
Bollettino dell’Unione Matematica Italiana (2023) 16:81–102
https://doi.org/10.1007/s40574-022-00328-6

A Lanczos-like method for non-autonomous linear ordinary
differential equations

Pierre-Louis Giscard1 · Stefano Pozza2

Received: 7 January 2022 / Accepted: 28 May 2022 / Published online: 25 June 2022
© The Author(s), under exclusive licence to Unione Matematica Italiana 2022

Abstract
The time-ordered exponential is defined as the function that solves a system of coupled
first-order linear differential equations with generally non-constant coefficients. In spite of
being at the heart of much system dynamics, control theory, and model reduction problems,
the time-ordered exponential function remains elusively difficult to evaluate. The ∗-Lanczos
algorithm is a (symbolic) algorithm capable of evaluating it by producing a tridiagonalization
of the original differential system. In this paper, we explain how the ∗-Lanczos algorithm is
built from a generalization of Krylov subspaces, and we prove crucial properties, such as the
matching moment property. A strategy for its numerical implementation is also outlined and
will be subject of future investigation.

Keywords Lanczos algorithm · Matrix differential equations · Time-ordered exponential ·
Matching moments · Tridiagonal matrices · Ordinary differential equations

1 Introduction

Let t ′ ≥ t ∈ I ⊆ R be variables—called times for convenience—in an interval I , and
A(t ′) be an N × N time-dependent matrix. For a fixed t (usually t = 0), the time-ordered
exponential of A(t ′) is defined as the unique solution U(t ′, t) of the non autonomous system
of linear ordinary differential equations

A(t ′)U(t ′, t) = d

dt ′
U(t ′, t), U(t, t) = Id, t ′ ≥ t, (1.1)

These authors contributed equally to this work.

B Stefano Pozza
pozza@karlin.mff.cuni.cz

Pierre-Louis Giscard
giscard@univ-littoral.fr

1 Univ. Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62100 Calais, France

2 Faculty of Mathematics and Physics, Charles University, Prague 8, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40574-022-00328-6&domain=pdf
http://orcid.org/0000-0003-1529-8420

82 P. L. Giscard, S. Pozza

with Id the identity matrix. Note that t represents the time on which the initial condition
is given, and that the (unusual) notation U(t ′, t) will be useful later. If the matrix A com-
mutes with itself at all times, i.e., A(τ1)A(τ2) − A(τ2)A(τ1) = 0 for all τ1, τ2 ∈ I , then the

time-ordered exponential is given by the matrix exponential U(t ′, t) = exp
(∫ t ′

t A(τ) dτ
)

.

However, when A does not commute with itself at all times, the time-ordered exponential has
no known explicit form in terms of A and is rather denoted

U(t ′, t) = T exp

(∫ t ′

t
A(τ) dτ

)
,

with T the time-ordering operator [1]. This expression, introduced by Dyson in 1952, is more
a notation than an explicit form as the action of the time-ordering operator is very difficult to
evaluate. In particular, U(t ′, t) does not have a Cauchy integral representation, and it cannot
be evaluated via ordinary diagonalization. It is unlikely that a closed form expression for
U(t ′, t) in terms of A exists at all since even when A is 2× 2, U can involve very complicated
special functions [2, 3].

Evaluating time-ordered exponentials is a central question in the field of system dynamics,
in particular in quantum physics where A is the Hamiltonian operator. Situations where this
operator does not commute with itself are routinely encountered [4], and the departure of the
time-ordered exponential from a straightforward matrix exponential is responsible for many
peculiar physical effects [5–7]. Further applications are found via differential Lyapunov and
Riccati matrix equations, which frequently appear in control theory, filter design, and model
reduction problems [8–12]. Indeed, the solutions of such differential equations involve time-
ordered exponentials [13–16].

In [17], we introduced a tridiagonal form for the matrix A(t ′) from which it is possible to
express a time-ordered exponential via path-sum continued fractions of finite depth. More
precisely, the described procedure formulates each element of a time-ordered exponential
in terms of a finite and treatable number of scalar integro-differential equations. Such a
tridiagonal form is obtained by using the so-called ∗- Lanczos algorithm. The algorithm also
appeared in [18] as the paper’s motivation. Despite being at the core of results in [17] and
being the motivation of [18], the ∗-Lanczos algorithm construction and the proofs of related
main properties have yet not appeared in a scientific journal. The present paper aims to fill
a gap in the literature as it constructs the ∗-Lanczos algorithm from a (generalized) Krylov
subspace perspective, proves the relatedMatching Moment Property, introduces a bound for
the approximation error, and adds further results on the breakdown issue that may affect the
method.

