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Abstract
Let m and n be two positive integers such that m ≤ n and n ≥ 3. In this article, by
the unstable K -theory method, we will study the homotopy types of gauge groups of the
principal SU (n)-bundles over CP3. Let Gl,k(CP3) be the gauge groups of the principal
SU (n)-bundles over CP3, we will partially classify the homotopy types of G0,k(CP3) by
showing that if there is a homotopy equivalence G0,k(CP3) � G0,k′(CP3) then we have
( 12 (n − 1)n(n + 1)(n + 2), k) = ( 12 (n − 1)n(n + 1)(n + 2), k′), when n is odd and ( 14 (n −
1)n(n + 1)(n + 2), k) = ( 14 (n − 1)n(n + 1)(n + 2), k′), when n is even.
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1 Introduction

Let G be a topological group and let M be a topological space. Let P → M be a principal
G-bundle over M . The gauge group of this principal G-bundle, denote by G(P), is the
topological group of automorphisms of P , where an automorphism of P is a G-equivariant
self map of P covering the identity map of M . The main problem is to classify the homotopy
types of G(P) as P ranges over all principal G-bundles over M for fixed G and M .

When G is a simple, simply-connected compact Lie group and M is a simply-connected
closed four-manifold, then there is a one-to-one correspondence between the set of isomor-
phism classes of principal G-bundles over M and the homotopy set [M, BG] ∼= Z. Thus
there are countably many equivalence classes of principal G-bundles over M . Each has a
gauge group, so there are potentially countably many distinct gauge groups. While there are
countably many inequivalent principal G-bundles, Crabb and Sutherland in [3] showed that
their gauge groups have only finitely many distinct homotopy types. Let Pk → M represent
the equivalence class of principal G-bundle whose second Chern class is k and Gk(M) be the
gauge group of this principal G-bundle. In recent years there has been considerable interest
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in determining the precise number of homotopy types of these gauge groups and explicit
classification results have been obtained. Let (a, b) be the their greatest common divisor of
two integers a and b. When M is a spin 4-manifold, Theriault [14] showed that there is a
homotopy equivalence

Gk(M) � Gk(S4) ×
t∏

i=1

�2G,

where t is the second Betti number of M . Thus the homotopy type of Gk(M) depends on the
special case Gk(S4). Many cases of homotopy types of Gk(S4) have been studied. When M
is a non-spin 4-manifold, So [11] showed that there is a homotopy equivalence

Gk(M) � Gk(CP2) ×
t−1∏

i=1

�2G.

Thus the homotopy type of Gk(M) depends on the special case Gk(CP2). Only a few of the
homotopy types of gauge groups over simply-connected non-spin four-manifolds have been
studied, which we mention some results in the following.

• U (n)-gauge groups [2];
• for G = SU (2), Gk(M) � Gk′(M) if and only if (6, k) = (6, k′) [7];
• if G = SU (3) then an integral homotopy equivalence Gk(M) � Gk′(M) implies that

(12, k) = (12k′), while (12, k) = (12k′) implies that there is a homotopy equivalence
Gk(M) � Gk′(M) after localizing rationally or at any prime [13];

• for G = Sp(2), if Gk(M) � Gk′(M) then (20, k) = (20, k′), and conversely, if (20, k) =
(20, k′) then Gk(M) � Gk′(M) when localized rationally or at any prime [12];

• for G = Sp(n), if there is a homotopy equivalence Gk(CP2) � Gk′(CP2) then we have
(4n(2n + 1), k) = (4n(2n + 1), k′) [8].

So in [10] studies the homotopy types of SU (n)-gauge groups over non-spin 4-manifolds and
shows that if Gk(CP2) is homotopy equivalent to Gk′(CP2), then ( 12 (n − 1)n(n + 1), k) =
( 12 (n − 1)n(n + 1), k′), if n is odd and ((n − 1)n(n + 1), k) = ((n − 1)n(n + 1), k′), if n is
even.

In this article, we will study the homotopy types of SU (n)-gauge groups over CP3 for
n > 2. This is the first time CP3 gauge groups have been studied. Note that there is a one-
to-one correspondence between the set of isomorphism classes of principal SU (n)-bundles
over CP3 and the homotopy set [CP3, BSU (n)] ∼= Z ⊕ Z. One copy of Z corresponds to
multiples of the map

ε1 : CP3 pinch−→ S6
ε1−→ BSU (n),

where ε1 generates π6(BSU (n)) ∼= Z. The other copy of Z corresponds to multiples of the
map

ε2 : CP3 → CP3/CP1 � S4 ∨ S6
pinch−→ S4

ε2−→ BSU (n),

where ε2 generates π4(BSU (n)) ∼= Z. Therefore the gauge groups are doubly-indexed, with
Gl,k(CP3) corresponding to the principal SU (n)-bundle determined by the map lε1 + kε2.
Since the classification results for Gl,k(CP3)with l 
= 0 are more complex, we will not study
the homotopy types of Gl,k(CP3) and only consider the case G0,k(CP3). We will partially
classify the homotopy types of G0,k(CP3) by using unstable K -theory to give a lower bound
for the number of homotopy types. We will prove the following theorem.
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Theorem 1.1 Let n > 2, if G0,k(CP3) is homotopy equivalent to G0,k′(CP3) then we have
⎧
⎨

⎩

( 1
2 (n − 1)n(n + 1)(n + 2), k

) = ( 1
2 (n − 1)n(n + 1)(n + 2), k′) if n is odd ,

( 1
4 (n − 1)n(n + 1)(n + 2), k

) = ( 1
4 (n − 1)n(n + 1)(n + 2), k′) if n is even .

2 Preliminaries

Let BSU (n) and BG0,k(CP3) be the classifying spaces of SU (n) andG0,k(CP3) respectively.
Also, let Map0,k(CP3, BSU (n)) and Map∗

0,k(CP3, BSU (n)) respectively be the compo-

nents of the freely continuous and pointed continuous maps between CP3 and BSU (n)

containing the map ε2. Observe that there is a fibration

Map∗
0,k(CP3, BSU (n)) → Map0,k(CP3, BSU (n))

ev→ BSU (n),

where ev evaluates a map at the basepoint ofCP3. By [1, 3], there is a homotopy equivalence

BG0,k(CP3) � Map0,k(CP3, BSU (n)).

The evaluation fibration therefore determines a homotopy fibration sequence

G0,k(CP3) → SU (n)
αk→ Map∗

0,k(CP3, BSU (n)) → BG0,k(CP3)
ev−→ BSU (n), (2.1)

where αk : SU (n) → Map∗
0,k(CP3, BSU (n)) is the boundary map.

