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Abstract
We know that the matrices provide a flexible framework to study combinatorial structures.
In fact, the generalized Fibonacci matrices allow us to develop the applications to coding
theory. In the beginning of this work, a new family of generalized Bernoulli–Fibonacci
polynomials of order m is introduced followed by investigating various properties associated
with this polynomial class, as well as its relationships with other polynomial families and
numbers. These include explicit relations, difference equations, summation formulae, linear
and differential recurrence relations. Furthermore, we focus on matrix approach associated
with this family by providing the generalized Fibo–Bernoulli polynomials matrix, Fibo–
Pascal polynomial matrix and other important matrices. Some product and inverse formulae
for the generalized Fibo–Bernoulli polynomials matrix involving other matrices are also
derived at the end.
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1 Introduction

Manymathematicians have recently explored and studied various forms of matrices and their
analogs, which are obtained by using numbers and polynomials such as the Pascal, Bernoulli,
Euler, q–Bernoulli, and q-Euler et cetera, for this see [4, 5, 12, 13, 15, 16, 23, 24, 26, 27]. The
matrix representations of various numbers and polynomials offer a powerful tool to obtain
new or classical identities. In particular, the Pascal type matrices have been used to obtain
some new and interesting combinatorial identities involving Fibonacci and Lucas sequences.
In this study, we are interested inmatriceswhose entries are theBernoulli–Fibonacci numbers
and Bernoulli–Fibonacci polynomials, which involves the use of Fibonacci number sequence
Fn .

Fibonacci numbers appear unexpectedly often in mathematics. Applications of Fibonacci
numbers include computer algorithms such as the Fibonacci search technique and the
Fibonacci heap data structure, and graphs called Fibonacci cubes used for interconnecting
parallel and distributed systems. They also appear in biological settings, such as branching
in trees, the arrangement of leaves on a stem, the fruit sprouts of a pineapple, the flowering
of an artichoke, and the arrangement of a pine cone’s bracts, though they do not occur in
all species. Fibonacci numbers are also strongly related to the golden ratio. Fibonacci num-
bers are also closely related to Lucas numbers, which obey the same recurrence relation and
with the Fibonacci numbers form a complementary pair of Lucas sequences. The Fibonacci
sequence is one of the simplest and earliest known sequences defined by a recurrence rela-
tion, and specifically by a linear difference equation. We provide the following mathematical
notations and some basic definitions [10, 11].

The Fibonacci sequence Fn≥0 is defined by (see, [22, p. 1]):

Fn =
{

Fn+2 = Fn+1 + Fn,

F0 = 0, F1 = 1.

The F-factorial is given by

Fn ! = Fn Fn−1Fn−2 · · · F1, F0! = 1.

The Fibonomial coefficients are defined as (cf. [22, p. 2]):

(
n

k

)
F

= Fn !
Fn−k !Fk ! , n ≥ k ≥ 1 and

(
n

k

)
F

= 0 for n < k,

which satisfy the following properties:

(
n

k

)
F

=
(

n

n − k

)
F

and (
n

k

)
F

(
k

j

)
F

=
(

n

j

)
F

(
n − j

k − j

)
F
.

The binomial theorem for the F-analog is given by (see, [22, p. 2 Eq. (1)]):

(x +F y)n =
n∑

k=0

(
n

k

)
F

xk yn−k .
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The first and second type F-exponential functions et
F and Et

F are defined as (see [22, p.
2]):

et
F =

∞∑
n=0

tn

Fn ! Et
F =

∞∑
n=0

(−1)n(n−1)/2 tn

Fn ! , (1)

with
et
−F ≡ Et

F .

The Golden derivative operator Dx
F acts on any arbitrary function f (x) is given by

Dx
F [ f (x)] = f (ϕx) − f (ϕ̄x)

(ϕ − ϕ̄)x
,

where ϕ = 1+√
5

2 and ϕ̄ = 1−√
5

2 are two conjugate roots of Fibonacci sequence Fn = λn

such that

Fn := ϕn − ϕ̄n

(ϕ − ϕ̄)
.

In view of this, we have

Dx
F [xn] = (ϕx)n − (ϕ̄x)n

(ϕ − ϕ̄)x
= (ϕ)n − (ϕ̄)n

(ϕ − ϕ̄)
xn−1 := Fn xn−1

and

Dx
F [ex ] =

∞∑
n=0

Fn+1
xn

(n + 1)! .

The Golden derivative of first and second type Golden exponential functions are given as

Dx
F [ekx

F ] = k ekx
F Dx

F [Ekx
F ] = k E−kx

F .