1.1 Existing analytical approaches: Pitfalls and drawbacks

In spite of the paramount importance of the time-ordered exponential, it is usually omitted
from the literature onmatrix functions. Until 2015, only two families of analytical approaches
existed (numerical methods will be discussed in Sect. 5). The first one to have been devised
relies on Floquet theory and necessitates A(t ′) to be periodic (see, e.g., [4]). This method
transforms Eq. (1.1) into an infinite system of coupled linear differential equations with
constant coefficients. This system is then solved by a perturbative expansion at very low
order relying on the presence of a small parameter. Orders higher than 2 or 3 are typically too
involved to be treated. The second method was developed in 1954 by Wilhelm Magnus [19].
It produces an infinite series of nested commutators of A with itself at different times, the

123

A Lanczos-like method for non-autonomous linear. . . 83

ordinary matrix exponential of which provides the desired solution U(t ′, t). Magnus series
are very much in use nowadays [4], especially because they guarantee that the approximation
toU(t ′, t) is unitary in quantummechanical calculations [4]. Nevertheless, theMagnus series
for U(t ′, t) has a small convergence domain; see [20] and also [21–25].

In 2015, in the joint article [26], one of the authors presented a third method to obtain
time-ordered exponentials using graph theory and necessitating only the entries A(t ′)k� to be
bounded functions of time [26]. The method formulates any desired entry or group of entries
ofU(t ′, t) as a branched continued fraction of finite depth and breadth. It has been succesfully
used to solve challenging quantum dynamic problems, see e.g. [27, 28]. This approach is
unconditionally convergent and it provides exact expressions in terms of a finite number of
integrals and Volterra equations. However, it suffers from a complexity drawback. Indeed, it
requires one to find all the simple cycles and simple paths of a certain graph G. These are the
walks on G which are not self-intersecting. Unfortunately, the problem of enumerating such
walks is #P-complete1 [29], hindering the determination of exact solutions in large systems
that must be treated using a further property of analytical path-sums called scale-invariance
[28]. The present work with the results in [17, 18] solves this issue by transforming the
original matrix into a structurally simpler one on which the path-sum solution takes the form
of an ordinary, finite, continued fraction.

1.2 The non-Hermitian Lanczos algorithm: background

Consider the simpler case in which A is not time-dependent. The solution of (1.1) is given
by the matrix function exp(A(t ′ − t)) which can be numerically approximated in several
different ways (see, e.g., [30–32]). One possible method is the (non-Hermitian) Lanczos
algorithm. Computing the (k, �) element of exp(A) is equivalent to computing the bilinear
form eHk exp(A) e�, with ek, e� vectors from the canonical Euclidean basis, and eHk the usual
Hermitian transpose (here it coincides with the transpose since the vector is real). The non-
Hermitian Lanczos algorithm (e.g., [33–36]) gives, when no breakdown occurs, the matrices

Vn = [v0, . . . , vn−1], Wn = [w0, . . . ,wn−1],
whose columns are biorthonormal bases respectively for the Krylov subspaces

span{e�,A e�, . . . ,An−1 e�}, span{ek,AH ek, . . . , (AH)n−1 ek}.
Note that forAHermitian and k = �we can equivalently use theHermitian Lanczos algorithm
(getting Vn = Wn). The so-called (complex) Jacobi matrix Jn is the tridiagonal symmetric
matrix with generally complex elements obtained by

Jn = WH
n AVn .

As described in [35], we can use the approximation

eHk exp(A)e� ≈ eH1 exp(Jn)e1, (1.2)

which relies on the so-called matching moment property, i.e.,

eHk (A) j e� = eH1 (Jn) j e1, j = 0, 1, . . . , 2n − 1; (1.3)

1 The #P class is the class of problems equivalent to counting the number of accepting paths of a polynomial-
time non-deterministic Turingmachine. Problems in #P-complete are at least as hard asNP-complete problems.

123

84 P. L. Giscard, S. Pozza

see, e.g., [35, 36] for the Hermitian case, and [37, 38] for the non-Hermitian one. The
approximation (1.2) is a model reduction in two ways. First, the size of Jn is much smaller
than that of A. Second, the structure of the matrix Jn is much simpler since it is tridiagonal.

