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Abstract
The optimalmass transport problemwas formulated centuries ago, but only recently there has
been a surge in its applications, particularly in functional inequalities, geometry, stochastic
analysis, and numerical solutions for partial differential equations.Quantumoptimal transport
aims to extend this success story to non-commutative systems, where density operators
replace probability measures. This brief review paper aims to describe the latest approaches,
highlighting their advantages, disadvantages, and open mathematical problems relevant to
applications.
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1 Introduction

Since the pioneeringworks ofMonge in the 18th century andKantorovich in the 20th century,
the problem of optimal mass transport has stimulated the development of tools in various
areas of mathematics, such as the analysis of partial differential equations, convex analysis,
operations research, as well as probability and statistics. In recent decades, there has been
an explosion of applications of optimal transport, with significant implications in the study
of functional inequalities, geometry and stochastic analysis, as well as numerical solution
schemes for partial differential equations [1].More recently, the increase in computing power
combined with iterative algorithms has allowed solving instances of large-scale and high-
dimensional optimal transport problems, with applications in machine learning and, more
generally, providing useful tools for analyzing large amounts of data [2].

Quantum optimal transport is a generalization of classical optimal transport where proba-
bility measures are replaced by suitable density operators on Hilbert spaces, which represent
the states of a quantum system. The simplest example concerns the process of transforming
a qubit (a quantum system in a two-dimensional space) from one state to another optimally,
minimizing a suitably defined transport cost. Currently, there are several approaches to for-
mulate themathematical problemof quantumoptimal transport, with applications in quantum
computing, quantum communication, and many body quantum systems.

The purpose of this review paper, following the author’s exposition at the XXII congress
of the Italian Mathematical Union, is to describe the most recent approaches, examining
their advantages and disadvantages, with a particular emphasis on the main currently open
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mathematical problems, and their relevance in applications. We intentionally try to keep the
exposition short, at the price of possibly losing some generality, but still introducing the
key concepts. In order to appeal to a broader audience, we provide a short introduction to
classical optimal transport theory and quantum mechanics (for finite dimensional systems).
We also refer to the upcoming monograph [3] for a collection of notes based on series of
lectures by leading experts on the subject. We aimed to give a fairly complete review of all
the main approaches to quantum optimal transport, although a natural focus is on those we
are currently working on.

The paper is structured as follows. Section 2 describes the basic facts and notation for
the classical optimal transport problem. Section 3 briefly recalls quantum systems and their
operations. Section 4 discusses the main approaches to quantum optimal transport and their
applications.

2 Classical optimal transport

In this section, we provide a brief overview of classical optimal transport theory, focusing on
finite sets and discrete measures. We refer interested readers to comprehensive monographs
such as [1, 2, 4–6] for a more in-depth treatment.

Monge

The roots of optimal transport theory can be traced back to Monge’s memoir, published in
1781 [7]. He laid the basis for a mathematical framework to study the optimal transportation
of goods or mass between locations. His key idea was to seek a transportation map that
minimizes the total cost (in his case, the distance) required to move mass from one location
to another. Although he considered only absolutely continuous distributions of mass (in
modern terms, densities with respect to the Lebesgue measure), to keep technicalities at a
minimum, we focus instead on the following discrete formulation of the optimal transport
problem. Given

1. finite setsX , Y , representing the source and target locations of masses (one can also have
X = Y),

2. a source distribution σ = (σ (x))x∈X (with σ(x) ≥ 0 for every x ∈ X )
3. a target distribution ρ = (ρ(y))y∈Y , (with ρ(y) ≥ 0 for every y ∈ Y)
4. and a cost function for moving a unit of mass from x ∈ X to y ∈ Y ,

c : X × Y → R, (x, y) �→ c(x, y), (1)

the solution toMonge’s problem is a function T : X → Y that transportsσ intoρ,minimizing
the total transport cost, defined as

∑

x∈X
c(x, T (x))σ (x). (2)

The condition that T transports σ into ρ can be stated as the constraint
∑

x∈T−1(y)

σ (x) = ρ(y), for everyy ∈ Y. (3)

By summation upon y ∈ Y , the total masses of the two distributionsmust be equal. Therefore,
after a simple scaling it is sufficient to consider only probability distributions.
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Kantorovich

Although the original formulation of the problem in terms of maps seems intuitive, it has
limitations. Trivial examples demonstrate that for general probability distributions σ and ρ,
transport maps satisfying (3) may not exist, for one is forced to “split” themass at one site and
locate it to different target sites. To address this challenge, L. Kantorovich extendedMonge’s
approach by introducing the concept of coupling π , i.e., a (joint) probability distribution on
X ×Y with marginals σ and ρ, or equivalently by a transport plan, where the “deterministic”
image T (x) ∈ Y is replaced by a probability distribution π(·|x) = π(x, ·)/σ (x) over the
target sites in Y . The set of couplings (or plans) is a closed and convex polytope and the
Kantorovich cost reads

∑

x∈X

∑

y∈Y
c(x, y)π(x, y) =

∑

x∈X
σ(x)

∑

y∈Y
c(x, y)π(y|x), (4)

that is linear with respect to the target variable π , hence the problem fits into the linear
programming framework. In fact, it was the study of this and related problems that eventually
lead to the birth of linear programming as a subject.