In this article, we use the method in [10]. This article is organized as follows. In Sects. 3
and 4, respectively, in cases where n−m is an even integer and n−m is an odd integer, we first
study the group [CPm ∧ A, SU (n + 1)], where A is the quotient CPn−m+2/CPn−m . Then
we study the subgroup of [CPm ∧ A, SU (n)] which is then used in Sect. 5 to show that if
G0,k(CP3) � G0,k′(CP3) then ( 12 (n−1)n(n+1)(n+2), k) = ( 12 (n−1)n(n+1)(n+2), k′),
when n is odd and n ≥ 3 and ( 14 (n−1)n(n+1)(n+2), k) = ( 14 (n−1)n(n+1)(n+2), k′),
when n is even and n ≥ 4. In Sect. 5, we will prove Theorem 1.1.

3 The group [CPm ∧ A, SU(n + 1)]when n − m is even

Let A be the quotient CPn−m+2/CPn−m . That is,

A =
⎧
⎨

⎩

�2n−2m
CP2 � S2n−2m+2 ∪ e2n−2m+4 if n − m is even,

S2n−2m+2 ∨ S2n−2m+4 if n − m is odd.

Put X = CPm ∧ A. In this section, we first in case that n − m is an even integer and n ≥ 3
will study the group [X ,U (n + 1)] and then obtain the order of group [X ,U (n)].

Denote the symmetric space U (∞)/U (n + 1) by Wn+1. Recall that as an algebra

H∗(U (∞);Z) =
∧

(x1, x3, . . .),

H∗(BU (∞);Z) = Z[c1, c2, . . .],
H∗(U (n + 1);Z) =

∧
(x1, x3, . . . , x2n+1),
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where ci is the i-th universal Chern class and x2i+1 = σci , σ is the cohomology suspension
and x2i+1 has degree 2i + 1. Consider the projection π : U (∞) → Wn+1. As an algebra we
have that the cohomology of Wn+1 is given by

H∗(Wn+1;Z) =
∧

(x̄2n+3, x̄2n+5, . . .),

where π∗(x̄2i+1) = x2i+1. Consider the following fibre sequence

�U (∞)
�π−→ �Wn+1

δ−→ U (n + 1)
j−→ U (∞)

π−→ Wn+1. (3.1)

Applying the functor [X ,−] to fibration (3.1), there is an exact sequence as follows

[X ,�U (∞)] (�π)∗−→ [X ,�Wn+1] δ∗−→ [X ,U (n + 1)] j∗−→ [X ,U (∞)] π∗−→ [X ,Wn+1].
SinceWn+1 is (2n+2)-connected, for i ≤ 2n+2 we have πi (Wn+1) ∼= 0. By the homotopy
sequence of the fibration (3.1), we have π2n+3(Wn+1) ∼= Z and also

π2n+4(Wn+1) ∼=
⎧
⎨

⎩

0 if n is even,

Z2 if n is odd,
π2n+5(Wn+1) ∼=

⎧
⎨

⎩

Z if n is even,

Z ⊕ Z2 if n is odd.

Since �X is a CW -complex consisting only of odd dimensional cells, therefore we have

[X ,U (∞)] ∼= [�X , BU (∞)] ∼= K̃ 0(�X) ∼= 0.

Thus we get the following exact sequence

K̃ 0(X)
(�π)∗−→ [X ,�Wn+1] δ∗−→ [X ,U (n + 1)] → 0.

Therefore we have the following lemma.

Lemma 3.1 [X ,U (n + 1)] ∼= Coker(�π)∗ ∼= [X ,�Wn+1]/Im�π∗. �

We need to obtain the Im�π∗. Define a homomorphism

λ : [X ,�Wn+1] → H2n+2(X) ⊕ H2n+4(X),

by λ(α) = (α∗(a2n+2), α
∗(a2n+4)), where α ∈ [X ,�Wn+1], a2n+2 and a2n+4 are generators

of H2n+2(�Wn+1) ∼= Z and H2n+4(�Wn+1) ∼= Z respectively. Note that for i = n, n + 1,
a2i+2 = σ(x̄2i+3) ∈ H2i+2(�Wn+1). Since the cohomology class x̄2i+3 represents a map
x̄2i+3 : Wn+1 → K (Z, 2i + 3) then a2i+2 is represented by a loop map �x̄2i+3 : �Wn+1 →
�K (Z, 2i +3) ∼= K (Z, 2i +2). Taking the product of such maps for i = n, n+1, we obtain
a map

a = a2n+2 × a2n+4 : �Wn+1 → K (Z, 2n + 2) × K (Z, 2n + 4).

Now the map λ is given by the following composition

a∗ : [X ,�Wn+1] → H2n+2(X) ⊕ H2n+4(X).

In the following lemma we show that the homomorphism λ is monomorphism.

Lemma 3.2 The map λ is monic.

123



The homotopy types of SU(n)-gauge groups overCP3

Proof First, we need show to show the group [X ,�Wn+1] is a free abelian group. We recall
A = �2n−2m

CP2 = S2n−2m+2 ∪ e2n−2m+4. Consider the following cofibration sequence

S2m−1 → CPm−1 → CPm → S2m . (3.2)

Apply [�2n−2m
CP2∧−,�Wn+1] to the cofibration (3.2),weget the following exact sequence

[�2n−2m+1
CP2 ∧ CPm−1,�Wn+1] → [�2n

CP2,�Wn+1] → [CPm ∧ A,�Wn+1]
→ [�2n−2m

CP2 ∧ CPm−1,�Wn+1] → [�2n−1
CP2,�Wn+1].

We show that the terms [�2n−2m+1
CP2 ∧ CPm−1,�Wn+1] and [�2n−1

CP2,�Wn+1] are
zero. Consider the following cofibration sequences

S2m−3 → CPm−2 → CPm−1 → S2m−2, (3.3)

S3 → S2 → CP2 → S4. (3.4)

Now apply [�2n−2m+1
CP2 ∧−,�Wn+1] to the cofibration (3.3), we get the following exact

sequence

[�2n−1
CP2,�Wn+1] → [�2n−2m+1

CP2 ∧ CPm−1,�Wn+1]
→ [�2n−2m+1

CP2 ∧ CPm−2,�Wn+1]
→ [�2n−2

CP2,�Wn+1].
By apply [�2n−1−,�Wn+1] to the cofibration (3.4), we get the following exact sequence

π2n+2(�Wn+1) → π2n+3(�Wn+1) → [�2n−1
CP2,�Wn+1] → π2n+1(�Wn+1).

When n is even then we get [�2n−1
CP2,�Wn+1] is zero. When n is odd then we get the

following exact sequence

π2n+2(�Wn+1) ∼= Z
f→ π2n+3(�Wn+1) ∼= Z2 → [�2n−1

CP2,�Wn+1] → 0.