Given amatrixAwith size N , the Lanczos algorithm can be used as amethod for its tridiag-
onalization (see, e.g., [39]). Assuming no breakdown, the N th iteration of the non-Hermitian
Lanczos with input the matrix A and a couple of vectors v,w produces the tridiagonal matrix
JN , and the biorthogonal square matrices VN ,WN so that

A j = VN (JN) j WH
N , j = 0, 1, . . . , (1.4)

giving the exact expression

exp(A) = VN exp(JN)WH
N . (1.5)

Theorem 2.2 which we prove in this work extends this result to time-ordered exponentials.
The Lanczos approximation (1.2) is connectedwith several further topics, such as (formal)

orthogonal polynomials, Gauss quadrature, continued fractions, the moment problem, and
many others. Information about these connections and references to the related rich and vast
literature can be found, e.g., in the monographs [35, 36, 40] and the surveys [37, 38].

Inspired by approximation (1.2), the ∗-Lanczos algorithm produces a model reduction of
a time-ordered exponential by providing a time-dependent tridiagonal matrix Tn satisfying
properties analogous to the ones described above [17]. Differently from the classical case,
the ∗-Lanczos algorithm works on vector distribution subspaces and it has to deal with a
non-commutative product.

The time-dependent framework in which the proposed method works is much more com-
plicated than the time-independent Krylov subspace approximation given by the Lanczos
algorithm. In this paper, we will not deal with the behavior of the ∗-Lanczos algorithm when
taking into account approximations and finite-precision arithmetic problems.

1.3 Outline

Thework is organized as follows: In Sect. 2, we build the ∗-Lanczos algorithm. The algorithm
relies on a non-commutative ∗-product between generalized functions of two-time variables,
whichwedescribe in Sect. 2.1. Then, in Sect. 2.2,we state themain result, Theorem2.1,which
underpins the Lanczos-like procedure. Theorem 2.2 establishes that the first 2n ∗-moments
of a certain tridiagonal matrix Tn match the corresponding ∗-moments of the original matrix
A. Theorem 2.1 is proved with the tools developed in the subsequent Sect. 2.3. Section 3 is
devoted to the convergence and breakdown properties of the algorithm, while examples of its
use are given in Sect. 4. In Sect. 5 we outline a way to implement the Lanczos-like procedure
numerically and we evaluate its computational cost. Section 6 concludes the paper.

2 The ∗-Lanczos algorithm
2.1 The ∗-product and ∗-moments

In this section, we recall the definition and the main properties of the product introduced in
[18, Section 1.2].

123

A Lanczos-like method for non-autonomous linear. . . 85

Let t and t ′ be two real variables in a real time interval I . We consider the class D(I) of
all distributions which are linear superpositions of Heaviside theta functions and Dirac delta
derivatives with smooth coefficients over I 2. That is, a distribution d is in D(I) if and only
if it can be written as

d(t ′, t) = d̃(t ′, t)�(t ′ − t) +
N∑
i=0

d̃i (t
′, t)δ(i)(t ′ − t), (2.1)

where N ∈ N is finite, �(·) stands for the Heaviside theta function (with the convention
�(0) = 1) and δ(i)(·) is the i th derivative of the Dirac delta distribution δ = δ(0). Here and
from now on, a tilde over a function (e.g., d̃(t ′, t)) indicates that it is an ordinary function
smooth in both t ′ ∈ I and t ∈ I . Note that we consider distributions as defined by Schwartz
([41]). Hence a distribution f ∈ D(I) should be interpreted as a linear functional applied to
test functions.

We can endow the class D(I) with a non-commutative algebraic structure upon defining
a product between its elements. For f1, f2 ∈ D(I) we define the convolution-like ∗ product
between f1(t ′, t) and f2(t ′, t) as

(
f2 ∗ f1

)
(t ′, t) :=

∫ ∞

−∞
f2(t

′, τ) f1(τ, t) dτ, (2.2)

that has as identity element the Dirac delta distribution, 1∗ := δ(t ′ − t). When f (t ′, t) =
f (t ′ − t) has bounded supporting set, the ∗-product f ∗ g (and g ∗ f) is equivalent to the
convolution product for distributions defined by Schwartz ([42, § 11] and [41, Chapter VI]).
Since δ(i)(t ′ − t) has bounded supporting set, given f ∈ D(I), the ∗-product δ(i)(t ′ − t) ∗ f
and f ∗δ(i)(t ′− t) are well-defined and are both elements of D(I); see [18] for further details.
Moreover, it holds

δ(i)(t ′ − t) ∗ δ(j)(t ′ − t) = δ(j)(t ′ − t) ∗ δ(i)(t ′ − t) = δ(i+ j)(t ′ − t);
�(t ′ − t) ∗ δ′(t ′ − t) = δ′(t ′ − t) ∗ �(t ′ − t) = δ(t ′ − t).