TheWasserstein distance

If X = Y and the cost c(x, y) = d(x, y) is a distance, Kantorovich’s optimal transport cost

W1(σ, ρ) = min
π

∑

x,y∈X
d(x, y)π(x, y) (5)

induces a distance between probability distributions over X , sometimes referred to as the
Earth Mover’s distance, but more broadly called Wasserstein distance, although the role of
Wasserstein is rather marginal [8]. It measures the minimum amount of distance needed to
shape the distribution σ into ρ, where splitting of masses is also allowed. Actually, for every
p ≥ 1, one can define the Wasserstein distance of order p as

Wp(σ, ρ) = min
π∈C(σ,ρ)

⎛

⎝
∑

x,y∈X
d(x, y)pπ(x, y)

⎞

⎠
1/p

, (6)

which also induces a distance. The case p = 2 has become particularly relevant in recent
years, starting from the seminal works by F. Otto [9] who, motivated by applications to evo-
lution equations (e.g., of porous media type), used it to develop a Riemannian-like structure
on the space of probabilities, also known as Otto’s calculus.

Duality

The concept of duality in linear programming problems is fundamental. Roughly, the dual
problem is obtained by taking the transpose of the matrix of coefficients defining the primal
problem, and exchanging the roles of variables and constraints. In the case of theWasserstein
distance of order 1 its expression is rather simple:

W1(σ, ρ) = max

{
∑

x∈X
f (x)(σ (x) − ρ(x)) : | f (x) − f (y)| ≤ d(x, y)∀x, y

}
, (7)
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i.e., we maximize the difference between the expectations of f with respect to the two
probabilities, among all functions f that are 1-Lipschitz with respect to the distance d .

Benamou-Brenier formula

Benamou and Brenier [10] noticed that, in many settings, e.g. for X = Y ⊆ R
d and the

Euclidean distance, one can one can naturally interpolate a coupling π between σ and ρ via a
continuous curve (μt )t∈[0,1] that evolves according to a continuity equation ∂tμt = div(btμt ),
where (bt )t∈[0,1] is a suitable velocity field, and then equivalently compute the quadratic
Wasserstein distance by minimizing a “kinetic energy” functional:

W 2
2 (σ, ρ) = min

(μt ,bt )t∈[0,1]

∫ 1

0

∫

Rd
|bt |2dμt dt . (8)

Similar expressions hold as well for different powers, e.g. for W1 one minimizes a length
functional. However, the case p = 2 is particulary rich in structure, since it can be a starting
point to develop Otto’s calculus rigorously.

One should notice however that typically such Benamou-Brenier formulas hold in a con-
tinuous setting, e.g., on manifolds or length metric spaces, as the support of μt will not be
confined to the original set X . Their extension to discrete spaces poses some issues, which
were first addressed by Maas [11] and later served as a basis for an analogue construction in
quantum settings.

Comparison with other distances

Clearly, the Wasserstein distance is only one (family) among many other distances between
probability distributions, such as the total variation distance, the Hellinger distance or the
Jensen-Shannon distance (modelled after the relative entropy). When compared with these
examples, the Wasserstein distance has the possible advantage of exploiting the underlying
geometry on the set X induced by the distance d . This indeed is a key feature that lead to
successful applications in a variety of fields, such as functional inequalities, PDEs (as gradient
flows), and geometry (synthetic Ricci curvature bounds) [1, 4]. More recent applications
include statistics and machine learning, where it quantifies differences between empirical
distributions, aids in data analysis, and serves as a discriminator in generative models [12].
Additionally, it enables geometric interpolation between probabilities and plays a role in
proving concentration of measure and other functional inequalities [2, 13].

Despite its usefulness, the Wasserstein distance has drawbacks. In high-dimensional
settings, the curse of dimensionality can affect the comparison of empirical distributions,
although this issue is not unique to the Wasserstein distance. Computationally, solving the
optimization problem for the Wasserstein distance can be expensive. However, approaches
such as adding strictly convex terms to the cost [14] or relaxing the Lipschitz condition [12]
have been proposed to address these challenges and improve practicality in various scenarios.

