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Abstract
Quadratic Unconstrained Binary Optimization (QUBO or UBQP) is concerned with max-
imizing/minimizing the quadratic form H (J, η) = W

∑
i, j Ji, jηiη j with J a matrix of

coefficients, η ∈ {0, 1}N and W a normalizing constant. In the statistical mechanics lit-
erature, QUBO is a lattice gas counterpart to the (generalized) Sherrington–Kirkpatrick spin
glass model. Finding the optima of H is an NP-hard problem. Several problems in combina-
torial optimization and data analysis can be mapped to QUBO in a straightforward manner.
In the combinatorial optimization literature, random instances of QUBO are often used to test
the effectiveness of heuristic algorithms. Here we consider QUBO with random independent
coefficients and show that if the Ji, j ’s have zero mean and finite variance then, after proper
normalization, the minimum and maximum per particle of H do not depend on the details of
the distribution of the couplings and are concentrated around their expected values. Further,
with the help of numerical simulations, we study theminimum andmaximum of the objective
function and provide some insight into the structure of the minimizer and the maximizer of
H . We argue that also this structure is rather robust. Our findings hold also in the diluted
case where each of the Ji, j ’s is allowed to be zero with probability going to 1 as N → ∞ in
a suitable way.
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1 Introduction

We consider the quadratic form

H (J, η) = W
∑

i, j
1≤i, j≤N

Ji, jηiη j (1)

where J ∈ R
N×N is a matrix of coefficients, η ∈ AN (with A a finite subset of R), ηi is

the value of the i-th component of η, and W ∈ R is a suitable normalizing constant. This
quadratic form plays an important role both in combinatorial optimization and statistical
mechanics.

In statistical mechanics (1) is the Hamiltonian of several physical systems whose nature
depends on the elements of A. For instance, if A = {−1, 1} the Hamiltonian describes a
system of (pairwise) interacting spins whereas if A = {0, 1} it is generally used to describe
a system of (pairwise) interacting particles. Spins or particles live on the vertices of some,
possibly oriented, graph G = {V, E}, called the interaction graph, with |V |= N and J the
weighted adjacency matrix of G. For each (i, j) ∈ E the entry Ji, j represents the strength
of the interaction between the entities (spins or particles) at vertices i and j of G. The
microscopic state of the physical system is given by η.

The physical system is described in terms of the probability of its microscopic states
(Gibbs measure):

μ(η) =
e−βH (J,η)

Zβ

(2)

where the parameter β is called the inverse temperature and Zβ is a normalizing constant
called partition function.

In combinatorial optimization the problem of minimizing (or maximizing) (1) when A =
{0, 1} and W = 1 is known under the names Quadratic Unconstrained Binary Optimization
(QUBO) or Unconstrained Binary Quadratic Programming (UBQP). QUBO is NP-hard and,
in general, no polynomial time algorithm is known to find a minimizer of H . Many problems
in combinatorial optimization and data analysis can bemapped to QUBO in a straightforward
manner (see [14] for a survey). Even constrained optimization problems can be reduced to
QUBO by introducing quadratic penalties in the objective function.

Minimizers (ground states) of forms like H in (1) are of relevance in the context of statis-
tical mechanics as well. Indeed ground states are the ones with the highest probability with
respect to the probability measure (2). As the temperature of the physical system approaches
zero (β → ∞), the system will eventually reach its ground state.

If the signs of the entries of J are disordered, i.e. if it is not possible to find the global
minimizer with a local criterion, finding the ground states of the system is non-trivial.

In the context of statistical mechanics, there is a vast literature concerning the properties
of the ground states of H of the form (1). Here we recall the comprehensive texts by Parisi,
Mezard, and Virasoro [16] (for a more physical perspective) and more recently by Talagrand
[23, 24] and Panchenko [18]. The recent book [7] provides an up-to-date overview.

The system that attracted more effort from physicists, and that is most described in the ref-
erences above, is the so-called Sherrington–Kirkpatrick (SK) model, in which η ∈ {−1, 1}N ,
W = 1√

N
and Ji, j are independent standard Gaussian random variables. In relatively more

recent times, always in the context of spin systems, the universality of the features of the SK
model with respect to the distribution of the (independent) Ji j has been proven, see [6, 8].
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The {0, 1} counterpart to the Sherrington–Kirkpatrickmodel, whoseHamiltonianmatches
the objective function of a QUBO instance, has not been the subject of the same vast attention
in the statistical mechanics literature. Many important results have been achieved in [17, 19],
in which features of the minimizers and maximizers analogous to the SK model for the
Hamiltonian (1) have been proven for Ji, j independent Gaussian random variables and a
quite general choice of the setA, including also the particle case η ∈ {0, 1}N . In particular it
has been proven that the free energy of the system is close to its expectation with probability
one (concentration) and that its thermodynamic limit exists.

The same problem, in the canonical ensemble, i.e. with a fixed number of particles, has
been discussed in [12]. There, for general distribution of Ji, j , interesting features of the
system, most of all for small density of particles, have been found.

Restricting only to the case η ∈ {0, 1}N and Ji, j independent Gaussian random variables,
with very different and more elementary techniques, in [21] an almost sure lower bound
for the minimum per particle of H has been provided together with a different proof of
concentration.

In this paper we will show, in the spirit of [6], that the results of [21] are rather robust with
respect to the distribution of the Ji, j ’s. In particular, we consider the case of independent
Ji, j with E

[
Ji, j
]
= 0. If the tails of the distributions of the Ji, j are not too fat, then after

proper normalization, the value of the minimum of H is close to its expectation with high
probability and does not depend on the actual distribution of the Ji, j . Further, with the help of
numerical simulations we provide some insight into the structure of both the minimizer and
the maximizer of H and show that also this structure is robust. Note that our results hold in
the diluted case as well, that is, in the case where each Ji, j is zero with a certain probability.
This probability needs not to be fixed, but it is allowed to go to 1 as N → ∞ in a suitable
way.

Rigorous results are presented in Sect. 2, whereas the numerical findings concerning the
structure of the minimizer and the maximizer of H are detailed in Sect. 3. Proofs are given
in Sect. 4.

Throughout the paper, we use the jargon of statistical mechanics. As a consequence, we
use expressions like (particle) configuration when referring to η, number of particles when
referring to N , Hamiltonian for the quadratic form (1) and energy and energy per particle
(of a configuration η) for, respectively, H (J, η) and H (J,η)

N . Likewise, the minimizer (1) is
often referred to as the ground state of H and we use the expression thermodynamic limit to
denote the limit as N → ∞.

Remark 1.1 Note that H denotes a family of random variables indexed by N . However, we
do not write this dependence explicitly to lighten the notation.