The Golden Leibnitz rule is given as

Dx
F [ f (x)g(x)] = Dx

F ( f (x))g(ϕx) + f (ϕ̄x)Dx
F (g(x))

= Dx
F ( f (x))g(ϕ̄x) + f (ϕx)Dx

F (g(x)).

In [25], a new family of generalized Bernoulli polynomials of order m, R(m)
n (x) is intro-

duced and their properties are studied. For the parametersm ∈ N and n ∈ N0, the generalized
Bernoulli polynomials R(m)

n (x) of order m are generated by the function

( z

2

)m
(

z

ez − 1

)m

=
(

z2

2ez − 2

)m

exz =
∞∑

n=0

R(m)
n (x)

zn

n! , |z| < 2π

and
Rn(x) := R(1)

n (x),

where Rn(x) are generalized Bernoulli polynomials.
For broad information on old literature and new research trends about these classes of poly-

nomials and for the matrix approach to other classes of special polynomials, we recommend
to the interested reader (see [1–3, 6–9, 14, 18–21]).

Recently, researchers have shown their interest to obtain important and interesting results
concerning with the F-polynomials and their analogs, which involves the Fibonacci numbers
and their associated matrices [22, 24]. This is a remarkable step towards extracting helpful
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results in matrix theory related with the special polynomials. In [22], the n-th Bernoulli–
Fibonacci (or Bernoulli–F) polynomials B F

n (x) are introduced and their connections with
the n-th Euler-Fibonacci polynomials E F

n (x) are established.
For all n ∈ N0, the nth degree Bernoulli–Fibonacci polynomials B F

n (x) are defined by
the exponential generating function

(
z

ez
F − 1

)
ezx

F =
∞∑

n=0

B F
n (x)

zn

Fn ! , |z| <
2π

ln |eF | ,

where B F
n := B F

n (0) are the n-th Bernoulli–Fibonacci numbers.
Motivated by the previous works onmatrix approach of the polynomials, in this article, we

focus on introducing the generalized Bernoulli–Fibonacci polynomials and associated matri-
ces. Certain properties comprising explicit and recurrence relations, difference equations,
summation formulae are derived for these polynomials. The generalizedFibo–Bernoulli poly-
nomials matrix is established and some product formulae are obtained involving Fibo–Pascal
polynomial matrix and other matrices. Inverse formula for the generalized Fibo–Bernoulli
polynomials matrix is also provided.

2 The generalized Bernoulli–Fibonacci polynomials R(m)
n (x; F) of order

m

In this section, we introduce the generalized Bernoulli–Fibonacci polynomials and establish
some properties related to these polynomials.

Definition 2.1 For the parameters m ∈ N and n ∈ N0, the generalized Bernoulli–Fibonacci
polynomials R(m)

n (x; F) of order m are defined by the following exponential generating
function:

( z

2

)m
(

z

ez
F − 1

)m

=
(

z2

2ez
F − 2

)m

exz
F =

∞∑
n=0

R(m)
n (x; F)

zn

Fn ! , |z| <
2π

ln |eF | , (2)

where R(m)
n (F) := R(m)

n (0; F) are generalized Bernoulli–Fibonacci numbers defined by the
following exponential generating function:

(
z2

2ez
F − 2

)m

=
∞∑

n=0

R(m)
n (F)

zn

Fn ! , |z| <
2π

ln |eF | .

Lemma 2.1 Let R(m)
n (x; F) be the sequence of generalized Bernoulli–Fibonacci polynomials

of order m. Then the following relation holds for every n ∈ N0:

R(0)
n (x; F) = xn . (3)
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Proof Taking m = 0 in (2), we obtain

exz
F =

∞∑
n=0

R(0)
n (x; F)

zn

Fn ! .
∞∑

n=0

(xz)n

Fn ! =
∞∑

n=0

R(0)
n (x; F)

zn

Fn !
∞∑

n=0

xn zn

Fn ! =
∞∑

n=0

R(0)
n (x; F)

zn

Fn ! .

��

Comparing the coefficients of zn , we get result (3).

Lemma 2.2 The sequence of generalized Bernoulli–Fibonacci polynomials R(m)
n (x; F) of

order m satisfy the following relation for every n ∈ N:

Dx
F (R(m)

n (x; F)) = Fn R(m)
n−1(x; F), n ∈ N. (4)

Proof Operating Dx
F on both sides of equation (2), we get

Dx
F

{ ∞∑
n=0

R(m)
n (x; F)

zn

Fn !

}
= Dx

F

{(
z2

2ez
F − 2

)m

ezx
F

}
= z

(
z2

2ez
F − 2

)m

ezx
F

=
∞∑

n=0

R(m)
n (x; F)

zn+1

Fn !