3 Quantum systems

Before we describe the theories of quantum optimal transport, we briefly recall some general
concepts and notation for quantum systems. Quantum mechanics provides a mathemati-
cal framework to describe the behavior of particles at the atomic and subatomic levels.
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Table 1 Classical notions and their quantum counterparts

Classical Quantum

X (finite set) H (finite dimensional)

x ∈ X |ψ〉 ∈ H
subset S ⊆ X subspace V < H

[0.5ex] f : X → C A : H → H linear; A ∈ L(H)

f ∗ A∗ : H → H, i.e., the adjoint of A

| f |2 A∗A
f : X → R observable A = A∗; A ∈ O(H)

f : X → [0,∞) A ∈ O(H), σ(A) ⊆ [0, ∞); A ≥ 0

[0.5ex]
∑

x∈X f (x) tr[A]
probability (ρ(x))x∈X state ρ ≥ 0, tr[ρ] = 1; ρ ∈ S(H)

Dirac delta x �→ 1x0=x pure state ρ = |ψ〉 〈ψ |
Cartesian product X × Y Tensor productH ⊗ K
Partial sum

∑
x f (x, y) Partial trace trH[A]

Shannon entropy Von Neumann entropy

S(ρ) = −∑
x ρ(x) log ρ(x) S(ρ) = − tr[ρ log ρ]

Relative entropy Quantum relative entropy

D(ρ||σ) = ∑
x ρ(x) ln(ρ(x)/σ (x)) S(ρ||σ) = tr[ρ(log ρ − log σ)]

Markov kernel (N (x, y))x∈X ,y∈Y Quantum channel � : L(H) → L(K)

A key aspect of this theory is the replacement of commutative objects, such as functions
and probabilities, with non-commutative ones represented by operators on complex Hilbert
spaces.

To keep the exposition simple, we focus on finite-dimensional systems as an analogy to
the case of finite sets and discrete measures, although some formulations of quantum optimal
transport are natural on infinite-dimensional spaces, corresponding to continuous variable
systems. We recommend any comprehensive monographs such as [15–19] for detailed
explanations.

Observables and states

Every quantum system is (postulated) to be associated with a Hilbert space, denoted as
H, equipped with a scalar product 〈·|·〉, conventionally anti-linear in the left argument. For
simplicity, we only describe the theory when H is finite dimensional, and use the same
symbol to refer to both the quantum system and its associated Hilbert space. Thus, up to
the choice of an orthonormal basis, one can for practical purposes identifyH with some C

n .
Following Dirac’s notation, we write |ψ〉 ∈ H and 〈ψ | ∈ H∗ for the corresponding linear
functional. One should think ofH as the quantum counterpart of a set, where classical objects
of probability and measure theory have their natural quantum counterpart, see Table 1.

The key concepts in quantum mechanics are two (and dual to each other):

1. Quantum observables, that correspond to classical functions or random variables and are
represented by self-adjoint operators A : H → H, where H is the associated Hilbert
space.
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2. Quantum states (also known as density operators), which correspond to classical prob-
ability distributions and are described by self-adjoint operators ρ : H → H that are
positive in the sense of quadratic forms and have unit trace tr[ρ] = 1.

We denote the set of linear operators from H to itself as L(H), the set of observables
as O(H), and the set of density operators as S(H), so that S(H) ⊆ O(H) ⊆ L(H). Given
a state ρ ∈ S(H) and an observable A ∈ O(H), the expected value of A is defined as
〈A〉ρ = tr[Aρ].

Given a state ρ ∈ S(H), the spectral theorem yields eigenvalues pi ∈ [0, 1] (counted with
multiplicity) such that

∑
i pi = tr[ρ] = 1. A state is pure if ρ = |ψ〉 〈ψ | ∈ S(H), i.e., its

spectrum is only {0, 1}. One may think of pure states as the quantum counterparts of Dirac
distributions at a point x0 ∈ X . A first difference between classical and quantum theories
is that pure states may nevertheless show uncertainty in the outcome of the measurement of
some observable A (that is the case when |ψ〉 is not an eigenvector of A): this is physically
interpreted by referring to the pure state as being in a quantum superposition – although
mathematically it simplymeans that |ψ〉 is a non-trivial linear combination of the eigenvectors
of A corresponding to different eigenvalues.

The simplest example of a non-trivial quantum system is the qubit space H = C
2, with

basis |0〉 = (1, 0), |1〉 = (0, 1) ∈ C
2. This provides the quantum analogue of a two-point

space X = {0, 1}. Observables and states are then naturally represented by 2 × 2 complex
Hermitian matrices. States can be put is natural correspondence with points in the unit ball
in R

3 (called Bloch ball) with pure states on its boundary (the Bloch sphere).