2 Main results

We consider random instances of QUBO, that is we assume the matrix J = {Ji, j }1≤i, j≤N to
be the realization of some multivariate random variable. Unless otherwise specified we will
assume the Ji, j ’s to be independent, identically distributed, and such that E

[
Ji, j
]
= 0 and

Var
(
Ji, j
)
= σ 2. As for the value of the normalizing constantW we take it to be such that the

random variable
∑

i j Ji, j has variance N .

Remark 2.1 Note that, in general, the distribution of the Ji, j is allowed to have atoms. In
particular, we will be interested in random variables taking the value zero with probability
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1− p(N ) = 1−N δ−2 for δ in (1, 2]. In this waywe can include in our analysis the diluted case,
that is the case where thematrix J of the coefficients of the objective function is “sparse” with
expected density ρ = p(N ). Note that, in this way, the average degree of each vertex grows
unbounded with N . For

∑
i j Ji, j to have variance N one should set W = 1√

ρN Var(J1,1)
.

In the remainder of the paper, we will use the following notation.
Let

ηmin := argminη∈{0,1}N H (J, η) and ηmax := argmaxη∈{0,1}N H (J, η),

that is ηmin and ηmax are, respectively, the minimizer and the maximizer of H .
Further, let

min
η∈{0,1}N

H (J, η) =: −mmin,N · N and max
η∈{0,1}N

H (J, η) =: mmax,N · N .

In words, mmin,N and mmax,N are, respectively, the minimum and the maximum per particle
of H .

Moreover, setting |η|=∑N
i=1 ηi we call

αmin,N =
|ηmin|
N

and αmax,N =
|ηmax|
N

the proportion of ones in the minimizer and maximizer of H .
We remark that ηmin, ηmax,mmin,N ,mmax,N , αmin,N and αmax,N are random variables that

depend on the realization of J , but we do not write this dependence explicitly to lighten the
notation.

We are interested in the behavior of mmin,N , mmax,N , αmin,N and αmax,N as N → ∞.
When the Ji, j are Gaussian, the existence of the limits

a) mmin = limN→∞ mmin,N ,
b) mmax = limN→∞ mmax,N ,
c) αmin = limN→∞ αmin,N ,
d) αmax = limN→∞ αmax,N

follows fromTheorems 1.1 and 1.2 in [17]. Reasonable numerical estimates for the quantities
of interest are mmin = mmax ≈ 0.42 and αmin = αmax ≈ 0.624 (see Sect. 3 below).

We show that, as N gets larger, the fluctuations of both the minimum and maximum per
particle of H around their expected values vanish provided some conditions on the tails of
the Ji, j are satisfied. More precisely, we have the following

Theorem 2.2 Let the Ji, j be independent identically distributed random variables with
E
[
J1,1
]
= 0 and Var

(
J1,1
)
= 1. Then,

(a) as N → ∞,

mmin,N − E
[
mmin,N

] P−→0 (3)

mmax,N − E
[
mmax,N

] P−→0. (4)

where
p−→ denotes convergence in probability.

Further,

(b) If E
[∣
∣J1,1

∣
∣3
]

< ∞ the convergence in (3) and (4) is almost sure.
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(c) Suppose the Ji, j are strictly subgaussian, that is,

E
[
exp(s J1,1)

] ≤ exp

(
s2

2

)

, ∀s ∈ R.

Then there exists a positive constant D such that, for all z > 0

P (∗)
∣
∣mmin,N − E

[
mmin,N

]∣
∣ > Nz ≤ e−DNz and P (∗)

∣
∣mmax,N − E

[
mmax,N

]∣
∣ > Nz ≤ e−DNz

that is, the convergence is exponentially fast.

The proof is provided in Sect. 4.1.
Moreover the expected value of the minimum and maximum per particle do not depend

on the actual distribution of the random couplings, provided they have finite variance.

Theorem 2.3 Let J =
{
Ji j
}
1≤i, j≤N and Y =

{
Yi, j
}
1≤i, j≤N be two independent sequences of

independent random variables, such that for every i, j E
[
Ji, j
]
= E

[
Yi, j
]
= 0 andE

[
J 2i, j

]
=

E
[
Y 2
i

]
= 1. Also, set γ := max

{
E

[∣
∣Ji j
∣
∣3
]
,E
[∣
∣Yi j
∣
∣3
]
, 1 ≤ i, j ≤ N

}
; γ may be infinite.

Then we have, as N → ∞,

1

N

∣
∣
∣
∣E

[

min
η

H (J, η)

]

− E

[

min
η

H (Y, η)

]∣
∣
∣
∣→ 0 (5)

1

N

∣
∣
∣
∣E

[

max
η

H (J, η)

]

− E

[

max
η

H (Y, η)

]∣
∣
∣
∣→ 0 (6)

If furthermore γ < ∞,

1

N

∣
∣
∣
∣E

[

min
η

H (J, η)

]

− E

[

min
η

H (Y, η)

]∣
∣
∣
∣ ≤ CN−1/6 (7)

1

N

∣
∣
∣
∣E

[

max
η

H (J, η)

]

− E

[

max
η

H (Y, η)

]∣
∣
∣
∣ ≤ CN−1/6 (8)

where C is a constant depending only on γ .

The proof comes as a consequence of an analogous result on the universality of the free
energy which is presented in Sect. 4.2.

As an immediate consequence of Theorem 2.3 and Theorem 2.2 ((c)), the minimum and
maximum per particle have the same almost sure lower bound of the Gaussian case (see [21])
irrespective of the details of the distribution of the Ji, j . More precisely, let ν−(m) = |{η :
H (J, η) ≤ −mN }| denote the number of configurations whose energy is less or equal to
−mN and, similarly, let ν+(m) = |{η : H (J, η) ≥ mN }| be the number of configurations
with energy at least equal to mN . Then:

Corollary 2.4 Let the Ji, j ’s be independent identically distributed strictly subgaussian ran-
dom variables withE

[
J1,1
]
= 0 andVar

(
J1,1
)
= 1 and let I (x) = −x log(x)−(1−x) log(1−

x). Then, for large values of N and for some constant C, P (∗) ν−(m
) > 0 ≤ e−CN and
P (∗) ν+(m
) > 0 ≤ e−CN wherem
 ≈ 0.562 is the extremal value ofm such that the function

I (α) − m2

2α2(1−α)2
, for fixed m, has no zeros. This value is obtained for α = α
 ≈ 0.644.
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3 Conjectures and numerical results

In this section, we present some numerical results concerning the minimum and maximum
per particle and the structure of the minimizer and the maximizer of QUBO instances with
random coefficients. The findings presented in Sect. 3.1 allow us to highlight some interesting
features concerning the connection between particles contributing to theminimizer of H (that
is, components of ηmin equal to 1) and particles contributing to the maximizer of H (that is,
components of ηmax equal to 1) and the probability of the events {ηmin

i = 1} and {ηmax
i = 1}.