=
∞∑

n=0

R(m)
n−1(x; F)

zn

Fn−1!

=
∞∑

n=0

Fn R(m)
n−1(x; F)

zn

Fn ! ,

which on equating the coefficients of zn yields assertion (4). ��

Theorem 2.1 For the sequence of generalized Bernoulli–Fibonacci polynomials R(m)
n

(x, F)n≥0 of order m, the following relation is satisfied:

R(m+p)
n (x + y; F) =

n∑
k=0

(
n

k

)
F

R(m)
k (x; F)R(p)

n−k(y; F). (5)
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Proof In view of equation (2), we have

∞∑
n=0

R(m+p)
n (x + y; F)

zn

Fn ! =
(

z2

2ez
F − 2

)(m+p)

e(x+y)z
F

=
∞∑

n=0

R(m)
n (x; F)

zn

Fn !
∞∑

n=0

R(p)
n (y; F)

zn

Fn !

=
∞∑

n=0

n∑
k=0

R(m)
k (x; F)

zk

Fk ! R(p)
n−k(y; F)

zn−k

Fn−k !

=
∞∑

n=0

n∑
k=0

(
n

k

)
F

R(m)
k (x; F)R(p)

n−k(y; F)
zn

Fn ! .

��
Corollary 2.1 Let R(m)

n (x; F) be the sequence of generalized Bernoulli–Fibonacci polyno-
mials of order m. Then the following summation formulae hold true:

R(m)
n (x + y; F) =

n∑
k=0

(
n

k

)
F

R(m)
k (y; F)xn−k, (6)

R(p)
n (x + y; F) =

n∑
k=0

(
n

k

)
F

R(p)
n−k(y; F)xn, (7)

Rn(x + y; F) =
n∑

k=0

(
n

k

)
F

Rk(y; F)xn−k, (8)

Rn(x; F) =
n∑

k=0

(
n

k

)
F

Rn−k(F)xn . (9)

Proof Let p = 0 in (5), we find

R(m)
n (x + y; F) =

n∑
k=0

(
n

k

)
F

R(m)
k (x; F)R(0)

n−k(y; F).

Exchanging x for y and using R(0)
n−k(x; F) = xn−k , we get assertion (6). Other parts can be

proved similarly by making simple substitutions. Thus we omit. ��
For the parameter m = 1, we deduce the following:

Definition 2.2 The generalized Bernoulli–Fibonacci polynomials Rn(x; F) in variable x are
defined by the following generating function:

(
z2

2ez
F − 2

)
ezx

F =
∞∑

n=0

Rn(x; F)
zn

Fn ! , |z| <
2π

ln |eF | . (10)

Thus, we have the so-called generalized Bernoulli–Fibonacci numbers Rn(F) generated by

(
z2

2ez
F − 2

)
=

∞∑
n=0

Rn(F)
zn

Fn ! , |z| <
2π

ln |eF | (11)
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and satisfy

Rn(F) = −
n−1∑
k=1

(
n

k

)
F

Rk(F), R1(F) = 1

2
.

Theorem 2.2 Let {Rn(x; F)}n≥0 be the sequence of the generalized Bernoulli–Fibonacci
polynomials. Then the following are satisfied:

(a) Explicit formula:

Rn(x; F) =
n∑

k=0

(
n

k

)
F

Rk(F)xn−k, R0(F) = 0.

(b) Difference formula:

Rn(x + 1; F) − Rn(x; F) =
n−1∑
k=0

n−k−1∑
l=0

(
n − k − 1

l

)
F

Rl(F) xn−k−l−1Fn !
Fn−k−1! Fk+1! .

(c) Recurrence formula for Rn(F):

n∑
k=0

(
n + 1

k

)
F

Rk(F) = 0, n ≥ 3; R0(F) = 0, R1(F) = 1

2
, R2(F) = −1

2
.

Proof (a) Using expansions (1) and (11) in l.h.s of generating function (10), we have
(

z2

2ez
F − 2

)
exz

F =
∞∑

n=0

Rn(F)
zn

Fn ! ·
∞∑

n=0

xn zn

Fn ! =
∞∑

n=0

Rn(x; F)
zn

Fn ! ,

which on applying the Cauchy product gives

∞∑
n=0

n∑
k=0

Rk(F)xn−k zk

Fk !
zn−k

Fn−k ! =
∞∑

n=0

Rn(x; F)
zn

Fn ! .

On equating the coefficients of zn yields assertion (a).
(b) We know that

∞∑
n=0

(Rn(x + 1; F) − Rn(x; F))
zn

Fn ! =
(

z2

2ez
F − 2

)
ezx

F

( ∞∑
n=0

zn

Fn ! − 1

)

=
( ∞∑

n=0

Rn(x; F)
zn

Fn !