Composite systems

The quantum analogue of strings of bits of general length n is obtained via the theory of
composite systems. A composite quantum system H ⊗ K is formed by taking the tensor
product of two systemsH andK, with a natural definition of scalar product. Given two linear
operators A ∈ L(H), B ∈ L(K), one naturally induces an operator A ⊗ B on the composite
system. Conversely, the partial trace operator trK (overK) naturally maps operators onH⊗K
into operators on H, and similarly trH. When applied to observables or states, they provide
the non-commutative counterparts of partial integration, i.e., taking marginals, on a product
space. In particular, for � ∈ S(H ⊗K), one obtains the so-called reduced density operators
trK[�] ∈ S(H) and trH[�] ∈ S(K).

A second difference between classical and quantum theories is the fact that pure states
do not necessarily have pure reduced density operators: these states are called entangled and
realize non-classical correlations between the two quantum systems. Entangled states are
mathematically simple to construct, but they provide a key resource for possible quantum
advantage with respect to classical theories.

Quantum channels

The partial trace operators serve as fundamental examples of quantum channels (also called
quantum operations), which are the quantum counterparts of classical Markov operators
obtained through integration with respect to a probability kernel. A quantum channel from a
quantum system H to a system K can be defined as a linear, completely positive, and trace-
preserving operator � : L(H) → L(K). This means in particular that � maps states (on H)
into states (on K): this represents mathematically the result of a physical interaction of the
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systemH with a larger system, leading to a final state on a systemK (which may be equal to
H). Not all linear maps that preserve states are quantum channels, but only those represented
by a collection of so-called Kraus operators (Bi )i , where Bi : H → K is linear:

�(A) =
∑

i

Bi AB
∗
i for everyA ∈ L(H), (9)

and ∑

i

B∗
i Bi = 1H, (10)

where ∗ denotes the adjoint and 1H the identity operator.
An example of a linear transformation of quantum states that is not a quantum channel is

the transpose operation ρ �→ ρτ (i.e., by seeing ρ as a complex matrix). Indeed, although it
maps states into states, one can prove that the partial transpose operation,M⊗N �→ M⊗N τ

on any (non-trivial) joint system may fail to preserve states. However, if τ were an actual
quantum channel, then such property should hold as well on any joint system.

4 Quantum optimal transport

The needs of quantum computing and communication led to various quantum analogues of
distances between classical probability distributions. These include the trace distance, ana-
logue of the total variation distance, the quantum fidelity, which is analogue of the Hellinger
distance, and also the quantum relative entropy. Similarly to their classical counterparts,
they can be defined for general systems and can be computed or at least approximated with
relatively little effort, taking into account the system’s dimension. Furthermore, they are
not specific to any particular “geometry” in the underlying space, as they are invariant with
respect to any change of basis on H. More generally, they are are monotone with respect to
the action of any quantum channel � from H into K. Similar properties for the Wasserstein
distance are not true nor to be expected, and actually can be used to single out geometric
properties of the underlying space (e.g. a function F contracts the Wasserstein distance if
and only if it is 1-Lipschitz, but also curvature properties of the space can be revealed by the
contraction along the heat semigroup). This motivates the study of distances that are adapted
to specific settings.

Taxonomy

In recent years, various proposals for quantum optimal transport problems and induced
Wasserstein distances between quantum states have emerged, with diverse applications.
In chronological order, the earliest formulation can be traced back to Connes and Lott in
1992 [20], who defined the spectral distance in non-commutative geometry. Another early
approach was presented by Zyczkowski and Slomczynski in 1997 [21], where they computed
the Wasserstein distance between Husimi probability distributions associated with states in
Bosonic systems. In the context of free probability, Biane and Voiculescu proposed an ana-
logue of theWassersteinmetric in [22]. Since 2012,Maas andCarlen [23–25] have developed
a distance that formulates a quantum analogue of the classical Benamou-Brenier formula,
which provides a continuous-time formulation of the optimal transport problem. In 2013,
Agredo [26] proposed a Wasserstein distance that extends any given distance on a set of
basis vectors. In 2016, Golse, Mouhot, and Paul introduced a quantum Kantorovich problem
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Table 2 Classifying quantum
optimal transport Monge-Kantorovich

- distance between Husimi functions [21]

- transport via couplings [27]

- transport via channels [38]

Dual problem

- spectral distance [20]

- distance on a basis [26]

- Wasserstein distance of order 1 [34]

Benamou-Brenier

- quantum Benamou-Brenier [23]

using quantum couplings, with applications to semiclassical limits of many-body quantum
systems [27–30]. In 2021, De Palma and the author proposed a problem based on quantum
channels [31], which has found extensions [32] and recent applications in rate-distortion
theory [33]. A further different proposal by De Palma, Marvian, Lloyd and the author was
done in [34], generalizing somehow the dual point of view on n-qubit systems, and led to
applications in quantum state learning [35] and concentration inequalities [36] and the study
of limitations of variational quantum algorithms [37].