Simulations have been carried out usingMonte Carlo Probabilistic Cellular Automata (PCA)
as those introduced in [2, 3, 10, 21, 22]. The advantage of these algorithms is represented by
their inherently parallel nature which allows the exploitation of parallel architectures at their
fullest while preserving a quality of the solution comparable to the one obtained with single
spin flip MCMC algorithms as outlined in [3, 13, 21]. Thanks to these algorithms we were
able, in the diluted case, to simulate effectively systems with N up to 128000.

In particular, the algorithm used in the simulations works as follows. Let

H (η, τ ) =
∑

i, j

Ji jηiτ j + q
∑

i

(1 − σiτi ) (9)

As a preliminary step consider the symmetrized version of J̃ of J (that is J̃ = J+J T
2 )

and note that the value of the Hamiltonian dos not change if we replace J with J̃ . Let
H (η, τ ) = β

∑
i hi(η)τi + q

∑
i [ηi (1 − τi ) + τi (1 − ηi )] with hi (η) = 1√

N

∑
j J̃i, jη j and β

and q two positive parameters and choose the transition matrix to be Pη,τ = e−H (η,τ )
∑

τ e
−H (η,τ ) .

Rewriting Pη,τ as

P(η, τ ) =
∏

i

e−βhi (η)τi−q[ηi (1−τi )+τi (1−ηi )]

Zi
(10)

we immediately see that, conditionally onη, the value of each τi canbe sampled independently
with the following probabilities:

P(τi = 1) =
e−βhi (η)−q(1−ηi )

Zi
and P(τi = 0|η) = e−qηi

Zi
(11)

with Zi = e−βhi−q(1−ηi ) + e−qηi . Then, at least in principle, each component of the configu-
ration could be updated on a dedicated core.

Note that, by the symmetry of J̃ , we have that
∑

η e
−H (η,τ )

∑
η,τ e

−H (η,τ ) is the reversible measure of

Pη,τ . In addition, observe that H (η, η) = βH (η). The intuitive rationale for why the heuristic
algorithm is expected to work is the following. As q gets large, the weight of pairs (η, τ ) with
η � = τ in π(σ ) becomes smaller and the stationary measure of the algorithm becomes closer

to the Gibbs measure e−βH (η)

Z with Hamiltonian H and inverse temperature β. A comparison
between this algorithm and the Metropolis one is provided in [21].

The computation of the local fields hi proves to be the computationally expensive part of
the algorithm. However, the vector of local fields {hi (η)}i=1,...,N is the matrix–vector product
J · η and can be computed using highly optimized linear algebra libraries and exploiting a
parallel computing device such as a GPU. Further, observe that k simulations can be carried
over in parallel, possibly with different parameters β and q . Let �E be the N × k matrix
whose columns contain the k configurations to be updated. In this case, the entire collection
of vectors of fields {hi (η(m))}i=1,...,N ;m=1,...,k (encoded, again, as an N × k matrix) is the
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Fig. 1 Average values of mmin,N , mmax,N , αmin and αmax,N in the case of standard normally distributed
Ji, j ’s. Values of mN and αN in the table are computed as averages of mmin,N , Mmax,N and αmin, αmax,N
respectively. The length of each branch of the error bars is equal to to standard error of the empirical average.
Averages are computed over 10000 realization of J for N up to 1024 and between 1000 and 5000 realization
of J for larger instances

matrix–vector product J · �E . Also, this product can be computed effectively using highly
optimized libraries and is, in general, substantially faster than computing k matrix–vector
products.

We remark that the values we found are heuristic and we have no guarantee that they coin-
cide with the true values of the minimizer and the maximizer of H (J ). However, as already
discussed in more detail in [21], the exact algorithm introduced in [20] can be exploited to
compute the exact minima andmaxima of H (J ) for values of N up to 150. The absolute value
of the minimum and the maximum per particle of H (J ) are steadily close to 0.42 already for
values of N between 80 and 150. Moreover, for instances with sizes up to 150, we verified
that our algorithm typically finds the same optimum as the exact algorithm. For the larger
instances, we retained the minimum and maximum found in a set of runs of the algorithms
with different pairs of values of β and q .

3.1 Minimum andmaximum per particle

The standard normal case has been investigated extensively in [21]: for values of N rela-
tively small, bothmmin,N andmmax,N oscillate around a value about 0.42 whereas αmin,N and
αmax,N very rapidly approach a value about 0.624 (see Fig. 1). Theorem 2.3 states that both
mmin,N and mmax,N are robust with respect to the distribution of the Ji, j . Numerical simu-
lations show that this robustness also concerns the proportion of ones in both the minimizer
and maximizer of H .

Figure 2 shows the behavior of mmin,N ,mmax,N , αmin,N , αmax,N for Ji, j with (shifted)
exponential distribution. Even if the exponential distribution is rather asymmetric and is
not subgaussian, for values of N relatively small the average energy per particle and the
proportion of ones in both the minimizer and the maximizer approach those of the standard
normal case.

In our simulations, we also considered the diluted case, that is, we took Ji, j to be zero with
probability 1− pδ(N ), where pδ(N ) = N δ−2, and a standard normal random variable other-
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Fig. 2 In this case each Ji, j is distributed as X −1 with X an exponential random variable with expected value
1. The exponential distribution is rather asymmetric and is not subgaussian. However, already for N of order
“a few hundred” the values of the minimum and maximum per particle of H and the proportion of “ones” in
the minimizer and the maximizer of H approach those of the normal case. The length of each branch of the
error bars is equal to to standard error of the empirical average (only shown for the exponential distribution).
Averages are computed over 10000 realizations of J . The curves for the normal distributions in this chart are
the averages of the values mmin,N and mmax,N in the first panel and αmin,N and αmax,N in the second panel

Fig. 3 Comparison (top panel) of the average of the minimum and maximum per particle of H in the diluted
case with the corresponding value in the standard normal case for several values of δ. In all these cases the
average value of the minimum and maximum per particle appears to approach the same limit (about 0.42). As
for the values of αN (bottom panel), these appear to be very close to the value of αN of the standard normal
case. Averages, for δ < 2, are computed over 100 realization of J

wise. Findings concerning the behavior of mmin,N ,mmax,N , αmin,N , αmax,N are presented in
Figs. 3 and 4. The log-log plot of Fig. 5 suggests that mN converges to m̄ as a power of N .

We highlight that as δ becomes smaller, the density of J becomes very small. To give an
idea, values of the density of J are given in Table 1. For instance, with N = 128000 and
δ = 1.1 the expected number of nonzero entries in each row of J is less than 4.