) ( ∞∑
k=0

zk+1

Fk+1!

)

=
∞∑

n=0

n−1∑
k=0

Rn−k−1(x; F)
zn

Fn−k−1! Fk+1!

=
∞∑

n=0

n−1∑
k=0

Rn−k−1(x; F)
zn

Fn−k−1! Fk+1!

=
∞∑

n=0

n−1∑
k=0

n−k−1∑
l=0

(
n − k − 1

l

)
F

Rl(F) xn−k−l−1zn

Fn−k−1! Fk+1! .

On equating the coefficients of zn yields assertion (b).
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(c) Consider equation (11) such that

z2 = 2ez
F

∞∑
n=0

Rn(F)
zn

Fn ! − 2
∞∑

n=0

Rn(F)
zn

Fn !

= 2
∞∑

n=0

zn

Fn !
∞∑

k=0

Rk(F)
zk

Fk ! − 2
∞∑

n=0

Rn(F)
zn

Fn !

= 2
∞∑

n=0

(
n∑

k=0

(
n

k

)
F

Rk(F) − Rn(F)

)
zn

Fn !

z2 = 2
∞∑

n=0

(
n∑

k=0

(
n + 1

k

)
F

Rk(F)

)
zn

Fn ! ,

which on equating the terms of z yields assertion (c). ��

We provide the first few expressions for the generalized Bernoulli–Fibonacci polynomials
Rn(x; F) as follows:

R0(x; F) = 0,

R1(x; F) = 1

Fn+2! = 1

2
,

R2(x; F) = x
F2

F3F1! − F2

F3F2! = x

2
− 1

2
,

R3(x; F) = x2
F3

F3
− x

F3

(F3F1!) + F3

F2!F3
− F3

F3F3
= x2 − x + 1

2
,

R4(x; F) = x3
F4

F3
− x2

(
F4F3!

F3F2!F2!
)

+ x

(
F4F3!

(F3F1!F2!F2!) − F4

F3F1!
)

+
(
2

F4

F3F2! − F4

F3F4
− F4F3

F3

)

= 3

2
x3 − 3x2 + 3

2
x − 1

2
.

Theorem 2.3 Let R(m)
n (x; F) be the sequence of generalized Bernoulli–Fibonacci polyno-

mials of order m. Then the following recurrence formula hold true:

(
1 − 2m

Fn+1

)
R(m)

n+1(x; F) = x R(m)
n (x; F) − 2

n+2∑
s=0

(
n

s

)
F

R(m)
s (x; F)Rn−s+2(x; F)

Fn−s+2 Fn−s+1
. (12)

123



Amatrix approach to generalized…

Proof Applying Dz
F on both sides of generating function (2), we find

Dz
F

{ ∞∑
n=0

R(m)
n (x; F)

zn

Fn !

}
= Dz

F

{(
z2

2ez
F − 2

)m

exz
F

}

∞∑
n=0

R(m)
n+1(x; F)

zn

Fn ! =
(

z2

2ez
F − 2

)m

exz
F

{
x + 2m

z
− 2

z2exz
F

2ez
F − 2

1

z2

}

=
∞∑

n=0

R(m)
n (x; F)

zn

Fn !

{
x + 2mz−1 − 2

∞∑
n=0

Rn(x; F)
zn−2

Fn !

}

= x
∞∑

n=0

R(m)
n (x; F)

zn

Fn ! + 2m
∞∑

n=0

R(m)
n (x; F)

zn−1

Fn !

−2
∞∑

n=0

∞∑
s=0

R(m)
s (x; F)Rn(x; F)

zn+s−2

Fn ! Fs !
∞∑

n=0

R(m)
n+1(x; F)

zn

Fn ! = x
∞∑

n=0

R(m)
n (x; F)

zn

Fn ! + 2m

Fn+1

∞∑
n=0

R(m)
n+1(x; F)

zn

Fn !

−2
∞∑

n=0

n+2∑
s=0

R(m
s (x; F)Rn−s+2(x; F)

zn

Fn−s+2! Fs !
∞∑

n=0

(
1 − 2m

Fn+1

)
R(m)

n+1(x; F)
zn

Fn !

=
∞∑

n=0

(
x R(m)

n (x; F) − 2
n+2∑
s=0

R(m)
s (x; F)Rn−s+2(x; F)Fn !

Fn−s+2! Fs !