We can roughly classify all the proposals for quantum optimal transport according to the
point of view they most emphasize, in the equivalent formulations of classical optimal trans-
port, i.e., the Monge-Kantorovich problem, the dual formulation, or the Benamou-Brenier
formula, see Table 2. However, we point out that all these formulations define convex prob-
lems hence they necessarily admit dual versions. In the following subsections, we discuss in
more detail the above proposals.

Kantorovich problem

In [21] a metric for measuring distances between quantum states was defined, by computing
the Wasserstein distance between the Husimi distributions (or Q-functions) of two given
quantum states σ , ρ. The Husimi function is a probability distribution commonly used in
quantum optics to represent the phase space distribution of a state (e.g. of light), and can
be intepreted as the outcome of a specific quantum operation, which maps quantum states
into classical states. Therefore, slightly simplifying the approach from [21] into our setting
where Hilbert spaces are finite-dimensional, the proposal goes as follows: first, measure the
quantum states and record the possible outcomes with the associated (classical) probabilities;
then, solve an optimal transport problem between such classical probabilities. Despite this
simplicity, the authors argued that the resulting distance exhibits properties that may be
relevant for studying the semiclassical limit of quantum mechanics, and they illustrate their
case by computing the distance in various examples, e.g. coherent states, squeezed states and
between Fock states.

The second proposal that fits into this framework was first formulated in [27], with appli-
cations in the study of mean-field and classical limits of quantum evolutions. The main
problem they address is to quantify two effective limits for quantum systems: the mean-field
framework, which describes systems with many interacting particles (formally, a number
n → ∞ of particles), and the classical limit, where roughly speaking one lets the Planck’s
constant � → 0. Searching for bounds in terms of a suitable quantum optimal transport is
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motivated by well-known fact that Wasserstein distance quantifies mean-field limits of clas-
sical interacting particle systems, at least if the interaction potential is sufficiently smooth
and coercive. Golse, Mouhot and Paul in [27] introduced the following quantum analogue of
the left hand side of (4):

WGMP (σ, ρ)2 = min
�∈CGMP (σ,ρ)

tr [C�] , (11)

where σ , ρ are given source and target quantum states in H = L2(Rd), the cost

C = (Q ⊗ 1H − 1H ⊗ Q)2 + (P ⊗ 1H − 1H ⊗ P)2 (12)

is a sum of squared increments of position Q and momentum P observables and � belongs
to the set of quantum couplings CGMP (σ, ρ). These are defined as density operators on the
joint system H ⊗ H, with reduced density operators respectively given by σ and ρ. In this
case, the Hilbert space H is infinite-dimensional and the observables are unbounded self-
adjoint operators – in order to obey the canonical commutation relation [Q, P] = i�1H:
this is motivated by the application to particle systems, but one can also consider simpler
variants on finite dimensional systems or use bounded observables. If compared with the first
proposal, i.e., [21], we see here that the “transport” is performed at the quantum level, i.e., the
coupling directly involves the two quantum states. This allows for a better integration with
the bounds (of Grönwall type) they obtained studying the transport cost along the evolution
dynamics. However, differently from the distance between the Husimi functions, we notice
that WGMP (σ, σ ) may be strictly positive, hence it is not an actual distance. For a detailed
presentation, we refer to the notes in the upcoming monograph [3].

The third proposal, from [38], is based instead on the quantum analogue of the right hand
side of (4), using quantum channels instead of couplings. In the classical setting, it amounts
to replace couplings π(x, y) with plans π(y|x) = π(x, y)/σ (x), an operation however
that has no quantum counterpart. Indeed, due to entangled states, there is no analogue (in
general) of conditional distributions for quantum states. However, one can directly formulate
a minimization problem over quantum channels � that map σ into ρ, i.e., �(σ) = ρ, which
may be seen as the counterpart of the classical T
(σ ) = ρ. Denoting such set with CDT (σ, ρ),
one can setup a correspondence between such states and couplings, however, one does not
recover exactly the two marginals σ and ρ, but instead obtains σ τ (the transpose) and ρ.
Thus, CGMP (σ, ρ) and CDT (σ, ρ) differ by a partial transpose operation which we already
remarked above is not a quantum channel: this ultimately yields a different notion of distance,
even if the two definitions appear at the beginning very similar. In [3], it is noticed that, when
the cost observable C = ∑

i (Ri ⊗ 1 − 1 ⊗ Ri )
2 is a sum of squares, as in (12) but for a

general set of observables (Ri )i , by developing the square one obtains a direct formulation
in terms of channels:

W 2
DT (σ, ρ) = min

�(σ)=ρ

∑

i

(
tr[R2

i σ ] + tr[R2
i ρ] − 2 tr[Ri

√
σ �†(Ri )

√
σ ]) , (13)

It turns out that WDT shares many properties with WGMP , such as the upper and lower
bounds that are employed in the main results from [27] and the fact that WDT (σ, σ ) can
be strictly positive – hence it is not an actual distance. Furthermore one can show that the
identity channel � is always optimal when computing the distance from a state to itself, as
well as establish a “modified” triangle inequality

WDT (σ, ρ) ≤ WDT (σ, τ ) + WDT (τ, τ ) + WDT (τ, ρ). (14)
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We remark however that main conceptual difference between WGMP and WDT is the fact
that the optimal coupling can be interpreted in the latter case as a physical operation. It would
be interesting to understand whether employing WDT instead of WGMP in the problem of
classical limit of many body quantum systems may provide further relevant information.
Finally, we mention that WDT has recently found application in the study of quantum rate-
distortion theory [33], i.e., in quantifying fundamental bounds for lossy transmission rates
of quantum information.

Dual formulation

It is straightforward to check that the quantum optimal transport problems defined in the
previous subsection are convex optimization problems, and therefore they admit a dual for-
mulation – at least for the finite dimensional quantum systems: in the infinite dimensional
framework, duality is developed in [30] for WGMP . In this section, we focus however on
quantum optimal transport problems that are proposed from the very beginning in what
classically is the “dual” formulation.

In their seminal contribution, Lott and Connes [20] focused on the metric properties of
non-commutative geometry. They proposed a new notion of non-commutative metric space,
by introducing a triple (A,H, D), consisting of a Hilbert space H, an involutive algebra A
of operators on H, and a selfadjoint “Dirac” operator D on H. The key observation is that,
in smooth commutative settings, where A reduce to usual complex-valued functions, the
Lipschitz norm of a function f ∈ A is obtained as the norm of the commutator [D, f ] – the
commutator [D, ·] acting as a derivation. Recalling the classical duality (7), this leads to the
definition of the spectral distance between states (that are in this setting positive normalized
linear functionals acting on A)

WLC (σ, ρ) := sup
‖[D,A]‖≤1

〈A〉σ − 〈A〉ρ. (15)

They demonstrate that this framework captures various examples of spaces, including Rie-
mannian manifolds, finite spaces, spaces with non-integer Hausdorff dimension, group rings
of discrete subgroups of Lie groups, configuration spaces in supersymmetric quantum field
theory, and “quantum” tori. They develop a differential calculus on non-commutative spaces
that reproduces the differential forms calculus onRiemannianmanifolds, using operator theo-
retic tools instead of traditional differential and integral calculus. The connectionwith optimal
transport and in particular the Wasserstein distance of order 1 was explored in subsequent
works by other authors, see e.g. [39, 40].

As a second proposal of quantumWasserstein distance naturally formulated in dual terms,
we mention Agredo’s work [26]. Motivated by the problem of measuring deviations from
equilibrium in quantum Markov semigroups, i.e., one-parameter families of quantum chan-
nels, he defines a distance WA(σ, ρ) over the states σ, ρ ∈ S(H) starting from any chosen
orthonormal basis (ei )i∈I ofH and a (usual) distance function d : I × I → [0,∞) over the
index set of the basis. The definition resembles again (4) and (15), but the set of 1-Lipschitz
observables is given by those A ∈ O(H) such that

∥∥[|ei 〉〈e j | + |e j 〉〈ei |, A]∥∥ ≤ d(i, j) for everyi, j ∈ I . (16)

He shows that the distance between states that are diagonal with respect to the chosen basis,
hence can be identified with classical probability distributions over I , coincides with the
classical Wasserstein distance of order 1 with respect to the chosen distance d . This property
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may be useful when diagonal quantum states are used to codify classical probabilities, e.g.
when transmitting information, and does not hold in general for other distances – see e.g. [28]
for WGMP . The key result in [26] is a characterization of a quantum version of the detailed
balance condition for a quantum Markov semigroup in terms of an “entropy rate” defined in
terms of the resulting Wasserstein distance obtained by choosing an orthonormal basis that
diagonalizes the invariant state of the semigroup.