In the operation research literature, to test optimization algorithms, it is common to con-
sider random instances of QUBOwhere the Ji, j have a uniform distribution (see, e.g., [1, 15,
25, 26]) and where the matrix J is, possibly, sparse. Values of the best-known maximizer
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Fig. 4 Average of the minimum per particle and of αmin,N in the diluted case for δ = 1.2 and δ = 1.1. The
length of each branch of the error bars is equal to the standard error of the empirical average. Averages are
computed over 900 realizations of J for N up to 1024, 100 realizations for N between 2048 and 32000 and
36 realizations for larger values of N

Fig. 5 log-log plot of the distance of the absolute value of the minimum per particle from the conjectured
limiting value m̄ as a function of N in the diluted case for δ = 1.2 and δ = 1.1. For both δ = 1.2 and δ = 1.1
the lines appear to have a negative slope suggesting that, in both cases, the absolute value of the minimum per
particle of H will reach the value m̄

Table 1 Density of matrix J for several values of N and δ

N 4000 4000 4000 8000 8000 8000 16000 16000 16000 128000 128000

δ 1.9 1.8 1.3 1.9 1.8 1.3 1.9 1.8 1.3 1.3 1.1

ρ 0.4363 0.1904 0.003 0.4071 0.1657 0.0019 0.3798 0.1443 0.0011 0.0003 3 ×10-5

for some benchmark QUBO instances in the case of uniformly distributed Ji, j are reported
in Table 2. It is apparent that also in these cases, the values of the optima per particle agree
with those of the standard normal case.

3.2 Structure of minimizer andmaximizer

Observe that for any realization of J the minimizer and the maximizer of the Hamiltonian
are with probability 1 since the distribution of the couplings is absolutely continuous. Then
it is possible to partition the indices 1, 2, . . . , N into four sets:
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Table 2 Values of the maximum
per particle for some benchmark
instances

Instance id optimum in [26] N ρ mN

p3000.1 3931583 3000 0.5 0.412

p3000.2 5193073 3000 0.8 0.431

p3000.3 5111533 3000 0.8 0.424

p3000.4 5761822 3000 1 0.427

p3000.5 5675625 3000 1 0.421

p4000.1 6181830 4000 0.5 0.421

p4000.2 7801355 4000 0.8 0.42

p4000.3 7741685 4000 0.8 0.417

p4000.4 8711822 4000 1 0.42

p4000.5 8908979 4000 1 0.429

p5000.1 8559680 5000 0.5 0.417

p5000.2 10836019 5000 0.8 0.418

p5000.3 10489137 5000 0.8 0.404

p5000.4 12252318 5000 1 0.422

p5000.5 12731803 5000 1 0.439

p6000.1 11384976 6000 0.5 0.422

p6000.2 14333855 6000 0.8 0.42

p6000.3 16132915 6000 1 0.423

p7000.1 14478676 7000 0.5 0.426

p7000.2 18249948 7000 0.8 0.425

p7000.3 20446407 7000 1 0.425

In these instances Ji, j drawn uniformly at random from the integers in
[−100, 100] and the matrix J is symmetric. Consequently, to compare
the values with those of the standard normal case, the normalizing con-

stantW appearing in (1) must be set equal to
√

6
ρN (2012−1)

. The optima

used to compute mN are the best-known solutions reported in [26]

– I1 = {i : ηmin
i = 1, ηmax

i = 0};
– I2 = {i : ηmin

i = 1, ηmax
i = 1};

– I3 = {i : ηmin
i = 0, ηmax

i = 1};
– I4 = {i : ηmin

i = 0, ηmax
i = 0}.

To refer properly to the cardinality of these sets we give the following

Definition 3.1 αk,N := |Ik |
N , k = 1, 2, 3, 4.

With an abuse of notation, we say that the i-th row (column) of J belongs to Ik if i ∈ Ik .
Note that α1,N can be interpreted as the proportion of 1 appearing in the minimizer but not
appearing in the maximizer of H . Similar interpretations can be given for α2,N , α3,N and
α4,N .

Remark 3.2 With the definition of αi given above it is immediate to see that αmin,N = αN ,1 +
αN ,2 and αmax,N = αN ,2 + αN ,3

Leveraging on the definition of Ik , it is possible to partition J into 16 blocks

J [k, ] := {Ji, j , i ∈ Ik, j ∈ I}
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Clearly, J [Ik, I] is a sub matrix of J with Nαk,N rows and Nα,N columns.
Numerical simulations suggest that the average value and the variance of the entries in

each block, subject to proper normalization and the relative size of the blocks converge to a
deterministic limit as N → ∞. These limits do not depend on the distribution of the Ji, j ’s, as
long as they have expected value zero and variance 1. More precisely we make the following

Conjucture 3.3 Let Ji, j be independent identically distributed random variables with
E
[
J1,1
]
= 0 and Var

(
J1,1
)
= 1. Then there exist constants α1, α2, α3, α4 such that

1. lim
N→∞ α1,N = α1, lim

N→∞ α2,N = α2 lim
N→∞ α3,N = α3 lim

N→∞ α4,N = α4

2. α1 = α2 = α3 = 1
2αmin = 1

2αmax; α4 = 1 − 3
2αmin

3. Var
(
J [k, ]i, j

)
= 1 for k,  = 1, . . . , 4

Further, set μ[k, ] = E
[
J [k, ]i, j

]
and write the covariance of J [k, ]i , J [k, ] j as

Cov(J [k, ]i , J [k, ] j ) =
N 2αkα

2
(1 − σ̃ [k, ])

.
Computation of averages over 10000 realizations of J with standard normal distribution

and N = 1024 yielded the following estimates for αi , μ[k, ] and σ̃ [k, ].

�α =

⎡

⎢
⎢
⎣

0.3105
0.31331
0.31054
0.06565

⎤

⎥
⎥
⎦ (12)

μ[k, ] =

⎡

⎢
⎢
⎣

−0.02161 −0.05687 0.00006 0.04229
−0.05687 0.00001 0.05684 0.00013
−0.00005 0.05685 0.02161 −0.04241
0.04228 0.00003 −0.04227 0.00001

⎤

⎥
⎥
⎦ (13)

σ̃ [k, ] =

⎡

⎢
⎢
⎣

0.92996 1.11006 0.74334 1.20509
1.06221 0.58133 1.08835 0.77939
0.73879 1.08343 0.9415 1.25195
1.21106 0.76959 1.2258 0.99425

⎤

⎥
⎥
⎦ (14)

These values suggest that the random couplings in blocks [2, 2], [3, 1], [4, 2], [1, 3], and
[2, 4] are negatively correlated, the random couplings in blocks [1, 4], [3, 4], [4, 1], and
[4, 3] are positively correlated, whereas the random couplings in the remaining blocks are
roughly independent.

Very similar values can be obtained in the diluted case and for Ji, j with distributions other
than the normal.

Note that it is always possible to relabel the indices 1, 2, . . . , N so that, in J , indices in
I1 appear “first”, indices in I2 appear “second”, in I3 appear “third” and indices in I4 appear
“last”.With this relabelling, a graphical representation of Conjecture 3.3 is provided in Fig. 6.