Consider the subclass Sm�(I) of D(I) comprising those distributions of the form

f (t ′, t) = f̃ (t ′, t)�(t ′ − t). (2.3)

For f1, f2 ∈ Sm�(I), the ∗-product between f1, f2 simplifies to

(
f2 ∗ f1

)
(t ′, t) =

∫ ∞

−∞
f̃2(t

′, τ) f̃1(τ, t)�(t ′ − τ)�(τ − t) dτ,

= �(t ′ − t)
∫ t ′

t
f̃2(t

′, τ) f̃1(τ, t) dτ,

whichmakes calculations involving such functions easier to carry out and shows that Sm�(I)
is closed under ∗-multiplication. Together with the arguments above, this proves that D(I)
is closed under ∗-multiplication. Hence, for f ∈ D(I), we can define its kth ∗-power f ∗k
as the k ∗-products f ∗ f ∗ · · · ∗ f , with the convention f ∗0 = δ(t ′ − t). First examples of
∗-powers are

�∗k(t ′ − t) = (t ′ − t)k−1

(k − 1)! �(t ′ − t); (2.4)

(
δ(j)(t ′ − t)

)∗k = δ(k j)(t ′ − t). (2.5)

123

86 P. L. Giscard, S. Pozza

Note that, for members of Sm�(I), the ∗-product reduces exactly to the Volterra compo-
sition, a product between smooth functions of two-variables developed by Volterra and Pérès
[43].

Wewill not discuss technicality associatedwith the ∗-product by and between distributions
such as Dirac delta derivatives since it would bring us too far from the paper’s goals. More
details on the distributions themselves can be found in [41] while illustrative examples of
∗-products involving such distributions can be found in [18].

The ∗-product extends directly to distributions of D(I)whose smooth coefficients depend
on less than twovariables. Indeed, consider a generalized function f3(t ′, t) = f̃3(t ′)δ(i)(t ′−t)
with i ≥ −1 and δ(−1) = �. Then

(
f3 ∗ f1

)
(t ′, t) = f̃3(t

′)
∫ +∞

−∞
δ(i)(t ′ − τ) f1(τ, t) dτ,

(
f1 ∗ f3

)
(t ′, t) =

∫ +∞

−∞
f1(t

′, τ) f̃3(τ)δ(i)(τ − t) dτ,

where f1(t ′, t) ∈ Sm�(I) is as defined on p. 6. Hence the variable of f̃3(t ′) is treated as the
left variable of a smooth function of two variables. This observation extends straightforwardly
should f̃3 be constant and, by linearity, to any distribution of D(I).

The ∗-product also naturally extends to matrices whose entries are distributions of D(I).
Consider two of such matrices A1(t ′, t) and A2(t ′, t) ∈ D(I)N×N then

(
A2 ∗ A1

)
(t ′, t) :=

∫ +∞

−∞
A2(t

′, τ)A1(τ, t) dτ,

where the sizes of A1,A2 are compatible for the usual matrix product (here and in the follow-
ing, we omit the dependency on t ′ and t when it is clear from the context) and the integral is
treated component-wise. As earlier, the ∗-product is associative and distributive with respect
to the addition, but it is non-commutative. The identity element with respect to this product
is now Id∗ := Id 1∗, with Id the identity matrix of appropriate size.

Given a square matrix A(t ′, t) composed of elements fromD(I), we define the k-thmatrix
∗-power A∗k as the k ∗-products A ∗ A ∗ · · · ∗ A. In particular, by (2.4) we get the bound

‖A∗k(t ′, t)‖� ≤
⎛
⎜⎝ sup

τ≥ρ
τ,ρ∈I

‖A(τ, ρ)‖�

⎞
⎟⎠

k

(t ′ − t)k−1

(k − 1)! �(t ′ − t); t ′, t ∈ I ,

with ‖ · ‖� any induced matrix norm. As a consequence, the ∗-resolvent of any matrix
depending on at most two variables is well defined, as R∗(A) := (Id∗ − A)∗−1 = Id∗ +∑

k≥1 A
∗k exists provided every entry of A is bounded for all t ′, t ∈ I (see [26]). Then

U(t ′, t) = �(t ′ − t) ∗ R∗(A)(t ′, t) (2.6)

is the time-ordered exponential of A(t ′, t); see [26]. We recall that �(·) here stands for the
Heaviside function under the convention that�(0) = 1. Note that time-ordered exponentials
are usually presented with only one-time variable, corresponding to U(t) = U(t, 0). Yet, in
general U(t ′, t) �= U(t ′ − t, 0).