Since the map f sends f1 : S2n+3 → Wn+1 to f2 : S2n+4 �2n+1η−→ S2n+3 f1→ Wn+1, so the map
f is surjective. Thus we get [�2n−1

CP2,�Wn+1] is isomorphic to zero.
Again apply [�2n−2m+1−∧CPm−2,�Wn+1] to the cofibration (3.4), we get the following

exact sequence

[�2n−2m+5
CPm−2,�Wn+1] → [�2n−2m+1

CP2 ∧ CPm−2,�Wn+1]
→ [�2n−2m+3

CPm−2,�Wn+1]
→ [�2n−2m+4

CP2,�Wn+1],
Since�Wn+1 is (2n+1)-connected, we conclude that the terms [�2n−2m+5

CPm−2,�Wn+1]
and [�2n−2m+3

CPm−2,�Wn+1] are zero. Therefore [�2n−2m+1
CP2 ∧ CPm−2,�Wn+1]

is isomorphic to zero. Therefore [�2n−2m+1
CP2 ∧CPm−1,�Wn+1] is isomorphic to zero.

Thus there is an exact sequence

0 → [�2n
CP2,�Wn+1] → [CPm ∧ A,�Wn+1]

→ [�2n−2m
CP2 ∧ CPm−1,�Wn+1] → 0.
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We show the group [�2n−2m
CP2 ∧CPm−1,�Wn+1] is a free abelian group isomorphic to

Z. Again, apply [�2n−2m
CP2 ∧ −,�Wn+1] to the cofibration (3.3), we get the following

exact sequence

[�2n−2m+1
CP2 ∧ CPm−2,�Wn+1] → [�2n−2

CP2,�Wn+1]
→ [�2n−2m

CP2 ∧ CPm−1,�Wn+1]
→ [�2n−2m

CP2 ∧ CPm−2,�Wn+1].
Note that the first term [�2n−2m+1

CP2 ∧ CPm−2,�Wn+1] is zero, it is due to the con-
nectivity of �Wn+1. Similarly we have that the last term [�2n−2m

CP2 ∧ CPm−2,�Wn+1]
is also zero. By apply [�2n−2−,�Wn+1] to the cofibration (3.4), we can conclude that
[�2n−2

CP2,�Wn+1] ∼= π2n+2(�Wn+1) ∼= Z. Therefore we obtain [�2n−2m
CP2 ∧

CPm−1,�Wn+1] is isomorphic toZ. Also by [9], we know that [�2n
CP2,�Wn+1] ∼= Z⊕Z.

Therefore we obtain the exact sequence

0 → Z ⊕ Z → [CPm ∧ A,�Wn+1] → Z → 0,

thus by exactness we conclude that there is a splitting that gives [CPm ∧ A,�Wn+1] is a free
abelian group isomorphic to Z⊕Z⊕Z. Now, since the maps (a2n+2)

∗ : H2n+2(K (Z, 2n +
2)) → H2n+2(�Wn+1) and (a2n+4)

∗ : H2n+4(K (Z, 2n + 4)) → H2n+4(�Wn+1) are
isomorphism, the map a∗ : H j (K (Z, 2n + 2) × K (Z, 2n + 4)) → H j (�Wn+1) is also
isomorphism for j = 2n + 2 and 2n + 4. Since [X ,�Wn+1] is a free abelian group then the
map λ is monomorphism. ��

Recall that H∗(CPm) = Z[t]/(tm+1), where |t | = 2 and K (CPm) = Z[x]/(xm+1). Let
ζn be a generator of K̃ 0(S2n). Note that K̃ 0(X = CPm ∧ �2n−2m

CP2) is a free abelian
group generated by θi, j = ζn−m ⊗ xi ⊗ x j , where 1 ≤ i ≤ m and 1 ≤ j ≤ 2, with the
following Chern characters

chn+1(θ1,1) = chn−m(ζn−m)(chm(x) ⊗ ch1(x) + chm−1(x) ⊗ ch2(x))

= σ 2n−2m
(

1

m! t
m ⊗ t + 1

(m − 1)! t
m−1 ⊗ 1

2
t2

)
,

similarly

chn+2(θ1,1) = σ 2n−2m 1

m! t
m ⊗ 1

2
t2,

chn+1(θ1,2) = σ 2n−2m 1

(m − 1)! t
m−1 ⊗ t2, chn+2(θ1,2) = σ 2n−2m 1

m! t
m ⊗ t2,

...

chn+1(θm,1) = σ 2n−2m A1t
m ⊗ t, chn+2(θm,1) = σ 2n−2m A1t

m ⊗ 1

2
t2,

chn+1(θm,2) = 0, chn+2(θm,2) = σ 2n−2m A1t
m ⊗ t2,

where

chm(xm) = A1t
m = ch1x

∑

i1+···+im−1=m−1,
0≤i1≤i2≤···≤im−1

chi1x
i1 · · · chim−1x

im−1
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+ ch2x
2

∑

i1+···+ik=m−2,k=[m−2
2 ],

2≤i1≤i2≤···≤ik

chi1x
i1 · · · chik xik

+ ch3x
3

∑

i1+···+ik=m−3,k=[m−3
3 ],

3≤i1≤i2≤···≤ik

chi1x
i1 · · · chik xik + · · ·

+ chkx
k

∑

i1=m−k,k=[m2 ]
chi1x

i1 .

We will prove the following proposition.

Proposition 3.3 Im λ ◦ (�π)∗ is generated by αi, j , for 1 ≤ i ≤ m and 1 ≤ j ≤ 2, where

α1,1 = 1

2 · (m − 1)! (n + 1)!
(
2

m
, 1,

n + 2

m

)
,

α1,2 = 1

(m − 1)! (n + 1)!
(
0, 1,

n + 2

m

)
,

...

αm,1 = 1

2
(n + 1)!A1(2, 0, n + 2),

αm,1 = (n + 2)!A1(0, 0, 1).

Proof According to the definition of the map λ, we have

λ ◦ (�π)∗(θ1,1) = ((�π ◦ θ1,1)
∗(a2n+2), (�π ◦ θ1,1)

∗(a2n+4)).

The calculation of the first component is as follows

(�π ◦ θ1,1)
∗(a2n+2) = a2n+2 ◦ �π(θ1,1) = (n + 1)!chn+1(θ1,1)

= (n + 1)!
(

1

m! t
m ⊗ t + 1

(m − 1)! t
m−1 ⊗ 1

2
t2

)
σ 2n−2m,

and calculation the second component is as follows

(�π ◦ θ1,1)
∗(a2n+4) = a2n+4 ◦ �π(θ1,1) = (n + 2)!chn+2(θ1,1)

= (n + 2)!
(

1

m! t
m ⊗ 1

2
t2

)
σ 2n−2m .