3.3 Probability a particle belongs to theminimizer/maximizer of H

Sets I1, . . . I4 introduced above are random sets depending on the realization of J . The
problem of finding ηmin and ηmax can be restated as the problem of determining the sets
Imin = I1 ∪ I2 and Imax = I2 ∪ I3. Though, as already mentioned, this problem is NP-hard,
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Fig. 6 Graphical representation of the matrix of the couplings. These matrices are obtained from J by rear-
ranging the rows (columns) of J so that rows (columns) in I1 appear “first” rows (columns) I2 appear “second”,
rows (columns) I3 appear “third” and rows (columns) I4 appear “last”. Pictures are obtained by averaging the
values of the Ji, j over squares of size L . Negative (average) values of J are blue whereas positive values are
red; darker colors correspond to larger absolute values

we tried to assess, numerically, whether it is possible to determine the probability that a
certain index i belongs to either Imin or Imax.

To this aim, consider the matrix J̃ = J+J ′
2 , that is the symmetrized version of J and the

function H̃ obtained from H by replacing J with J̃ . Note that H (J, η) = H̃ (η) for all η

and, consequently, the values of ηmin
i and ηmax

i do not depend on whether matrix J or J̃ is
considered.

Take the matrix J̃ and define R =
∑N

j=1 Ji, j , that is R is the vector of the sums of the rows

of J̃ . Let [i] be the index of the i-th smallest element of R.We say that the [i]-th row (column)
of J̃ belongs to the minimizer (respectively the maximizer) of H if ηmin

[i] = 1 (respectively
ηmax
[i] = 1).

Numerical simulations show that the probability that the [i]-th row of J̃ belongs to the
minimizer (respectively maximizer) of H is a decreasing (respectively increasing) determin-
istic function of [i]

N . This function is expected not to depend on the actual distribution of J .

Further, we expect that a positive fraction of the smallest (largest) rows of J̃ (where small-
est/largest refers to the sum of the elements on each row of J̃ ) to belong to the minimizer
(maximizer) of H with positive probability (see Fig. 7).More precisely we have the following

Conjucture 3.4 As N → ∞, P (∗) ηmin
[i] = 1 = fmin

(
[i]
N

)
+ o(1) with fmin a decreasing

function. Similarly, as N → ∞, P (∗) ηmin
[i] = 1 = fmax

(
[i]
N

)
+ o(1) as, with fmax

(
[i]
N

)
=

fmin

(
1 − [i]

N

)
. Moreover, there exists λ0 > 0 such that fmin(λ) = 1 for all λ < λ0. Finally,

if the tails of Ji, j decay sufficiently fast, the function f does not depend on the distribution
of Ji, j

Finally,we observe that the randomvariables1{ηmin
[i] =1} and1{ηmax

[i] =1} appear to be positively
correlated for all i . The qualitative behavior of the strength of the correlation between these
two variables as a function of [i] is provided by the estimates of Fig. 8.
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Fig. 7 Probability the [i]-th row of J̃ belongs to the minimizer (the increasing cloud of points) and to the
maximizer (the decreasing cloud of points) of H for several values of N . Estimates are obtained as averages
over 400 realizations of J for each value of N . The shape of the cloud appears to be independent of the size
of the system

Fig. 8 Ratio between the probability that the [i]-th belongs to both the minimizer and the maximizer of H
and the product of the probability of each of the two events for N = 4096. Estimates are obtained as averages
over 400 realizations of J for each value of N

4 Proofs

We state first some general results that will be used below in the proofs of Theorem 2.2 and
Theorem 2.3.

Let X = {X1, . . . , Xn}be independent randomvariables and letW =g (X1, . . . , Xi , . . . , Xn)

with g a measurable function. Further, let X ′ = {X ′
1, . . . , X

′
n} be an independent copy of

X1, . . . , Xn and write
Wi = g

(
X1, . . . , X

′
i , . . . , Xn

)
(15)

Define the random variable V by

V = E

[
n∑

i=1

(W − Wi )
2 | X

]

(16)

which allows to re-state Efron-Stein’s theorem (see [11]) as follows
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Theorem 4.1 (Efron-Stein)

Var (W ) ≤ 1

2
E [V ] (17)

From [5], we can bound the moment generating function with the following

Theorem 4.2 For all θ > 0 and λ ∈ (0, 1
θ
),

E
[
exp(λ(W − E [W ]))

] ≤ exp

(
λθ

1 − λθ

)

E

[

exp

(
λV

θ

)]

. (18)

Moreover, a straightforward consequence of [4, Theorem 2] yields

Theorem 4.3
E
[|W − E [W ]|3] < E

[
|V | 32

]
. (19)

To prove both Theorem 2.2 and Theorem 2.3 a key role is played by the free energy
function F : RN×N → R defined as

Fβ (X ) := β−1 log Z (X ). (20)

with Z (X ) :=
∑

η e
βH (X,η), H (X, η) = 1√

N

∑
i, j Xi, jηiη j . and X = {Xi, j }1≤i, j,≤N a col-

lection of independent random variables (the matrix of the couplings). We do not write the
dependence of Fβ and Z on N to make the notation less heavy. Further, we set

p(X, η) :=
eβH (X,η)

ZX
; 〈ηiη j 〉X =

∑

η

ηiη j p(X, η) (21)

where p(X, η) is theGibbs measure of η and 〈·〉X denotes the expectation with respect to the
Gibbs measure when the matrix of couplings is X .

In the next lemma, we determine bounds on the derivatives of F with respect to one of
the couplings.

Lemma 4.4 Let F : RN×N → R be as in (20). Then

∣
∣
∣
∣
∂Fβ (X )

∂Xi, j

∣
∣
∣
∣ ≤

1√
N

;

∣
∣
∣
∣
∣

∂2Fβ (X )

∂X2
i, j

∣
∣
∣
∣
∣
≤ β

4N
;

∣
∣
∣
∣
∣

∂3Fβ (X )

∂X3
i, j

∣
∣
∣
∣
∣
≤ β2

6
√
3N 3/2

(22)

Proof At first, observe that a straightforward computation gives

∂H (X, η)

∂Xi, j
=

1√
N

ηiη j ;
∂Z

∂Xi, j
(X ) =

β√
N

∑

η

ηiη j e
βH (X,η) =

β√
N

〈ηiη j 〉X Z (X ). (23)

Using (23), the bound on the first derivative of F with respect to Xi, j is readily obtained
from the following

∂Fβ (X )

∂Xi, j
=

1

βZ (X )

∂Z (X )

∂Xi, j
=

1√
N

〈ηiη j 〉X (24)

by observing that 〈ηiη j 〉X ∈ [0, 1]. To compute higher-order derivatives note that