)
zn

Fn ! ,

which on simplifying and equating the coefficients of zn , we are led to assertion (12). ��
Theorem 2.4 Let R(m)

n (x; F) be the sequence of generalized Bernoulli–Fibonacci polyno-
mials of order m. Then the following recurrence formula hold true:

(
1 − 2m

Fn+1

)
R(m)

n+1(x; F) = x R(m)
n (x; F) − 2

n+2∑
s=0

n−s+2∑
l=0

(
n

s

)
F

(
n − s + 2

l

)
F

R(m)
s (x; F)Rl(F)xn−s+2−l

Fn−s+2 Fn−s+1
. (13)

Proof Recurrence formula (12) in view of explicit formulas for Rn(x; F) can be expressed
as (13). ��
Theorem 2.5 Let R(m)

n (x; F) be the sequence of generalized Bernoulli–Fibonacci polyno-
mials of order m. Then the following recurrence formula hold true:

(
1 − 2m

Fn+1

)
R(m)

n+1(x; F) = x R(m)
n (x; F) − 2

n∑
s=0

s+2∑
p=0

Fn ! R(m)
n−s(x; F)Rs−p+2(F)x p

Fs−p+2! Fp! Fn−s ! .

(14)

Proof Bymaking some other rearrangements of terms in equation (31), we are let to assertion
(14). ��
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Theorem 2.6 For the sequence of generalized Bernoulli–Fibonacci polynomials R(m)
n (x; F)

of order m,

�
(−1)
n,F := �−

n,F = 1

Fn
Dx

F (15)

and

�
(−k)
n,F :=

n∏
m=n−k+1

�−
m,F = (�−

n−k+1,F .�−
n−k+2,F · · · �−

n,F ) = Fn−k !
Fn ! (k) Dx

F (16)

are the lowering and k-times lowering operators and (k) Dx
F is the k-th order Golden derivative

operator [11] given by

(k) Dx
F [ f (x)] = f (ϕk x) − f (ϕ̄k x)

(ϕk − ϕ̄k)x
, k ∈ Z.

Proof Operating (k) Dx
F on both sides of equation (2), we get

(k) Dx
F

{ ∞∑
n=0

R(m)
n (x; F)

zn

Fn !

}
= (k) Dx

F

{(
z2

2ez
F − 2

)m

ezx
F

}
= zk

(
z2

2ez
F − 2

)m

ezx
F

=
∞∑

n=0

R(m)
n−k(x; F)

zn

Fn−k !

=
∞∑

n=0

Fn !
Fn−k ! R(m)

n−k(x; F)
zn

Fn !

(k) Dx
F (R(m)

n (x; F)) = Fn !
Fn−k ! R(m)

n−k(x; F), n, k ≥ 1.

Since the operator �−
n,F = 1

Fn
Dx

F satisfies the relation �−
n,F R(m)

n (x; F) = R(m)
n−1(x; F),

therefore the lowering operator is given by equation (15) and

R(m)
n−k(x; F) = (�−

n−k+1,F · · · �−
n,F ){R(m)

n (x; F)} = Fn−k !
Fn ! (k) Dx

F {R(m)
n (x; F)}. (17)

This proves the demonstration. ��
Theorem 2.7 Let R(m)

n (x; F) be the sequence of generalized Bernoulli–Fibonacci polyno-
mials of order m. Then the following difference equation hold true:

(2m − Fn+1)R(m)
n (x; F) + (ϕ̄x)Dx

F (R(m)
n (x; F)) + �((ϕ̄xn−s+2−l )(n−s+1) Dx

F (R(m)
n (x; F)))

+R(m)
n (ϕx; F) + �(Fn−s−l+2 xn−s−l+1

(n−s) Dx
F (R(m)

n (ϕx; F))) = 0, (18)

where

� := −2
n+2∑
s=0

n−s+2∑
l=0

(
n

s

)
F

(
n − s + 2

l

)
F

Rl (F)Fs !
Fn−s+2 Fn−s+1Fn ! .

Proof We know that

R(m)
n−1(x; F) = 1

Fn
Dx

F (R(m)
n (x; F)),

which on taking n → n + 1 becomes

R(m)
n (x; F) = 1

Fn+1
Dx

F (R(m)
n+1(x; F)).
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Use of equation (13) in r.h.s. of above equation gives

R(m)
n (x; F) = 1

Fn+1

(
1 − 2m

Fn+1

)−1
Dx

F

⎧⎨
⎩x R(m)

n (x; F) − 2
n+2∑
s=0

n−s+2∑
l=0

(
n

s

)
F

(
n − s + 2

l

)
F

R(m)
s (x; F)Rl (F)xn−s+2−l

Fn−s+2 Fn−s+1

}

(Fn+1 − 2m)R(m)
n (x; F) = Dx

F

{
x R(m)

n (x; F)
}

− 2
n+2∑
s=0

n−s+2∑
l=0

(
n

s

)
F

(
n − s + 2

l

)
F

Rl (F)