Therefore we have

λ ◦ (�π)∗(θ1,1) =
(

1

m! (n + 1)!, 1

2 · (m − 1)! (n + 1)!, 1

2 · m! (n + 2)!
)

= 1

2 · (m − 1)! (n + 1)!
(
2

m
, 1,

n + 2

m

)
.

Similarly we can show

λ ◦ (�π)∗(θ1,2) =
(
0,

1

(m − 1)! (n + 1)!, 1

m! (n + 2)!
)

= 1

(m − 1)! (n + 1)!
(
0, 1,

n + 2

m

)
,
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...

λ ◦ (�π)∗(θm,1) =
(

(n + 1)!A1, 0,
1

2
(n + 2)!A1

)
= 1

2
(n + 1)!A1(2, 0, n + 2),

λ ◦ (�π)∗(θm,2) = (0, 0, (n + 2)!A1) = (n + 2)!A1(0, 0, 1).

��
Now consider the map αk∗ : [�A, SU (n)] → [�A, Map∗

0(CPm, BSU (n))]. Note that
the group [�A, SU (n)] is isomorphic to K̃ 1(�A) ∼= K̃ 0(�2A) ∼= Z⊕Z and is a free abelian
group generated by ξi = ζn−m+1 ⊗ xi for i = 1, 2. Let εm,n : S2m−1 → SU (n) represents
the generator of π2m−1(SU (n)) ∼= Z and li for i = 1, 2, be the adjoint of the composition

CPm ∧ �A
q∧1−→ �S2m−1 ∧ �A

�εm,n∧ξi−→ �SU (n) ∧ SU (n)
[ev,ev]−→ BSU (n),

where [ev, ev] is the Whitehead product. Let j : SU (n) → SU (n + 1) is the canonical
inclusion and H1 be the subgroup of [X ,U (n + 1)] generated by j ◦ l1 and j ◦ l2. We study
the group H1. First, we have the following proposition.

Proposition 3.4 There are lifts ξ̃i,k of j ◦ li for i = 1, 2, respectively,

�Wn+1

CPm ∧ A SU (n + 1)

ξ̃i,k

j ◦ li

such that (ξ̃i,k)∗(a2i+2) = (m − 1)!ktm ⊗�−1(ξi )
∗(x2i−2m+3), where � is the cohomology

suspension isomorphism.

Proof Hamanaka andKono in [4, 5] showed that there is a lift γ : �SU (n+1)∧SU (n+1) →
Wn+1 of [ev, ev] such that γ ∗(x̄2i+3) = ∑

j+k=i
�x2 j+1 ⊗ x2k+1. Let γ̃ be the following

composition

γ̃ : CPm ∧ �A
q∧1−→ �S2m−1 ∧ �A

� j◦kεm,n∧ j◦ξi−→ �SU (n + 1) ∧ SU (n + 1)
γ−→ Wn+1.

We have

γ̃ ∗(x̄2i+3) = (q ∧ 1)∗(� j ◦ kεm,n ∧ j ◦ ξi )
∗γ ∗(x̄2i+3)

= (q ∧ 1)∗(� j ◦ kεm,n ∧ j ◦ ξi )
∗
⎛

⎝
∑

j+k=i

�x2 j+1 ⊗ x2k+1

⎞

⎠

= (q ∧ 1)∗((m − 1)!�ku2m−1 ⊗ ( j ◦ ξi )
∗(x2i−2m+3))

= (m − 1)!ktm ⊗ (ξi )
∗(x2i−2m+3),

where u2m−1 is the generator of H2m−1(S2m−1). Let themap S : �CPm∧A −→ CPm∧�A
be the swapping map and the map ad : [�CPm ∧ A,Wn+1] −→ [CPm ∧ A,�Wn+1] be
the adjunction. We take ξ̃i,k : CPm ∧ A −→ �Wn+1 to be the adjoint of the following
composition

�CPm ∧ A
S−→ CPm ∧ �A

γ̃−→ Wn+1,
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that is ξ̃i,k : ad(γ̃ ◦ S), then ξ̃i,k is a lift of i ◦ li , for i = 1, 2. We get

(γ̃ ◦ S)∗(x̄2i+3) = S∗ ◦ γ̃ ∗(x̄2i+3) = S∗((m − 1)!ktm ⊗ (ξi )
∗(x2i−2m+3))

= (m − 1)!�ktm ⊗ �−1(ξi )
∗(x2i−2m+3),

thus we have (ξ̃i,k)
∗(a2i+2) = (m − 1)!ktm ⊗ �−1(ξi )

∗(x2i−2m+3). ��
Now let H1

′ be the subgroup generated by ξ̃1,k and ξ̃2,k . By Lemma 3.1, H1 is isomorphic
to H1

′/(Im(�π)∗ ∩ H1
′). We have

cn−m+2(ξ1) = (n − m + 1)!σ 2n−2m+2t, cn−m+3(ξ1) = 1

2
(n − m + 2)!σ 2n−2m+2t2,

cn−m+2(ξ2) = 0, cn−m+3(ξ2) = (n − m + 2)!σ 2n−2m+2t2.

According to the map of λ, we have λ(ξ̃1,k) = ((ξ̃1,k)
∗(a2n+2), (ξ̃1,k)

∗(a2n+4)). Note that
x2n−2m+3 = σ(cn−m+2) and x2n−2m+5 = σ(cn−m+3). The calculation of thefirst component
is as follows

(ξ̃1,k)
∗(a2n+2) = (m − 1)!ktm ⊗ �−2cn−m+2(ξ1) = (m − 1)!ktm ⊗ (n − m + 1)!σ 2n−2mt,

and computing the second component is as follows

(ξ̃1,k)
∗(a2n+4) = (m − 1)!ktm ⊗ �−2cn−m+3(ξ1)

= (m − 1)!ktm ⊗ 1

2
(n − m + 2)!σ 2n−2mt2.

Therefore λ(ξ̃1,k) = k((m − 1)!(n − m + 1)!, 0, 1
2 (m − 1)!(n − m + 2)!). Similarly we can

show that λ(ξ̃2,k) = k(0, 0, (m − 1)!(n −m + 2)!). Therefore H1
′ is generated by α and α′,

where

α = 1

2
k(m − 1)!(n − m + 1)!(2, 0, n − m + 2),

α′ = k(m − 1)!(n − m + 2)!(0, 0, 1).
Let t be the generator of H2(CPm), also u2n−2m+2 and u2n−2m+4 are generators of
H2n−2m+2(A) and H2n−2m+4(A), respectively. We denote an element atmu2n−2m+2 +
btm−1u2n−2m+4 + ctmζ2n−2m+4 belong to H2n+2(X) ⊕ H2n+4(X)by (a, b, c). Let B =
{(a, b, c)|a+ (m−1)b ≡ 0 mod 2}. Recall (2n+5)-skeleton of�Wn+1 is S2n+4∨ S2n+2.
Let (a, b, c) ∈ Imλ, then there exists f ∈ [X ,�Wn+1] such that

f ∗(a2n+2) = atmu2n−2m+2 + btm−1u2n−2m+4, f ∗(a2n+4) = ctmu2n−2m+4. (3.5)

We have Sq2(tm−1) = (m − 1)tm , Sq2(u2n−2m+2) = u2n−2m+4 and Sq2(a2n+2) = 0. Now
apply Sq2 to (3.5), we get a + (m − 1)b ≡ 0 mod 2. Thus we have the following lemma.