∂p(X, η)

∂Xi, j
=

β√
N

ηiη j eβH (X,η)Z − β√
N

〈ηiη j 〉XeβH (X,η)Z

Z2 =
β√
N

(
ηiη j − 〈ηiη j 〉X

)
p(X, η)

(25)
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which, in turn, yields,

∂〈ηiη j 〉X
∂Xi, j

=
∑

η

ηiη j
∂p

∂Xi, j
(X, η) =

β√
N

∑

η

ηiη j
(
ηiη j − 〈ηiη j 〉X

)
p(X, η) (26)

=
β√
N

(〈ηiη j 〉X − 〈ηiη j 〉2X
)
=

β√
N

〈ηiη j 〉X
(
1 − 〈ηiη j 〉X

)
(27)

and

∂2〈ηiη j 〉X
∂X2

i j

=
β√
N

∂
(〈ηiη j 〉X

(
1 − 〈ηiη j 〉X

))

∂Xi j
=

β2

N
〈ηiη j 〉X

(
1 − 〈ηiη j 〉X

) (
1 − 2〈ηiη j 〉X

)
.

(28)

Consequently,

∂2Fβ (X )

∂X2
i, j

=
β

N
〈ηiη j 〉X

(
1 − 〈ηiη j 〉X

)
and (29)

∂3Fβ (X )

∂X3 =
β2

N 3/2 〈ηiη j 〉X (1 − 〈ηiη j 〉X )
(
1 − 2〈ηiη j 〉X

)
. (30)

The claim follows by observing that, in the interval [0, 1], x(1 − x) ≤ 1
4 and

|x(1 − x)(1 − 2x)| ≤ 1
6
√
3

��

4.1 Proof of Theorem 2.2

We give the proof for the convergence of mmax,N . The proof for mmin,N is analogous.
In the rest of this section, we write H (J ) := maxη H (J, η)
To prove the convergence in probability ofmmax,N to its expectation we use the following

results which allow us to bound the variance of the free energy.
Assume Ji, j are independent identically distributed random variables with expected value

zero and variance 1. Call F = Fβ (J ) = 1
β
log
∑

η e
β
∑

i, j Ji, jηiη j . The following theorem
provides a bound on the variance of F .

Theorem 4.5 Var (F) ≤ N

Proof Let Fi, j be obtained from F by substituting Ji, j with J ′
i, j (an independent copy of

Ji, j ). Then, by Lemma 4.4,
∣
∣F − Fi, j

∣
∣ ≤ 1√

N

∣
∣
∣Ji, j − J ′

i, j

∣
∣
∣. From Theorem 4.1 it follows

Var (F) ≤ 1

2
E

⎡

⎣
∑

i, j

(F − Fi, j )
2

⎤

⎦ =
1

2

∑

i, j

E
[
(F − Fi, j )

2] =
1

2
N 2

E
[
(F − F1,1)

2] (31)

≤ 1

2
N 2

E

[(
1√
N

∣
∣
∣Ji, j − J ′

i, j

∣
∣
∣

)2
]

= NE
[
J 21,1
]
= N (32)

Note that this estimate is uniform in β. ��
Since H (J ) = limβ→∞ Fβ (J ), as an immediate consequence we get

Corollary 4.6 Var
(
H (J )

) ≤ N.
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By Chebyshev’s inequality and the previous corollary we get

P (∗)

∣
∣
∣
∣
∣

H (J )

N
− E

[
H (J )

N

]∣
∣
∣
∣
∣
> ε ≤

Var
(
H (J )
N

)

ε2
=

1

N 2

Var
(
H (J )

)

ε
≤ 1

Nε
(33)

from which claim ((a)) follows.

To prove the other two claims, set VF = E

[∑
i, j (F − Fi, j )2 | J

]
. We have

VF =
∑

i, j

E
[
(F − Fi, j )

2 | J ] ≤
∑

i, j

1

N
E

[
(Ji, j − J ′

i, j )
2 | Ji, j

]
(34)

=
1

N

∑

i, j

(
J 2i, j + E

[
(J ′

i, j )
2
])

=
1

N

∑

i, j

(
J 2i, j + 1

)
(35)

Let us examine the case E
[∣
∣J1,1

∣
∣3
]

< ∞.

Leveragingon Jensen’s inequalitywehave
∣
∣
∑n

1 ai
∣
∣
3
2 ≤ √

n
∑n

1 |ai | 32 . The latter inequality
can be used to show that

E

[

V
3
2
F

]

≤ E

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

1

N

∑

i, j

(
J 2i, j + 1

)
∣
∣
∣
∣
∣
∣

3
2
⎤

⎥
⎦ ≤ 1

N
3
2

E

⎡

⎣N
∑

i, j

∣
∣
∣J 2i, j + 1

∣
∣
∣
3
2

⎤

⎦ (36)

≤ 1√
N
E

⎡

⎣
∑

i, j

√
2(
∣
∣Ji, j

∣
∣3 + 1)

⎤

⎦ =
√
2N

3
2E

[∣
∣J1,1

∣
∣3 + 1

]
. (37)

Then, by Theorem 4.3 and for some constant C ,

E
[|F − E [F]|3] ≤ CN

3
2 (38)

which, in turn, implies

E

[∣
∣
∣
∣
F − E [F]

N

∣
∣
∣
∣

3
]

≤ CN− 3
2 (39)

Since (39) does not depend on β, it holds for H (J ) = limβ→∞ Fβ (J ) as well. Chebyshev’s
inequality and Borel-Cantelli lemma allow us to conclude the proof of claim ((b)).

Consider now the case of strictly subgaussian Ji, j ’s. Recall that for a centered strictly
subgaussian random variable X with variance σ 2,

E
[
exp(sX )

] ≤ exp

(
σ 2s2

2

)

, ∀s ∈ R. (40)

Also, ∀r ∈ N, E
[
X2r
] ≤ 2r+1σ 2r r !, yielding

E

[
es
(
X2−σ 2)

]
= 1 + sE

[
X2 − σ 2] +

∞∑

r=2

srE
[(
X2 − σ 2

)r
]

r !
≤ 1 +

∞∑

r=2

srE
[
X2r
]

r !
(41)

≤ 1 + 2
∞∑

r=2

sr2rσ 2r = 1 +
8s2σ 4

1 − 2sσ 2 (42)
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where the inequality in (41) follows from the fact that, for a non negative random variable
(such as X2), the central r -th moment is smaller or equal to the r -th moment (recall that X2

has expected value σ 2).
This result, together with (34), can be used to bound the moment-generating function of

VF as

E
[
exp (tVF )

] ≤ E

⎡

⎣exp

⎛

⎝ t

N

∑

i, j

(
X2
i j − 1 + 2

)
⎞

⎠

⎤

⎦ =

(

e
2t
N E

[

exp

(
t

N

(
X2
1 1 − 1

)
)])N2

(43)