Fn−s+2 Fn−s+1
Dx

F

{
R(m)

s (x; F)xn−s+2−l
}

(Fn+1 − 2m)R(m)
n (x; F) = (ϕ̄x)Dx

F (R(m)
n (x; F)) + R(m)

n (ϕx; F) − 2
n+2∑
s=0

n−s+2∑
l=0

(
n

s

)
F(

n − s + 2

l

)
F

Rl (F)

Fn−s+2 Fn−s+1

(
(ϕ̄xn−s+2−l )Dx

F (R(m)
s (x; F)) + Fn−s−l+2xn−s−l+1R(m)

s (ϕx; F)
)

.

Nowapplying the following formula for R(m)
s (x; F) (obtained by taking n−1 = s in equation

(17) with k = 1)

R(m)
s (x; F) = Fs !

Fn!
(n−s) Dx

F (R(m)
n (x; F)).

We have

(Fn+1 − 2m)R(m)
n (x; F) = (ϕ̄x)Dx

F (R(m)
n (x; F)) + R(m)

n (ϕx; F) − 2
n+2∑
s=0

n−s+2∑
l=0

(
n

s

)
F(

n − s + 2

l

)
F

Rl(F)Fs !
Fn−s+2 Fn−s+1Fn !

(
(ϕ̄xn−s+2−l)(n−s+1) Dx

F (R(m)
n (x; F))

+Fn−s−l+2 xn−s−l+1
(n−s) Dx

F (R(m)
n (ϕx; F))

)
.

This completes assertion (18). ��

In the next section, we introduce the matrices associated with the generalized Bernoulli–
Fibonacci polynomials R(m)

n (x; F).

3 The generalized Fibo–Bernoulli polynomials matrix [r(m)
ij (x; F)]

Here, we establish thematrix associatedwith the generalized Bernoulli–Fibonacci polynomi-
als R(m)

n (x; F), called as the generalized Fibo–Bernoulli polynomials matrix. The properties
to be derived for the Fibo–Bernoulli polynomials matrix require the use of several other
matrices such as Fibo–Pascal matrix, Fibo–Lucas matrix et cetera. Let us first recall the
following basic matrices:

Let Mn+1(R) be the set of all (n + 1)-square matrices over the real field. Also, for any
nonnegative integers i, j , we have

(
i

j

)
= 0, whenever j > i .
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Let x be any nonzero real number. The generalized Pascal matrix of first kind Pn[x], is
an (n + 1) × (n + 1) matrix whose entries are given by (see, [13, Definition 1]):

pi, j (x) :=
⎧⎨
⎩

(i
j

)
xi− j , i ≥ j,

0, otherwise.

The Fibonacci matrix F = [ fi, j ] (i, j = 0, 1, 2, ..., n) is an (n + 1) × (n + 1) matrix
whose entries are given by (see, [26, Eq. (16)]):

fi, j :=
⎧⎨
⎩

Fi− j+1, i f i − j + 1 ≥ 0,

0, i f i − j + 1 < 0,

where Fn be the n-th Fibonacci number.
The Lucas matrix L = [li, j ] is an (n + 1) × (n + 1) matrix whose entries are given by

(see, [27, Eq. (2)]):

li, j :=
⎧⎨
⎩

Li− j+1, i f i − j ≥ 0,

0, i f i − j < 0.

where Ln be the n-th Lucas number such that Ln+2 = Ln+1 + Ln for n ≥ 1 with initial
conditions L1 = 1 and L2 = 3.

For broad information on old literature and new research trends about these classes of
matrices, we strongly recommend to the interested reader (see, [4, 13, 26, 27]). Now, we
provide the definition for the new family of generalized Fibo–Bernoulli polynomaisl matrix
and other matrices.

Definition 3.1 Let R(m)
n (x, F) be the generalized Bernoulli–Fibonacci polynomials. Then,

the associated (n+1)×(n+1)generalizedFibo–Bernoulli polynomialsmatrix,R(m)
n (x; F) =

[r (m)
i j (x; F)]; i, j = 0, 1, 2, ..., n is defined as follows:

r (m)
i j (x; F) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
i + 1

j + 1

)
F

Fm !
(

i − j + m

m

)
F

R(m)
i− j+m(x; F), i ≥ j,

0, otherwise.