The third proposal that we include here is the quantum Wasserstein distance of order 1
for systems of n qubits first introduced in [34]. In this case, the system H = (C2)⊗n is
a composition of n single qubit systems (hence dim(H) = 2n), and the aim is to define
a distance between quantum states that looks like the classical Wasserstein distance with
respect to the Hamming distance between strings (also called Ornstein’s d̄ distance in the
stochastic processes literature). The distance can be naturally defined as a supremum as in
(15), for a suitable notion of 1-Lipschitz observables A ∈ O(H), which in this case reads as
the condition

2 max
i=1,...,n

min
A(i)

∥∥∥A − 1i ⊗ A(i)
∥∥∥ ≤ 1, (17)

where A(i) is any observable over the system where the i-th qubit has been removed (and 1i

denotes the identity over the single qubit systemat i).We refer also to a dedicated chapter in [3]
for a more detailed exposition. Here, we notice that the resulting distanceW1(σ, ρ) is enjoys
several desirable properties. For example, it can be upper and lower bounded by the trace
distance (but not uniformly with respect to n), it recovers the classicalWasserstein-Hamming
distance for diagonal states in the computational basis, and the von Neumann entropy is
continuous with an explicit modulus of continuity. Even more relevant for application is the
fact that the distance can be used as a tool to establish concentration inequalities for Lipschitz
observables [36] or as a cost in training quantum machine learning models [35]. As a further
relevant research direction, we mention that in [41] the re-normalized limit as n → ∞ was
studied, with possible applications to quantum dynamical systems.

Benamou-Brenier

We end this section by briefly discussing the approach put forward by Maas and Carlen in
[23, 24] (see also the dedicated chapter in [3]). Their objective is to introduce a metric on
quantum states that may allow for similar computations as in Otto’s calculus on probability
distributions, possibly leading to novel functional inequalities, in particular modified log-
Sobolev inequalities and contraction rates for quantumMarkov semigroup (hence in a setting
similar to Agredo’s [26]).

Otto’s calculus yields, for many ergodicMarkov diffusion semigroups in the commutative
setting, that one can interpret the semigroup as the gradient flow of the relative entropy with
respect to the (unique) invariant distribution. A similar situation may hold for quantum
Markov semigroups, where the quantum relative entropy (see Table 1) always decreases
along the semigroup. Maas and Carlen therefore search for a Wasserstein-like metric such
that the semigroup can be recovered as gradient flow, in a similar way. The key point is that,
once such a metric is defined, besides investigating its properties (in particular its geodesics),
if the quantum relative entropy happens to be convex along the geodesics, this would imply
log-Sobolev inequalities and contraction rates for the semigroup.

Without entering too much in technical details, they search for a quantum Benamou-
Brenier formula analogue to (8) and realize that one needs a suitable notion of continuity
equation and a Riemannian like metric on the tangent space to the quantum states (in order

123



D. Trevisan

to define the energy as the integral of the metric). Not all the metrics however play the same
role, since the key identity used in Otto’s calculus they need to replicate reads

�ρ = div(ρ∇ log ρ).

This is a trivial consequence of the chain rule in the Euclidean setting (or on manifolds),
but already not obvious in discrete settings, much less in the quantum case. Their metric
eventually is quite explicitly defined, although the computations in actual cases may become
a bit cumbersome, but see e.g. [23, section 6] for examples.

When compared with the previous approaches, it seems reasonable to conjecture that the
metric built from the Benamou-Brenier formula could appear as the length distance with
respect to some Kantorovich like problem. To the author’s knowledge, no connection has
been discovered so far. This may be possibly due the fact that the continuity equation defined
by Carlen andMaas does not seem in general to describe the physical evolution of a quantum
state, hence it cannot be lifted to a quantum channel. By comparison, the classical analogue
of this property is often known as the superposition principle and one can argue that it holds
in extreme generality [42].

5 Conclusion

We briefly presented old and new approaches to optimal transport problems for quantum
systems. Several alternatives have been explored, and possibly other ones will be introduced,
since this research field has become quite active: we mention also the recent works [32,
43–46]. Such diversity is a valuable resource, as different distances may prove better suited
for particular applications, whether in quantum state tomography, computing or machine
learning [35, 37, 47–50], or the analysis of quantum dynamical systems [51–53].

Some particularly promising directions for future research include the design of efficient
classical and quantum algorithms for computing such distances, as well as a deeper inves-
tigation into the geometric properties induced by the optimal transport structure. Analyzing
the structural characteristics of the optimizers themselves, and elucidating the connec-
tions between the various proposed frameworks, are also likely to lead to important new
developments.

Overall, the field continues to evolve and novel ideas will be built upon and applied,
enhancing our understanding and control of quantum systems and their dynamics.
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17. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: an Introduction to Quantum Entanglement.