In the spirit of the Lanczos algorithm, given a time-dependent matrix A(t ′, t), we will
construct a matrix Tn(t ′, t) of size n ≤ N with a simpler (tridiagonal) structure and so that,
fixing the indexes k, �, it holds

(
A∗ j (t ′, t)

)
k,� = (T∗ j

n (t ′, t)
)
1,1, for j = 0, . . . , 2n − 1, t ′, t ∈ I ; (2.7)

123

A Lanczos-like method for non-autonomous linear. . . 87

compare it with (1.3). In particular, when n = N property (2.7) stands for every j ≥ 0,
giving

R∗(A)k,� = R∗(TN)1,1.

Hence the solution is given by the path-sum techniques exploiting the fact that the graph
having TN as its adjacencymatrix admits self-loops.More in general, given time-independent
vectors v,w we call the j th ∗-moment of A, v,w the scalar function wH (A∗ j (t ′, t)) v, for
j ≥ 0 (note that when the * product symbol is omitted, it stands for the usual matrix-vector
product). Then property (2.7) is an instance of the more general case

wH (A∗ j (t ′, t)) v = eH1 (T∗ j
n (t ′, t)) e1, for j = 0, . . . , 2n − 1, t ′, t ∈ I .

2.2 Building up the ∗-Lanczos process

Given a doubly time-dependent matrix A(t ′, t) = Ã(t ′)�(t ′ − t) and k+1 scalar generalized
functions α0(t ′, t), α1(t ′, t), . . . , αk(t ′, t) ∈ D(I) which play the role of the coefficients, we
define the matrix ∗-polynomial p(A)(t ′, t) of degree k as

p(A)(t ′, t) :=
k∑
j=0

(
A∗ j ∗ α j

)
(t ′, t);

moreover, we define the corresponding dual matrix ∗-polynomial as

pD(A)(t ′, t) :=
k∑
j=0

(
ᾱ j ∗ (A∗ j)

)
(t ′, t),

where, in general, d̄ is the conjugated value of d ∈ D(I) and it is defined by conjugating
the functions d̃ and d̃i in (2.1). Let v be a time independent vector, we can define the set of
time-dependent vectors p(A)v, with p a matrix ∗-polynomial. Such a set is a vector space
with respect to the product ∗ and with scalars α j (t ′, t) (the addition is the usual addition
between vectors). Similarly, given a vector wH not depending on time, we can define the
vector space given by the dual vectors wH pD(A). In particular, we can define the ∗-Krylov
subspaces

Kn(A, v)(t ′, t) := { (p(A)v) (t ′, t) | p of degree at most n − 1
}
,

KD
n (A,w)(t ′, t) :=

{ (
wH pD(A)

)
(t ′, t) | p of degree at most n − 1

}
.

The vectors v,Av, . . . ,A∗(n−1)v and wH ,wHA, . . . ,wHA∗(n−1) are bases respectively
for Kn(A, v) and KD

n (A,w). We aim to derive ∗-biorthonormal bases v0, . . . , vn−1 and
wH
0 , . . . ,wH

n−1 for the ∗-Krylov subspaces, i.e., so that

wH
i ∗ v j = δi j 1∗, (2.8)

with δi j the Kronecker delta.
Assume that wHv = 1, we can use a non-Hermitian Lanczos like biorthogonalization

process for the triplet (w,A(t ′, t), v). We shall call this method the ∗-Lanczos process. The
first vectors of the biorthogonal bases are

v0 = v 1∗, wH
0 = wH1∗,

123

88 P. L. Giscard, S. Pozza

so that wH
0 ∗ v0 = 1∗. Consider now a vector v̂1 ∈ K2(A, v) given by

v̂1 = A ∗ v0 − v0 ∗ α0 = Av − vα0.

If the vector satisfies the ∗-biorthogonal condition wH
0 ∗ v̂1 = 0, then

α0 = wH
0 ∗ A ∗ v0 = wHA v. (2.9)

Similarly, we get the expression

ŵH
1 = wH

0 ∗ A − α0 ∗ wH
0 = wHA − α0w

H ,

with α0 given by (2.9). Hence the ∗-biorthonormal vectors are defined as

v1 = v̂1 ∗ β∗−1
1 , w1 = ŵ1,

with β1 = ŵH
1 ∗ v̂1 and β∗−1

1 its ∗-inverse, i.e., β∗−1
1 ∗ β1 = β1 ∗ β∗−1

1 = 1∗. We give
sufficient conditions for the existence of such ∗-inverses below. Assume now that we have
the ∗-biorthonormal bases v0, . . . , vn−1 and wH

0 , . . . ,wH
n−1. Then we can build the vector

v̂n = A ∗ vn−1 −
n−1∑
i=0

vi ∗ γi ,

where the γi are determined by the conditionwH
j ∗ v̂n = δ jn1∗, for j = 0, . . . , n−1, giving

γ j = wH
j ∗ A ∗ vn−1, j = 0, . . . , n − 1.