For m = 1, R(1)
n (x; F) := Rn(x; F) are called the Fibo–Bernoulli polynomials matrix

and Rn(0; F) = Rn(F) is the Fibo–Bernoulli number matrix.
For a particular choice of n = 3. It follows from Definition 3.1 that R3(x; F) is give by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2
0 0 0

1

2
x − 1

2

1

2
0 0

x2 − x + 1

2
x − 1

1

2
0

3

2
x3 − 3x2 + 3

2
x − 1

2
3x2 − 3x + 3

2

3

2
x − 3

2

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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Definition 3.2 The (n+1)×(n+1)Fibo–Pascal polynomialmatrix,Pn[x](F) = [pi j (x; F)]
0 ≤ i, j ≤ n is defined by

pi, j (x; F) =

⎧⎪⎪⎨
⎪⎪⎩

(
i + 1

j + 1

)
F

xi− j , i ≥ j,

0, otherwise.

Definition 3.3 Let (n + 1) × (n + 1) be the matrix En(F) = [ei j (F)], 0 ≤ i, j ≤ n whose
entries are given by

ei, j (F) =

⎧⎪⎪⎨
⎪⎪⎩

2

Fi− j+1

(
i + 1

j + 1

)
F
, i ≥ j,

0, otherwise,

where Fn are the Fibonacci numbers.

Theorem 3.1 The Fibo–Bernoulli polynomials matrix,Rn(x; F) satisfies the following prod-
uct formulae:

Rn(x + y; F) = Pn[x](F)Rn(y; F) = Pn[y](F)Rn(x; F). (19)

Particularly,
Rn(x; F) = Pn[x](F)Rn(F). (20)

Proof By use of Definition 3.1, we have

Rn(x + y; F) =
(

i

j

)
Ri− j (x + y; F)

=
i∑

k= j

(
i + 1

k + 1

)
F

xi−k

(k+1
j+1

)
F

Fk− j+1
Rk− j+1(y; F)

=
i∑

k= j

(i+1
j+1

)
F

(i− j
k− j

)
F

Fk− j+1
xi−k Rk− j+1(y; F)

=
(i+1

j+1

)
F

Fi− j+1

i− j+1∑
k=1

Fi− j+1

Fk

(
i − j

k − 1

)
xi− j+1−k Rk(y; F)

=
(i+1

j+1

)
F

Fi− j+1

i− j+1∑
k=1

(Fi− j+1)(Fi− j )!
(Fk)(Fk−1)!(Fi− j−k+1)! xi− j+1−k Rk(y; F)

=
(i+1

j+1

)
F

Fi− j+1

i− j+1∑
k=1

(Fi− j+1)!
(Fk)!(Fi− j−k+1)! xi− j+1−k Rk(y; F)

=
(i+1

j+1

)
F

Fi− j+1

i− j+1∑
k=1

(
i − j + 1

k

)
F

xi− j+1−k Rk(y; F),

=
(i+1

j+1

)
F

Fi− j+1
Ri− j+1(x + y; F),
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which implies

Rn(x + y; F) = Pn[x](F)Rn(y; F).

Similarly, it can be shown that Rn(x + y; F) = Pn[y](F)Rn(x; F).
Finally, by taking y = 0 in (19), we obtain assertion (20), which ends the demonstration.

��
Theorem 3.2 For the generalized Fibo–Bernoulli polynomials matrix R

(m)
n (x; F), the fol-

lowing formulae hold:

R
(m+p)
n (x + y; F) = R(m)

n (x; F)R
(p)
n (y; F)

= R(m)
n (y; F)R

(p)
n (x; F).

Proof Taking i > j and from Definition 3.1, we have

R
(m+p)
n (x + y; F)

=

⎧⎪⎪⎨
⎪⎪⎩

i∑
k= j

(
i + 1

k + 1

)
F

Fm !
(

i − k + m

m

)
F

R(m)
i−k+m(x; F)

(
k + 1

j + 1

)
F

Fp !
(

k − j + p

p

)
F

R(p)
k− j+p(y; F)

=
(

i + 1

j + 1

)
F

i∑
k= j

(i− j
k− j

)
F

R(m)
i−k+m(x; F)R(p)

k− j+p(y; F)

Fm !
(

i − k + m

m

)
F

Fp!
(

k − j + p

p

)
F

=

(
i + 1

j + 1

)
F

F(m+p)!
(

i − j + m + p

m + p

)
F

i∑
k= j

(
i − j

k − j

)
F

F(m+p)!F(i− j+m+p)!
F(i− j)!F(m+p)!

F(i−k+m)!F(k− j+p)!
F(i−k)!F(k− j)!