Cambridge University Press, Cambridge (2017)
18. Holevo, A.S.: Quantum Systems, Channels, Information: a Mathematical Introduction. Walter de Gruyter

GmbH & Co KG, (2019)
19. Moretti, V.: Fundamental Mathematical Structures of Quantum Theory. Springer, Berlin (2019)
20. Connes, A., Lott, J.: The metric aspect of noncommutative geometry. In: New Symmetry Principles in

Quantum Field Theory, pp. 53–93. Springer, (1992)
21. Zyczkowski, K., Slomczynski, W.: The monge distance between quantum states. J. Phys. A 31(45), 9095

(1998)
22. Biane, P., Voiculescu, D.: A free probability analogue of the wasserstein metric on the trace-state space.

Geometric & Funct. Anal. GAFA 11(6), 1125–1138 (2001)
23. Carlen, E.A., Maas, J.: An analog of the 2-wasserstein metric in non-commutative probability under

which the fermionic fokker-planck equation is gradient flow for the entropy. Commun. Math. Phys.
331(3), 887–926 (2014)

24. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum markov semigroups with
detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017)

25. Carlen, E.A., Maas, J.: Non-commutative calculus, optimal transport and functional inequalities in
dissipative quantum systems. J. Stat. Phys. 178(2), 319–378 (2020)

123

http://creativecommons.org/licenses/by/4.0/


D. Trevisan

26. Agredo, J.: A wasserstein-type distance to measure deviation from equilibrium of quantum markov
semigroups. Open Syst. Inform. Dynam. 20(02), 1350009 (2013)

27. Golse, F., Mouhot, C., Paul, T.: On the mean field and classical limits of quantum mechanics. Commun.
Math. Phys. 343(1), 165–205 (2016)

28. Caglioti, E., Golse, F., Paul, T.: Quantum optimal transport is cheaper. J. Stat. Phys. 181, 149–162 (2020)
29. Golse, F., Paul, T.: Quantum and semiquantum pseudometrics and applications. Journal of Functional

Analysis (2022)
30. Caglioti, E., Golse, F., Paul, T.: Towards optimal transport for quantum densities. Annali della Scuola

Normale Superiore di Pisa, Classe di Scienze XXIV(4) (2023)
31. Gosson, M.A.: Quantum harmonic analysis. In: Quantum Harmonic Analysis. De Gruyter, (2021)
32. Duvenhage, R.: Quadratic wasserstein metrics for von neumann algebras via transport plans. J. Operator

Theory 88(2), 289–308 (2022)
33. Garmaroudi, H.M., Pradhan, S.S., Chen, J.: Rate-limited quantum-to-classical optimal transport: A lossy

source coding perspective. In: 2023 IEEE International Symposium on Information Theory (ISIT), pp.
1925–1930 (2023). IEEE

34. De Palma, G., Marvian, M., Trevisan, D., Lloyd, S.: The quantum wasserstein distance of order 1. IEEE
Trans. Inform. Theory 67(10), 6627–6643 (2021)

35. Kiani, B.T., De Palma, G., Marvian, M., Liu, Z.-W., Lloyd, S.: Learning quantum data with the quantum
earth moverâe™s distance. Quantum Sci. Technol. 7(4), 045002 (2022)

36. De Palma, G., Rouzé, C.: Quantum concentration inequalities. Ann. Henri Poincaré 23(9), 3391–3429
(2022)

37. De Palma, G., Marvian, M., Rouzé, C., Franca, D.S.: Limitations of variational quantum algorithms: a
quantum optimal transport approach. PRX Quantum 4(1), 010309 (2023)

38. De Palma, G., Trevisan, D.: Quantum optimal transport with quantum channels. Ann. Henri Poincaré
22(10), 3199–3234 (2021)

39. Rieffel, M.A.: Metrics on state spaces. Docum. Math. 4, 559–600 (1999)
40. D’andrea, F., Martinetti, P.: A view on optimal transport from noncommutative geometry. SIGMA.

Symmetry, Integrability and Geometry: Methods and Applications 6, 057 (2010)
41. De Palma, G., Trevisan, D.: The wasserstein distance of order 1 for quantum spin systems on infinite

lattices. Annales Henri Poincaré 24, 4237–4282 (2023)
42. Stepanov, E., Trevisan, D.: Three superposition principles: currents, continuity equations and curves of

measures. J. Funct. Anal. 272(3), 1044–1103 (2017)
43. Tóth,G., Pitrik, J.: Quantumwasserstein distance based on an optimization over separable states.Quantum

7, 1143 (2023)
44. Feliciangeli, D., Gerolin, A., Portinale, L.: A non-commutative entropic optimal transport approach to

quantum composite systems at positive temperature. J. Funct. Anal. 285(4), 109963 (2023)
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