In particular, since wH
j ∗A ∈ KD

j+1(A,w) we get γ j = 0 for j = 0, . . . , n − 3. This leads to
the following three-term recurrences for n = 1, 2, . . . using the convention v−1 = w−1 = 0,

wH
n = wH

n−1 ∗ A − αn−1 ∗ wH
n−1 − βn−1 ∗ wH

n−2, (2.10a)

vn ∗ βn = A ∗ vn−1 − vn−1 ∗ αn−1 − vn−2, (2.10b)

with the coefficients given by

αn−1 = wH
n−1 ∗ A ∗ vn−1, βn = wH

n ∗ A ∗ vn−1. (2.11)

Should βn not be ∗-invertible, we would get a breakdown in the algorithm, since it would
be impossible to compute vn . We developed a range of general methods to determine the
∗-inverse of functions of two-time variables which are gathered in [18]. These methods
constructively show the existence of β∗−1

n almost everywhere on I under the following
conditions:

• βn is not identically zero in I 2;
• βn ∈ Sm�(I).

The question of whether all αn, βn ∈ Sm�(I) was settled affirmatively in [17].
Since the issue of breakdowns of the ∗-Lanczos algorithm is connected with the behavior

of (usual) Lanczos techniques, we proceed as it is common when working with the non-
Hermitian Lanczos algorithm. Thus, from now on, we assume all βn to be ∗-invertible, while
we come back to the issue of breakdowns in Sect. 3.2.

The ∗-orthogonalization process described above defines the ∗-Lanczos algorithm (Algo-
rithm 1).

123

A Lanczos-like method for non-autonomous linear. . . 89

Input: A complex time-dependent matrix A = Ã(t ′)�(t ′ − t), and time-independent complex

vectors v,w such that wH v = 1.
Output: Vectors v0, . . . , vn−1 and vectors w0, . . . ,wn−1 spanning respectively Kn(A, v),
Kn(A,w) and satisfying the ∗-biorthogonality conditions (2.8). The coefficients α0, . . . , αn−1
and β1, . . . , βn from the recurrences (2.10).

Initialize: v−1 = w−1 = 0, v0 = v 1∗, wH
0 = wH 1∗

α0 = wHA v

wH
1 = wHA − α0 w

H

v̂1 = A v − v α0

β1 = wHA∗2 v − α∗2
0

If β1 is not ∗-invertible, then stop, otherwise
v1 = v̂1 ∗ β∗−1

1

For n = 2, . . .

αn−1 = wH
n−1 ∗ A ∗ vn−1

wH
n = wH

n−1 ∗ A − αn−1 ∗ wH
n−1 − βn−1 ∗ wH

n−2

v̂n = A ∗ vn−1 − vn−1 ∗ αn−1 − vn−2

βn = wH
n ∗ A ∗ vn−1

If βn is not ∗-invertible, then stop, otherwise
vn = v̂n ∗ β∗−1

n

end.

Algorithm 1 : ∗-Lanczos algorithm.

Let us define the tridiagonal matrix

Tn :=

⎡
⎢⎢⎢⎢⎣

α0 1∗

β1 α1
. . .

. . .
. . . 1∗

βn−1 αn−1

⎤
⎥⎥⎥⎥⎦

, (2.12)

and the matrices Vn := [v0, . . . , vn−1] and Wn := [w0, . . . ,wn−1]. Then the three-term
recurrences Eqs. (2.10) read, in matrix form,

A ∗ Vn = Vn ∗ Tn + (vn ∗ βn)eHn , (2.13)

WH
n ∗ A = Tn ∗ WH

n + en wH
n . (2.14)

Hence the tridiagonal matrix (2.12) can be expressed as

Tn = WH
n ∗ A ∗ Vn .

The following property of Tn is fundamental for the time-ordered exponential approxima-
tion; its proof is given in Sect. 2.3.