≤ e
2t
N

[

1 +
1

N

8t2

N − 2t

]N2

≤ e9t
2

(44)

for N large enough where the last inequality follows from the fact that
[
1 + 1

N
8t2

N−2t

]N2

is

a decreasing sequence with the same limit as
[
1 + 8t2

N2

]N2

. Then, from Theorem 4.2 we get,

for all θ > 0 and λ ∈ (0, 1
θ
),

E
[
exp(λ(F − E [F]))

] ≤ exp

(
λθ

1 − λθ

)

E

[

exp

(
λVF

θ

)]

≤ exp

(
λθ

1 − λθ
+
9λ2

θ2

)

(45)

and hence, by exponential Markov inequality

P (∗) |F − E[F]| > t ≤ 2 exp

(

−λt +
λθ

1 − λθ
+
9λ2

θ2

)

≤ e−at (46)

for some a > 0 (by optimizing on λ, θ ) and for every t > 0. Setting t = Nz, with z > 0 we
get

P (∗) |F − E[F]| > Nz ≤ e−aNz . (47)

Since also (47) does not depend on β, it holds for H (J ) = limβ→∞ Fβ (J ). Dividing by
N we get claim ((c)). ��

4.2 Proof of Theorem 2.3

Using the bounds of Lemma 4.4 we can prove that the expectation of the free energy does
not depend on the distribution of the couplings in the thermodynamic limit.

As for Theorem 2.3, let J =
{
Ji, j
}
1≤i, j≤N and Y =

{
Yi, j
}
1≤i, j≤N be two independent

sequences of independent random variables, such that for every i, j E
[
Ji, j
]
= E

[
Yi, j
]
= 0

and E

[
J 2i, j

]
= E

[
Y 2
i, j

]
= 1.

Theorem 4.7 Consider Fβ (J ) as in (20). Then

lim
N→∞

∣
∣E
[
Fβ (J )

]− E
[
Fβ (Y )

]∣
∣ = 0 (48)

Proof The proof is a straightforward adaptation of Chatterjee’s extension of Lindeberg’s
argument for the central limit theorem. See [8, 9] for a comprehensive treatment.

Let 0 ≤ k ≤ n = N 2 be any numbering of the elements of the sequences and define

Zk := (J1, . . . , Jk−1, Jk, Yk+1, . . . , Yn) (49)

Wk := (J1, . . . , Jk−1, 0, Yk+1, . . . , Yn) (50)
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Now consider a Taylor expansion of Fβ around Jk = 0 and write

Fβ (Zk) = Fβ (Wk) + Jk
∂Fβ (Wk)

∂ Jk
+
1

2
J 2k

∂2Fβ (Wk)

∂ J 2k
+ Rk (51)

Fβ (Zk−1)) = Fβ (Wk) + Yk
∂Fβ (Wk)

∂ Jk
+
1

2
Y 2
k

∂2Fβ (Wk)

∂ J 2k
+ Sk . (52)

The bounds from Lemma 4.4 then give

|Rk | ≤ β

8N
X2
k , |Sk | ≤ β

8N
Y 2
k and (53)

|Rk | ≤ β2

36
√
3N 3/2

|Xk |3, |Sk | ≤ β2

36
√
3N 3/2

|Yk |3. (54)

Note that, for each k, the random variables Jk, Yk andWk are independent. Recalling that
Jk and Yk have both mean zero and variance 1, we get

E
[
Fβ (Zk) − Fβ (Zk−1))

]
= E [Rk − Sk] (55)

which gives the estimate

∣
∣E
[
Fβ (X )

]− E
[
Fβ (Y )

]∣
∣ =

∣
∣
∣
∣
∣

n∑

i=1

E
[
Fβ (Zk) − Fβ (Zk−1)

]
∣
∣
∣
∣
∣

≤
n∑

i=1

E [|Rk |] + E [|Sk |] + β

8N

n∑

i=1

[
E
(
X2
i , |Xi | > K

)

+E
(
Y 2
i ; |Yi | > K

)]
+

β2

36
√
3N 3/2

n∑

i=1

[
E
(|Xi |3 ; |Xi | ≤ K

)

+E
(|Yi |3 ; |Yi | ≤ K

)]
(56)

If we furthermore assume γ < ∞, we only need to use third order Taylor bounds on Rk, Sk
getting the more explicit bound

∣
∣E
[
Fβ (J )

]− E
[
Fβ (Y )

]∣
∣ ≤ β2γ

18
√
3

√
N (57)

��

Finally, we can prove Theorem 2.3. We write the proof for the maximum of H . The proof
for the minimum can be done in the same way by replacing β with −β.

Recall that we set H (J ) = maxη H (J, η).
We have

H (J ) = β−1 log
[
eβH (J )

]
≤ β−1 log

[
∑

η

eβH (J,η)

]

≤ β−1 log
[
2NeβH (J )

]
(58)

getting the uniform bound
∣
∣H (J ) − Fβ (J )

∣
∣ ≤ β−1N log 2. (59)
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From Theorem 4.7
∣
∣E
[
H (J )

]− E
[
H (Y )

]∣
∣ ≤ ∣∣E [H (J ) − Fβ (J )

]∣
∣ +
∣
∣E
[
Fβ (J )

]− E
[
Fβ (Y )

]∣
∣

+
∣
∣E
[
H (Y )

]− Fβ (Y )
∣
∣

≤ 2N log 2

β
+
∣
∣E
[
Fβ (J )

]− E
[
Fβ (Y )

]∣
∣

(60)

First assume γ < ∞. From (57) and 60

∣
∣E
[
H (J )

]− E
[
H (Y )

]∣
∣ ≤ 2N log 2

β
+

β2γ

18
√
3

√
N (61)

By choosing β = N 1/6 we get the second part of the thesis.

Wenowconsiderγ =∞.Define g(K ) :=maxi, j
(
E

(
J 2i j ;
∣
∣Ji j
∣
∣>K

)
,E
(
Y 2
i j ;
∣
∣Yi j
∣
∣ > K

) )
.

From the finite variance hypothesis, g(K ) → 0 as K → ∞. In (56) we take β = g(N
1
4 )− 1

2 ,
so that β → ∞ as N → ∞. Also observe that γ = ∞ implies Kg(K ) → ∞ as K → ∞.

Estimate (56), with K = N
1
4 , now becomes

1

N

∣
∣E
[
Fβ (X )

]− E
[
Fβ (Y )

]∣
∣ ≤ C1g(N

1
4 )

1
2 + C2

(
N

1
4 g(N

1
4 )
)−1

(62)

Which vanishes as N → ∞ thus proving also part 1 of Theorem 2.3. ��

5 Conclusions and open problems

The analysis carried over in this paper unveils several lines of investigation that we believe
are rather interesting.

