agents that target this
stage in the parasite life cycle. Utilizing these tools to mine
for agents that might prove effective against Babesia parasites
is especially important for two diverse reasons. Firstly, the
potential that human pathogens have develop and then swiftly
spread resistance, rendering therapeutic agents ineffective has
been shown many times before. Secondly, B. microti cannot
currently be cultured in vitro and relies upon rodentmodels for
testing the effectiveness of potential anti-B. microti agents,
often making such studies difficult to perform or translate into
the human system. The current treatment options for Babesia
infections are limited to clindamycin plus quinidine or quinine
or atovaquone plus azithromycin, yet there is evidence that
drug resistance to atovaquone plus azithromycin may already
have been observed in immunocompromised individuals. Ad-
vances in the treatment of donated blood products are a sig-
nificant step forward in protecting the blood supply and lim-
iting recipients to the risk of transfusion-transmitted babesio-
sis, yet more assessment needs to be done to ensure the para-
sites are completely inactivated without compromising the
integrity of the blood components. However, it is clear that
as clinical information becomes more readily available,
there are significant gaps in our understanding of the
basic biology of these parasites which warrants immedi-
ate and extensive investigation.
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