Lemma 3.5 Imλ ⊆ {(a, b, c)|a + (m − 1)b ≡ 0 mod 2}. �

In the following, we bring an application.
• SU (n)-gauge groups over CP3 where n is an odd integer and n ≥ 3
In the previous calculations, we now take m = 3. First, we need the following lemma.

Lemma 3.6 Imλ = {(a, b, c)|a + 2b ≡ 0 mod 2}.
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Proof Apply [�2n−,�Wn+1] to cofibration S3
η−→ S2

i−→ CP2 q−→ S4 to obtain the
exact sequence

π2n+5(Wn+1)
q∗

−→ [�2n
CP2,�Wn+1] i∗−→ π2n+3(Wn+1)

η∗
−→ π2n+4(Wn+1),

where η, i and q are Hopf map, inclusion map and the quotient map, respectively, and
the maps η∗, i∗ and q∗ are induced maps. We know that π2n+3(Wn+1) ∼= Z{t1} and also

π2n+4(Wn+1) ∼= Z2{t2}, where t2 : S2n+4 η−→ S2n+3 t1−→ Wn+1. Since η∗ sends t1 to t2 so
η∗ is a surjection map. Thus by exactness we can conclude that [�2n

CP2,�Wn+1] has a
Z-summand with its generator t3 that the map i∗ sends t3 to 2t1.

Now, let B = {(a, b, c)|a + 2b ≡ 0 mod 2}. By Lemma 3.5, we have Imλ ⊆ B. Put
u = (0, 0, 1), v = (0, 1, 1) and w = (2, 0, 0). For the converse case, we show that u, v and
w are in Imλ. Consider the following maps

φ1 : CP3 ∧ A
q−→ S6 ∧ S2n−2 ↪→ �Wn+1,

φ2 : CP3 ∧ A
q−→ CP3/CP1 ∧ S2n−2 � S2n+4 ∨ S2n+2 ↪→ �Wn+1,

φ3 : CP3 ∧ A
q1−→ S6 ∧ A � �2n

CP2 t3−→ �Wn+1,

where q and q1 are quotient maps andCP3/CP1 � S6∨ S4. We have λ(φ1) = u, λ(φ2) = v

and λ(φ3) = w, respectively. Thus Im (λ) = B. ��
Put β = {u, v, w}. We know that u, v, w ∈ Imλ and generators of Im λ, therefore β is a

basis for Im λ. Let p = (n + 1)n(n − 1). We have the following theorem.

Theorem 3.7 [X ,U (n + 1)] is isomorphic to Z 1
4 (n+1)! ⊕ Z 1

2 (n+2)! ⊕ Z 1
2 (n+1)!.

Proof ByProposition 3.3, Im λ◦(�π)∗ is generated byαi, j , where 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2.
Note that under basis β, Im λ ◦ (�π)∗ is generated by αi, j , where

α1,1 = (n − 2)!
(

1

12
(n − 1)p,

1

4
p,

1

12
p

)
, α1,2 = (n − 2)!

(
1

6
(n − 1)p,

1

2
p, 0

)
,

α2,1 = (n − 2)!
(
1

4
np,

1

2
p,

1

4
p

)
, α2,2 = (n − 2)!

(
1

2
np, p, 0

)
,

α3,1 = (n − 2)!((n + 2)p, 0, p), α3,2 = (n − 2)!(2(n + 2)p, 0, 0).

We represent the coordinate of Im λ ◦ (�π)∗ by the following matrix

M = (n − 2)!

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
12 (n − 1)p 1

4 p
1
12 p

1
6 (n − 1)p 1

2 p 0
1
4np

1
2 p

1
4 p

1
2np p 0

(n + 2)p 0 p

2(n + 2)p 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

that is, Im λ◦ (�π)∗ is generated by the row vectors of matrix M . By using the Smith normal
form, there exist invertible 6 × 6 and 3 × 3-matrices M ′ and M ′′ such that

M ′ · M · M ′′ = (n − 2)!
⎡

⎣
1
4 p 0 0
0 1

2 (n + 2)p 0
0 0 1

2 p

⎤

⎦
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where M ′ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−6 1 2 0 0 0
2 −1 0 0 0 0

−24 0 12 0 −1 0
−6 3 2 −1 0 0
−24 12 0 0 2 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
and M ′′ =

⎡

⎣
0 3 0
1 −(n − 1) −1
0 0 3

⎤

⎦. Therefore we can

conclude that

[X ,U (n + 1)] ∼= Z 1
4 (n+1)! ⊕ Z 1

2 (n+2)! ⊕ Z 1
2 (n+1)!.

��

We write |G| for the order of a group G. We will prove the following proposition.

Proposition 3.8 |H1| = 1
2 (n+2)(n+1)n(

1
2 (n+2)(n+1)n,k

) · 1
36 p(
1
36 p,k

) .

Proof We know that the subgroup H1
′ is generated by α and α′, where

α = k(2(n − 2)!, 0, (n − 1)!) = k(n − 2)!(2, 0, n − 1),

α′ = k(0, 0, 2(n − 1)!) = k(n − 2)!(0, 0, 2(n − 1)).

Note that under basis β, the subgroup H1
′ is generated by α = k(n − 2)!(n − 1, 0, 1) and

α′ = k(n − 2)!(2(n − 1), 0, 0). We represent the coordinate of H1
′ by the following matrix

MH1
′ = k(n − 2)!

[
n − 1 0 1

2(n − 1) 0 0

]
,

that is, H1
′ is generated by the row vectors of matrix MH1

′ . The new coordinate of H1
′

MH1
′ · M ′′ = k(n − 2)!

[
0 3(n − 1) 3
0 6(n − 1) 0

]
.

Let r = (n − 2)!, then we have
[ 1

3 0
−6 3

]
· kr

[
0 3(n − 1) 3
0 6(n − 1) 0

]
= kr

[
0 n − 1 1
0 0 −18

]
.