It would be useful to identify the minimal requirement on the distribution of the cou-
plings to have the minimum and maximum per particle to converge to their expected values
exponentially fast.

One feature we find particularly intriguing is the relationship between the elements of
J contributing to the minimum and those contributing to the maximum of H discussed in
Conjecture 3.3. We think that a rigorous understanding of the relative size of the blocks of
J and the correlation between the rows belonging to the minimizer and the maximizer of J
could significantly improve our understanding of the problem.

Better understanding would, in turn, provide useful tools in order to evaluate the heuristic
algorithms used to tackle QUBO.

Finally, it would be interesting to study the problem when the Ji, j are not independent,
especially in the case where the interaction graph is not the complete graph.

Acknowledgements The authors are grateful to the Department of Mathematics and Physics of the Univer-
sity of Rome "Tre" which provided us with additional computing resources. AT thanks PRIN 2022 PNRR:
"RETINA: REmote sensing daTa INversion with multivariate functional modeling for essential climAte vari-
ables characterization" (Project Number: P20229SH29, CUP: J53D23015950001) funded by the European
Union under the ItalianNationalRecovery andResiliencePlan (NRRP) ofNextGenerationEU, under the Italian
Ministry of University and Research (MUR). BS acknowledges the support of MUR Excellence Department
Project MatMod@TOV awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP
E83C23000330006.

Funding Open access funding provided by Università degli Studi di Perugia within the CRUI-CARE Agree-
ment.

123



M. Isopi et al.

Data availability Data of Table 2 is available from [26] and references therein. All statistics concerning the
generated data during this study are included in this article.

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alidaee, B., Sloan, H., Wang, H.: Simple and fast novel diversification approach for the ubqp based on
sequential improvement local search. Comput. Ind. Eng. 111, 164–175 (2017)

2. Apollonio, V., D’Autilia, R., Scoppola, B., Scoppola, E., Troiani, A.: Criticality of measures on 2-d ising
configurations: from square to hexagonal graphs. J. Stat. Phys. 177(5), 1009–1021 (2019)

3. Apollonio, V., D’Autilia, R., Scoppola, B., Scoppola, E., Troiani, A.: Shaken dynamics: an easy way to
parallel Markov chain Monte Carlo. J. Stat. Phys. 189(3), 39 (2022)

4. Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.: Moment inequalities for functions of independent
random variables. Ann. Probab. 33(2), 514–560 (2005)

5. Boucheron, S., Lugosi, G.,Massart, P.: Concentration inequalities using the entropymethod. Ann. Probab.
31(3), 1583–1614 (2003)

6. Carmona, P., Hu, Y.: Universality in Sherrington-Kirkpatrick’s spin glass model. Ann. de l’Institut Henri
Poincare (B) Probab. Stat. 42(2), 215–222 (2006)

7. Charbonneau, P., Marinari, E., Parisi, G., Ricci-tersenghi, F., Sicuro, G., Zamponi, F., Mezard, M.: Spin
Glass Theory and Far Beyond: Replica Symmetry Breaking after 40 Years. World Scientific (2023)

8. Chatterjee, S.: A simple invariance theorem. arXiv preprint math/0508213 (2005)
9. Chatterjee, S.: A generalization of the Lindeberg principle. Ann. Probab. 34(6), 2061–2076 (2006)

10. D’Autilia, R., Andrianaivo, L.N., Troiani, A.: Parallel simulation of two-dimensional ising models using
probabilistic cellular automata. J. Stat. Phys. 184, 1–22 (2021)

11. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. pages 586–596 (1981)
12. Erba,V.,Krzakala, F.,Ortiz,R.P., Zdeborová, L.: Statisticalmechanics of themaximum-average submatrix

problem. J. Stat. Mech: Theory Exp. 2024(1), 013403 (2024)
13. Fukushima-Kimura, B.H., Handa, S., Kamakura, K., Kamijima, Y., Kawamura, K., Sakai, A.: Mixing

time and simulated annealing for the stochastic cellular automata. J. Stat. Phys. 190(4), 79 (2023)
14. Glover, F., Kochenberger, G., Yu, D.: Quantum bridge analytics i: a tutorial on formulating and using

qubo models. Ann. Oper. Res. 314, 141–183 (2019)
15. Liang, R.N., Anacleto, E.A.J., Meneses, C.N.: Data structures for speeding up tabu search when solving

sparse quadratic unconstrained binary optimization problems. J. Heuristics 28(4), 433–479 (2022)
16. Mézard, M., Parisi, G., Virasoro, M A.: Spin glass theory and beyond: An Introduction to the Replica

Method and Its Applications, volume 9. World Scientific Publishing Company (1987)
17. Panchenko, D.: Free energy in the generalized Sherrington-Kirkpatrick mean field model. Rev. Math.

Phys. 17(07), 793–857 (2005)
18. Panchenko, D.: The Sherrington-Kirkpatrick model: an overview. J. Stat. Phys. 149, 362–383 (2012)
19. Panchenko, D.: Free energy in the mixed p-spin models with vector spins. Ann. Probab. 46(2), 865–896

(2018)
20. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and poly-

hedral relaxations. Math. Program. 121, 307–335 (2010)
21. Scoppola, B., Troiani, A.: Gaussian mean field lattice gas. J. Stat. Phys. 170(6), 1161–1176 (2018)
22. Scoppola, B., Troiani, A., Veglianti, M.: Shaken dynamics on the 3d cubic lattice. Electron. J. Probab.

27, 1–26 (2022)

123

http://creativecommons.org/licenses/by/4.0/


On some features of quadratic…

23. Talagrand,M.:Meanfieldmodels for spin glasses:Volume I:Basic examples. Springer Science&Business
Media (2010)

24. Talagrand, M.: Mean field models for spin glasses: Volume II: Advanced Replica-Symmetry and Low
Temperature. Springer Science & Business Media (2011)

25. Waidyasooriya, H.M., Hariyama,M.: A gpu-based quantum annealing simulator for fully-connected ising
models utilizing spatial and temporal parallelism. IEEE Access 8, 67929–67939 (2020)

26. Wang, Y., Lü, Z., Glover, F., Hao, J.-K.: Probabilistic grasp-tabu search algorithms for the ubqp problem.
Comput. Oper. Res. 40(12), 3100–3107 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On some features of quadratic unconstrained binary optimization with random coefficients
	Abstract
	1 Introduction
	2 Main results
	3 Conjectures and numerical results
	3.1 Minimum and maximum per particle
	3.2 Structure of minimizer and maximizer
	3.3 Probability a particle belongs to the minimizer/maximizer of H

	4 Proofs
	4.1 Proof of Theorem 2.2
	4.2 Proof of Theorem 2.3

	5 Conclusions and open problems
	Acknowledgements
	References