123

90 P. L. Giscard, S. Pozza

Theorem 2.1 (Matching Moment Property) Let A,w, v and Tn be as described above, then

wH (A∗ j) v = eH1 (T∗ j
n) e1, for j = 0, . . . , 2n − 1. (2.15)

Consider the time-ordered exponential Un given by the differential equation

Tn(t ′, t)Un(t
′, t) = d

dt ′
Un(t

′, t), Un(t, t) = Id. (2.16)

Theorem2.1 andEq. (2.6) justify the use of the approximation wHU(t ′, t) v ≈ eH1 Un(t ′, t) e1
[17]. The system (2.16) can be seen as a reduced order model of the initial differential Eq.
(1.1) from two points of view. First, n may be much smaller than the size of A; in this sense,
in Sect. 3, we will discuss the convergence behavior of the approximation using Theorem
2.1. Secondly, looking at A and Tn as adjacency matrices, A may correspond to a graph with
a complex structure, while Tn corresponds to a very simple graph composed of one path with
possible self-loops. Then the path-sum method gives

R∗(Tn)1,1(t ′, t) =
(
1∗ − α0 − (1∗ − α1 − (1∗ − ...)∗−1 ∗ β2

)∗−1 ∗ β1

)∗−1
, (2.17)

see [26, 44]. This expression is analogous to the one for the first diagonal entry of the inverse
of an ordinary tridiagonal matrix [45], except here all operations are taken with respect to
the ∗-product.

For n = N , we get

VN ∗ WH
N = WH

N ∗ VN = Id 1∗. (2.18)

Theorem 2.2 Let A, VN ,WN and TN be as described above, then

A∗ j = VN ∗ T∗ j
N ∗ WH

N , j = 0, 1, . . . ,

and thus

R∗(A) = VN ∗ R∗(TN) ∗ WH
N .

The theorem follows by using (2.18). Here, any entry of R∗(TN) is computable using a
path-sum continued fraction of depth at most N .

Remark 2.3 The Lanczos-like method presented here for the time-ordered exponential is
immediately valid for the ordinary matrix exponential function, since the latter is obtained
from the former in the situation where A commutes with itself at all times,

T e
∫
A(τ) dτ = e

∫ t ′
t A(τ) dτ .

This situation includes the case where A is time-independent, in which case setting t = 0 and
t ′ = 1 above yields the matrix exponential of A. However, the ∗-Lanczos algorithm cannot be
considered a generalization of the Lanczos algorithm since its outputs on constant matrices
are made of distributions and time dependent functions.

2.3 Matching ∗-moments through ∗-biorthonormal polynomials

In order to prove Theorem 2.1, we will exploit the connection between the ∗-Lanczos algo-
rithm and families of ∗-biorthonormal polynomials. Let us define the set of ∗-polynomials

P∗ :=
⎧⎨
⎩p(λ) =

k∑
j=0

λ∗ j ∗ γ j (t
′, t)

⎫⎬
⎭ ,

123

A Lanczos-like method for non-autonomous linear. . . 91

with γ j (t ′, t) ∈ D(I). Consider a ∗-sesquilinear form [·, ·] : P∗ × P∗ → D(I), i.e., so that
given p1, p2, q1, q2 ∈ P∗ and α, β ∈ D(I), it satisfies

[q1 ∗ α, p1 ∗ β] = ᾱ ∗ [q1, p1] ∗ β,

[q1 + q2, p1 + p2] = [q1, p1] + [q2, p1] + [q1, p2] + [q2, p2].
From now on we assume that every considered ∗-sesquilinear form [·, ·] also satisfies

[λ ∗ q, p] = [q, λ ∗ p]. (2.19)

The ∗-sesquilinear form [·, ·] is determined by its ∗-moments defined as
m j (t, t

′) := [λ∗ j , 1] = [1, λ∗ j], j = 0, 1,

We aim to build sequences of ∗-polynomials p0, p1, . . . and q0, q1, . . . so that they are
∗-biorthonormal with respect to [·, ·], i.e.,

[qi , p j] = δi j1∗, (2.20)

where the subindex j in p j and q j corresponds to the degree of the ∗-polynomial. Here and
in the following we assume m0 = 1∗, getting p0 = q0 = 1∗. Consider the ∗-polynomial

q1(λ) = λ ∗ q0(λ) − q0(λ) ∗ ᾱ0.

Theorthogonality conditions (2.20) giveα0 = [λ∗q0, p0]. Similarly,weget the∗-polynomial

p1(λ) ∗ β1 = λ ∗ p0(λ) − p0(λ) ∗ α0,

with α0 = [q0, λ ∗ p0], β1 = [q1, λ ∗ p0]. Repeating the ∗-orthogonalization process, we
obtain the three-term recurrences for n = 1, 2, . . .

qn(λ) = λ ∗ qn−1(λ) − qn−1(λ) ∗ ᾱn−1 − qn−2(λ) ∗ β̄n−1 (2.21a)

pn(λ) ∗ βn = λ ∗ pn−1(λ) − pn−1(λ) ∗ αn−1 − pn−2(λ), (2.21b)

with p−1 = q−1 = 0 and

αn−1 = [qn−1, λ ∗ pn−1], βn = [qn, λ ∗ pn−1]. (2.22)

Note that deriving the recurrences needs property (2.19). The ∗-biorthonormal polynomials
p0, . . . , pn and q0, . . . , qn exist under the assumption that β1, . . . , βn are ∗-invertible.