Put ρ = (0, (n − 1)kr , kr) and ρ′ = (0, 0,−18kr). Then we have

H1
′ = {xρ + yρ′ ∈ [X ,U (n + 1)]|x, y ∈ Z}.

If xρ + yρ′ and x ′ρ + y′ρ′ are the same modulo Im λ ◦ (�π)∗ then we have
⎧
⎨

⎩

(n − 1)xkr ≡ (n − 1)x ′kr mod 1
2 (n + 2)p,

18ykr ≡ 18y′kr mod 1
2 p.

These conditions are equivalent to
⎧
⎨

⎩

xk ≡ x ′k mod 1
2 (n + 2)(n + 1)n,

yk ≡ y′k mod 1
36 p.
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This implies that there are
1
2 (n+2)(n+1)n

( 12 (n+2)(n+1)n,k)
distinct value of x and

1
36 p

( 1
36 p,k)

distinct value of y,

so we have

|H1| =
1
2 (n + 2)(n + 1)n

( 1
2 (n + 2)(n + 1)n, k

) ·
1
36 p( 1

36 p, k
) .

��

4 The group [CPm ∧ A, SU(n + 1)]when n − m is odd

In this section, we in case that n − m is an odd integer and n ≥ 3 will study the group
[X ,U (n + 1)] and then obtain the order of group [X ,U (n)]. Recall the homomorphism
λ defined before in case one. To better distinguish the two cases we now relabel the
homomorphism as λ′. That is, λ′ : [X ,�Wn+1] → H2n+2(X) ⊕ H2n+4(X) is defined by
λ′(α) = (α∗(a2n+2), α

∗(a2n+4)). We have the following lemma.

Lemma 4.1 The map λ′ is monic.

Proof Recall A = S2n−2m+2 ∨ S2n−2m+4 and X = CPm ∧ A. We show the group
[X ,�Wn+1] is a free abelian group. We have the following isomorphism

[X ,�Wn+1] = [CPm ∧ (S2n−2m+2 ∨ S2n−2m+4),�Wn+1]
∼= [�2n−2m+2

CPm,�Wn+1] ⊕ [�2n−2m+4
CPm,�Wn+1].

Apply [�2n−2m+2−,�Wn+1] to the cofibration (3.2), we get the following exact sequence

[�2n−2m+3
CPm−1,�Wn+1] → π2n+2(�Wn+1) → [�2n−2m+2

CPm,�Wn+1]
→ [�2n−2m+2

CPm−1,�Wn+1].
Since�Wn+1 is (2n+1)-connected,weobtain that the first term [�2n−2m+3

CPm−1,�Wn+1]
and the last term [�2n−2m+2

CPm−1,�Wn+1] are zero. Thus [�2n−2m+2
CPm,�Wn+1]

is isomorphic to π2n+2(�Wn+1) ∼= π2n+3(Wn+1) ∼= Z. We prove that [�2n−2m+4
CPm,

�Wn+1] is also a free abelian group. For this, again apply [�2n−2m+4−,�Wn+1] to the
cofibration (3.2), we get the exact sequence

[�2n−2m+5
CPm−1,�Wn+1] →π2n+4(�Wn+1) → [�2n−2m+4

CPm,�Wn+1]
→ [�2n−2m+4

CPm−1,�Wn+1] → π2n+3(�Wn+1).

Apply [�2n−2m+4−,�Wn+1] and [�2n−2m+5−,�Wn+1] to the cofibration (3.3), we get
the following exact sequences

[�2n−2m+5
CPm−2,�Wn+1] → π2n+2(�Wn+1) → [�2n−2m+4

CPm−1,�Wn+1]
→ [�2n−2m+4

CPm−2,�Wn+1], (4.1)

[�2n−2m+6
CPm−2,�Wn+1] → π2n+3(�Wn+1) → [�2n−2m+5

CPm−1,�Wn+1]
→ [�2n−2m+5

CPm−2,�Wn+1], (4.2)

respectively. Consider the exact sequence (4.1). Since �Wn+1 is (2n + 1)-connected then
the first term and the last term are zero, thus [�2n−2m+4

CPm−1,�Wn+1] is isomorphic to
π2n+2(�Wn+1) ∼= Z. Now, consider the exact sequence (4.2). We know that when n is even
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then π2n+3(�Wn+1) is zero, so the group [�2n−2m+5
CPm−1,�Wn+1] is isomorphic to zero,

where by the exact sequence (4.1) we have that the group [�2n−2m+5
CPm−2,�Wn+1] is

zero. When n is odd then we prove that the group [�2n−2m+5
CPm−1,�Wn+1] is isomorphic

to Z2. Since n is odd, �Wn+1 has (2n + 5)-skeleton equal to S2n+2 ∨ S2n+4, so any map
�2n−2m+5

CPm−1 → �Wn+1 factors as

�2n−2m+5
CPm−1 q−→ S2n+3 l−→ S2n+2 ↪→ �Wn+1,

where q is the pinch map to the top cell and l is some map. Taking l to be the class of order 2
show that [�2n−2m+5

CPm−1,�Wn+1] ∼= Z2. Thus, in cases where n is even and n is odd,
we get the following exact sequences

0 → Z → [�2n−2m+4
CPm,�Wn+1] → Z → 0,

Z2
s1−→ Z ⊕ Z2 → [�2n−2m+4

CPm,�Wn+1] → Z → Z2,

respectively. We show that the map s1 is injective. For this, it needs to be shown that the
composite

S2n+4 s′−→ �2n−2m+5
CPm−1 s′′−→ �Wn+1

is nontrivial, where s′ is the suspension of the attaching map S2m−1 → CPm−1 with cofi-
bre CPm , and s′′ generates [�2n−2m+5

CPm−1,�Wn+1]. Note that by the connectivity of
�Wn+1, the map s′′ factors as the composite

�2n−2m+5
CPm−1 q−→ S2n+3 c′−→ �Wn+1

where q is the pinch map to the top cell and c′ is S2n+3 η−→ S2n+2 ↪→ �Wn+1. On the other

hand, the composite S2n+4 s′−→ �2n−2m+5
CPm−1 q−→ S2n+3 is homotopic to η since n is

odd. Therefore s′′ ◦ s′ is homotopic to S2n+4 η2−→ S2n+2 ↪→ �Wn+1, which is nontrivial.
Thus in both cases, by exactness we obtain [�2n−2m+4

CPm,�Wn+1] is a free abelian group
isomorphic to Z⊕Z. Therefore we can conclude that the group [X ,�Wn+1] is a free abelian
group that is isomorphic to Z ⊕ Z ⊕ Z. ��

Note that K̃ 0(X = CPm ∧ (S2n−2m+2 ∨ S2n−2m+4)) is a free abelian group generated by
θi, j = ζn−m+i ⊗ x j , where 1 ≤ i ≤ 2 and 1 ≤ j ≤ m, with the following Chern characters

chn+1(θ1,1) = σ 2n−2m+2 1

m! t
m, chn+1(θ2,1) = σ 2n−2m+4 1

(m − 1)! t
m−1,

chn+1(θ1,2) = σ 2n−2m+2B1t
m, chn+1(θ2,2) = σ 2n−2m+4C1t

m−1,

...

chn+1(θ1,m) = σ 2n−2m+2A1t
m, chn+1(θ2,m) = 0,

and also

chn+2(θ1,1) = 0, chn+2(θ2,1) = σ 2n−2m+4 1

m! t
m,

chn+2(θ1,2) = 0, chn+2(θ2,2) = σ 2n−2m+4B1t
m,

...

chn+2(θ1,m) = 0, chn+2(θ2,m) = σ 2n−2m+4A1t
m
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where

chm(x2) = B1t
m =

∑

i+ j=m,
1≤i≤[m2 ]

chi xch j x =
[m2 ]∑

k=1

1

k!(m − k)! t
m,

and chm−1(x2) = C1tm−1. We have the following proposition.

Proposition 4.2 Im λ′ ◦ (�π)∗ is generated by α′
i, j , for 1 ≤ i ≤ 2 and 1 ≤ j ≤ m, where

α′
1,1 = 1

m! (n + 1)!(1, 0, 0), α′
2,1 = 1

(m − 1)! (n + 1)!
(
0, 1,

n + 2

m

)
,

α′
1,2 = B1(n + 1)!(1, 0, 0), α′

2,2 = (n + 1)!(0,C1, (n + 2)B1),

...

α′
1,m = A1(n + 1)!(1, 0, 0), α′

2,m = A1(n + 2)!(0, 0, 1).
Proof Similar to the proof of Proposition 3.3, we get

λ′ ◦ (�π)∗(θ1,1) =
(

1

m! (n + 1)!, 0, 0
)

,

λ′ ◦ (�π)∗(θ2,1) =
(
0,

1

(m − 1)! (n + 1)!, 1

m! (n + 2)!
)

,

λ′ ◦ (�π)∗(θ1,2) = (B1(n + 1)!, 0, 0),
λ′ ◦ (�π)∗(θ2,2) = (0,C1(n + 1)!, B1(n + 2)!),
...

λ ◦ (�π)∗(θ1,m) = (A1(n + 1)!, 0, 0),
λ ◦ (�π)∗(θ2,m) = (0, 0, A1(n + 2)!).

��
Let H2 be the subgroup of [X ,U (n + 1)] generated by j ◦ l1 and j ◦ l2. By proof of

Proposition 3.4, there are lifts ξ̃i,k of j ◦ li for i = 1, 2, respectively, such that

(ξ̃i,k)
∗(a2i+2) = (m − 1)!ktm ⊗ �−1(ξi )

∗(x2i−2m+3).

Now let H2
′ be the subgroup generated by ξ̃1,k and ξ̃2,k . By Lemma 3.1, we know that the

subgroup H2 is isomorphic to H2
′/(Im(�π)∗ ∩ H2

′). We have

cn−m+2(ξ1) = (n − m + 1)!σ 2n−2m+4, cn−m+3(ξ1) = 0,

cn−m+2(ξ2) = 0, cn−m+3(ξ2) = (n − m + 2)!σ 2n−2m+6.

According to the map of λ′, we have λ′(ξ̃1,k) = ((ξ̃1,k)
∗(a2n+2), (ξ̃1,k)

∗(a2n+4)). The calcu-
lation of the first and second components are as follows

(ξ̃1,k)
∗(a2n+2) = (m − 1)!ktm ⊗ �−2cn−m+2(ξ1)

= (m − 1)!ktm ⊗ (n − m + 1)!σ 2n−2m+2,

(ξ̃1,k)
∗(a2n+4) = (m − 1)!ktm ⊗ �−2cn−m+3(ξ1) = 0.
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Therefore λ′(ξ̃1,k) = k((m − 1)!(n − m + 1)!, 0, 0). Similarly we can show that

λ(ξ̃2,k) = k(0, 0, (m − 1)!(n − m + 2)!).
Therefore H2

′ is generated by α and α′, where

α = k((m − 1)!(n − m + 1)!, 0, 0) = k(m − 1)!(n − m + 1)!(1, 0, 0),
α′ = k(0, 0, (m − 1)!(n − m + 2)!) = k(m − 1)!(n − m + 2)!(0, 0, 1).

Let B ′ = {(a, b, c)|(m − 1)b ≡ c mod 2}. We know that (2n + 5)-skeleton of �Wn+1 is
�2n

CP2 � S2n+2 ∪ e2n+4. Let (a, b, c) ∈ Imλ′, then there exists g ∈ [X ,�Wn+1] such
that

g∗(a2n+2) = atmζ2n−2m+2 + btm−1ζ2n−2m+4, g∗(a2n+4) = ctmζ2n−2m+4. (4.3)

Now apply Sq2 to (4.3). Since Sq2(tm−1) = (m−1)tm , Sq2(ζ2n−4) = 0 and Sq2(a2n+2) =
a2n+4, we get (m − 1)b ≡ c mod 2. Thus we have the following lemma.

Lemma 4.3 Imλ′ ⊆ {(a, b, c)|(m − 1)b ≡ c mod 2}. ��
In the following, we bring an application.

• SU (n)-gauge groups over CP3 where n is an even integer and n ≥ 4
Now, we take m = 3. We need the following lemma.

Lemma 4.4 Imλ′ = {(a, b, c)|2b ≡ c mod 2}.
Proof Let B ′ = {(a, b, c)|2b ≡ c mod 2}. By Lemma 4.3, we have Imλ′ ⊆ B ′. Put
u′ = (1, 0, 0), v′ = (0, 1, 0) and w′ = (0, 0, 2). For the converse case, we show that u′, v′
and w′ are in Im λ′. Consider the following maps

φ1 : CP3 ∧ A
q1−→ S6 ∧ A

p1−→ S6 ∧ S2n−4 ↪→ �Wn+1,

φ2 : CP3 ∧ A
q1−→ CP3/CP1 ∧ A

p1−→ S4 ∧ A
p2−→ S4 ∧ S2n−2 ↪→ �Wn+1,

φ3 : CP3 ∧ A
q1−→ S6 ∧ A

p2−→ S6 ∧ S2n−2 θ ′→ �Wn+1,

where p1 and p2 are pinch maps, q1 is quotient map and θ ′ is the generator of π2n+5(Wn+1).
We have λ′(φ1) = u′, λ′(φ2) = v′ and λ′(φ3) = w′, respectively. Thus Im(λ′) = B ′. ��

Put β ′ = {u′, v′, w′}. Since u′, v′, w′ ∈ Imλ′ and generators of Im λ′, therefore β ′ is a
basis for Im λ′. Recall p = (n + 1)n(n − 1). We have the following theorem.