× R(m)
i−k+m(x; F)R(p)

k− j+p(y; F),

simplifying, we get

=

(
i + 1

j + 1

)
F

F(m+p)!
(

i − j + m + p

m + p

)
F

i− j+p∑
k=p

F(i− j+m+p)!
F(i− j+m+p−k)! R(m)

i− j+m+p−k(x; F)R(p)
k (y; F)

=

(
i + 1

j + 1

)
F

F(m+p)!
(

i − j + m + p

m + p

)
F

i− j+m+p∑
k=p

(
i − j + m + p

k

)
F

R(m)
i− j+m+p−k(x; F)R(p)

k (y; F)

=

(
i + 1

j + 1

)
F

F(m+p)!
(

i − j + m + p

m + p

)
F

i− j+m+p∑
k=0

(
i − j + m + p

k

)
R(m)

i− j+m+p−k(x; F)R(p)
k (y; F)

=

(
i + 1

j + 1

)
F

F(m+p)!
(

i − j + m + p

m + p

)
F

R(m+p)
i− j+m+p(x + y; F),

123



Amatrix approach to generalized…

which proves the first equality of Theorem (3.2). The second equality can be obtained in
a similar way. ��
Corollary 3.1 Let (x1, x2, · · · , xk) ∈ R

k . For mk natural numbers, the matricesR
(m j )
n (x j ; F),

j = 1, 2, · · · , k comply with the following product formula:

R(m1+m2+···+mk )
n (x1 + x2 + · · · + xk; F) = R(m1)

n (x1; F)R(m2)
n (x2; F) · · ·R(mk )

n (xk; F),

(21)
particularly,

R(km)
n (kx; F) =

[
R(m)

n (x; F)
]k

, (22)

R(k)
n (kx; F) = [Rn(x; F)]k , (23)

R(k)
n (F) = [Rn(x; F)]k . (24)

Proof Assertion (21) can be obtain by applying induction on k.
To obtain (22), we take m1 = m2 = · · · = mk = m and x1 = x2 = · · · = xk = x in (21).
To prove (23), we take m = 1 in (22) and (24) is obtain by taking x = 0 in (23). ��

Theorem 3.3 The inverse matrix of the Fibo–Bernoulli matrix R
(m)
n (F) is given as follows:

R−1
n (F) = En(F). (25)

In particular, (
R(k)

n (F)
)−1 = Ek

n(F).

Proof Let
n∑

k=0

2

Fk+1Fn−k+1

(
n

k

)
F

Rn−k+1(F) = δn,0,

where δn,0 is the Kronecker delta (see [17, p. 107]).
In order to prove (25), we show thatRnEn = In , whereIn is the identity matrix of order

n.

(Rn(F)En(F))i j =
i∑

k= j

(
i + 1

k + 1

)
F

F(i−k+1)
Ri−k+1(F)

2

F(k− j+1)

(
k + 1

j + 1

)
F

=
i∑

k= j

(
i + 1

j + 1

)
F

(
i − j

k − j

)
F

2Ri−k+1(F)

F(i−k+1) F(k− j+1)

=
(

i + 1

j + 1

)
F

i− j∑
k=0

(
i − j

k − j

)
F

2Ri−k+1(F)

F(i−k+1) F(k− j+1)

=
(

i + 1

j + 1

)
F

i− j∑
k=0

(
i − j

k

)
F

2Ri−k− j+1(F)

F(i−k− j+1) F(k+1)

=
(

i + 1

j + 1

)
F

i− j∑
k=0

(
i − j

k

)
F

2Ri−k− j+1(F)

F(k+1) F(i− j−k+1)

=
(

i + 1

j + 1

)
F

δi− j,0.
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This completes the demonstration. ��
Now, we give the inverse matrix of the Fibo–Pascal polynomial matrix Pn(x; F) by the

following definition:

Definition 3.4 The inverse of Fibo–Pascal polynomialmatrixPn(x; F) is an (n+1)×(n+1)
matrix P−1

n (x; F) = [ p̃i j (x; F)]; i, j = 0, 1, 2, . . . , n given as follows:

p̃i j =

⎧⎪⎪⎨
⎪⎪⎩
2Ri− j+1(F)

(
i + 1

j + 1

)
F

xi− j , i ≥ j,

0, otherwise.

Theorem 3.4 The inverse Fibo–Bernoulli polynomial matrix R−1
n (x; F) can be expressed as

follows:
R−1

n (x; F) = R−1
n (F)P−1

n (x; F) = En(F)P−1
n (x; F).

Proof In view of (20) we have

R−1
n (x; F) = R−1

n (F)P−1
n (x; F),

which on applying (25) gives

R−1
n (x; F) = R−1

n (F)P−1
n (x; F) = En(F)P−1

n (x; F).

This completes the demonstration. ��
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