Theorem 4.5 [X ,U (n + 1)] is isomorphic to Z 1
6 (n+1)! ⊕ Z 1

2 (n+1)! ⊕ Z 1
4 (n+2)!.

Proof By Proposition 4.2, Im λ′ ◦ (�π)∗ is generated by α′
i, j for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3.

Note that under basis β ′, Im λ′ ◦ (�π)∗ is generated by

α′
1,1 = (n − 2)!

(
1

6
p, 0, 0

)
, α′

2,1 = (n − 2)!
(
0,

1

2
p,

1

12
(n + 2)p

)
,

α′
1,2 = (n − 2)!

(
1

2
p, 0, 0

)
, α′

2,2 = (n − 2)!
(
0, p,

1

4
(n + 2)p

)
,

α′
1,3 = (n − 2)!(2p, 0, 0), α′

2,3 = (n − 2)!(0, 0, (n + 2)p).
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We represent the coordinate of Im λ′ ◦ (�π)∗ by the following matrix

N = (n − 2)!

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6 p 0 0

0 1
2 p

1
12 (n + 2)p

1
2 p 0 0

0 p 1
4 (n + 2)p

2p 0 0
0 0 (n + 2)p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Again, by using the Smith normal form, there exist invertible 6 × 6 and 3 × 3-matrices N ′
and N ′′ such that

N ′ · N · N ′′ = (n − 2)!
⎡

⎣
1
6 p 0 0
0 1

2 p 0
0 0 1

4 (n + 2)p

⎤

⎦

where N ′ =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 −2 0 1 0 0
3 0 −1 0 0 0
12 0 0 0 −1 0
0 −24 0 12 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎦
and N ′′ =

⎡

⎣
1 0 0
0 1 −1

2 (n + 2)
0 0 3

⎤

⎦. Therefore we can

conclude that

[X ,U (n + 1)] ∼= Z 1
6 (n+1)! ⊕ Z 1

2 (n+1)! ⊕ Z 1
4 (n+2)!.

��
We will prove the following proposition.

Proposition 4.6 |H2| = 1
4 (n+2)(n+1)n(

1
4 (n+2)(n+1)n,k

) · 1
36 p(
1
36 p,k

) .

Proof We know that the subgroup H2
′ is generated by α and α′, where

α = k(2(n − 2)!, 0, 0) = k(n − 2)!(2, 0, 0),
α′ = k(0, 0, 2(n − 1)!) = k(n − 2)!(0, 0, 2(n − 1)).

Now under basis β ′, the subgroup H2
′ is generated by α = k(n − 2)!(2, 0, 0) and α′ =

k(n − 2)!(0, 0, n − 1). We represent the coordinate of H2
′ by the following matrix

NH2
′ = k(n − 2)!

[
2 0 0
0 0 n − 1

]
.

The new coordinate of H2
′ is as follow

NH2
′ · N ′′ = k(n − 2)!

[
2 0 0
0 0 3(n − 1)

]
.

Recall r = (n − 2)!. Then we have
[
3 0
0 1

3

]
· kr

[
2 0 0
0 0 3(n − 1)

]
= kr

[
6 0 0
0 0 n − 1

]
.
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Similar to the discussion in the proof of Proposition 3.7, we can conclude

|H2| =
1
4 (n + 2)(n + 1)n

( 1
4 (n + 2)(n + 1)n, k

) ·
1
36 p( 1

36 p, k
) .

��
The two cases are now being treated simultaneously.

Consider the map of j∗ : [X , SU (n)] → [X ,U (n + 1)]. We put

O1 =
1
2 (n + 2)(n + 1)n

( 1
2 (n + 2)(n + 1)n, k

) ·
1
36 p( 1

36 p, k
) , O2 =

1
4 (n + 2)(n + 1)n

( 1
4 (n + 2)(n + 1)n, k

) ·
1
36 p( 1

36 p, k
)

Let P be the subgroup of [X , SU (n)] generated by l1 and l2. We have the following lemma.

Lemma 4.7 The following hold:

|P| =
⎧
⎨

⎩

O1 if n is odd,

O2 if n is even.

Proof By definition of P and H1, we have j∗(P) = H1. When n is odd then the statement
follows from Proposition 3.8 and when n is even then the statement follows from Proposition
4.6. ��

5 Proof of Theorem 1.1

Apply the functor [�A,−] to the fibration (2.1) to obtain the following exact sequence

[�A,G0,k(CP3)] (�ev)∗−→ [�A, SU (n)] (αk )∗−→ [�A, Map∗
0,k(CP3, BSU (n))]

→ [�A, BG0,k(CP3)] −→ [�A, BSU (n)],
where [�A, BSU (n)] ∼= K̃ 0(�A) ∼= 0. By adjunction, we have

[�A, Map∗
0,k(CP3, BSU (n))] ∼= [�A ∧ CP3, BSU (n)].

The exact sequence becomes

[�A,G0,k(CP3)] (�ev)∗−→ K̃ 0(�2A)
(αk )∗−→ [X , SU (n))] → [�A, BG0,k(CP3)] → 0.

Thus we get [�A, BG0,k(CP3)] ∼= Coker(αk)∗. By definitions of αk and P , the image of
(αk)∗ is P . Let n be odd. If T is the order of [X , SU (n)] then by exactness we have

T = |Im(αk)∗| · |Coker(αk)∗| = |P| · |Coker(αk)∗| = O1 · |Coker(αk)∗|.
Therefore |Coker(αk)∗| = T

O1
. Now suppose thatG0,k(CP3) � G0,k′(CP3). Then there is an

isomorphism of groups [�A, BG0,k(CP3)] ∼= [�A, BG0,k′(CP3)]. Thus |Coker(αk)∗| =
|Coker(αk′)∗|. That is, T

O1
= T

O1
′ , where

O1
′ =

1
2 (n + 2)(n + 1)n

( 1
2 (n + 2)(n + 1)n, k′) ·

1
36 p( 1

36 p, k
′) .
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Therefore we can conclude that if G0,k(CP3) � G0,k′(CP3) then
(
1

2
(n − 1)n(n + 1)(n + 2), k

)
=

(
1

2
(n − 1)n(n + 1)(n + 2), k′

)
.

If n is even, similarly we can conclude that if G0,k(CP3) � G0,k′(CP3) then
(
1

4
(n − 1)n(n + 1)(n + 2), k

)
=

(
1

4
(n − 1)n(n + 1)(n + 2), k′

)
. �
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