Let A be a time-dependent matrix, andw, v time-independent vectors such thatwHv = 1.
Consider the ∗-sesquilinear form [·, ·] defined by

[q, p] = wH qD(A) ∗ p(A) v.

Assume that there exist ∗-polynomials p0, . . . , pn and q0, . . . , qn ∗-biorthonormal with
respect to [·, ·]. Defining the vectors

v j = p j (A) v, wH
j = wH qD

j (A),

and using the recurrences (2.21) gives the ∗-Lanczos recurrences (2.10). Moreover, the coef-
ficients in (2.22) are the ∗-Lanczos coefficients in (2.11).

Let Tn be a tridiagonal matrix as in (2.12) composed of the coefficients (2.22) associated
with the ∗-sesquilinear form [·, ·]. Then we can define the ∗-sesquilinear form

[q, p]n = eH1 qD(Tn) ∗ p(Tn) e1.

123

92 P. L. Giscard, S. Pozza

The following lemmas show that

m j = [λ∗ j , 1∗] = [λ∗ j , 1∗]n, j = 0, . . . , 2n − 1,

proving Theorem 2.1.

Lemma 2.4 Let p0, . . . , pn and q0, . . . , qn be ∗-biorthonormal polynomials with respect to
the ∗-sesquilinear form [·, ·]. Assume that the coefficients β1, . . . , βn in the related recur-
rences (2.21) are ∗-invertible. Then the ∗-polynomials are also ∗-biorthonormal with respect
to the form [·, ·]n defined above.
Proof Consider the vectors yHj = eH1 T∗ j

n and x j = T∗ j
n e1. Since thematrix Tn is tridiagonal,

for j = 1, . . . , n − 1, we have

eHi x j = 0, for i ≥ j + 2, and eHj+1x j = β j ∗ · · · ∗ β1,

yHj ei = 0, for i ≥ j + 2, and yHj e j+1 = 1∗ .

By assumption, the product β j ∗ · · · ∗ β1 is ∗-invertible. Therefore there exist ∗-polynomials
p̂0, . . . , p̂n−1 and q̂0, . . . , q̂n−1 so that, for i = 0, . . . , n − 1, we get

1∗eHi+1 = eH1 q̂ D
i (Tn), 1∗ei+1 = p̂i (Tn) e1.

Such ∗-polynomials are ∗-biorthonormal with respect to [·, ·]n since they satisfy

[̂qi , p̂ j]n = 1∗eHi+1 ∗ 1∗e j+1 = δi j1∗.

Moreover, for i = 0, . . . , n − 1, the corresponding recurrence coefficients (2.22) are the
same as the ones of the ∗-polynomials p0, . . . , pn−1 and q0, . . . , qn−1. Indeed,

α̂i−1 = [̂qi−1, λ ∗ p̂i−1]n = eHi−1Tn ei−1 = αi−1,

β̂i = [̂qi , λ ∗ p̂i−1]n = eHi Tnei−1 = βi .

Since p̂0 = p0 = q̂0 = q0 = 1∗, we get p̂i = pi and q̂i = qi for i = 0, . . . , n − 1.
�
Lemma 2.5 Let p0, . . . , pn−1 and q0, . . . , qn−1 be ∗-biorthonormal polynomials with
respect to a ∗-sesquilinear form [·, ·]A and to a ∗-sesquilinear form [·, ·]B. If [1∗, 1∗]A =
[1∗, 1∗]B = 1∗, then [λ∗ j , 1∗]A = [λ∗ j , 1∗]B for j = 0, . . . , 2n − 1.

Proof We prove it by induction. Let m j = [λ∗ j , 1∗]A and m̂ j = [λ∗ j , 1∗]B for j =
0, 1, . . . , 2n − 1. By the expression for the coefficients in (2.22) we get

[q0, λ ∗ p0]A = α0 = [q0, λ ∗ p0]B .

Hence m1 = α0 = m̂1. Assuming m j = m̂ j for j = 0, . . . , 2k − 3 we will prove that
m2k−2 = m̂2k−2 and m2k−1 = m̂2k−1, for k = 2, . . . , n. The coefficient expressions in
(2.22) gives

[qk−1, λ ∗ pk−2]A = βk−1 = [qk−1, λ ∗ pk−2]B ,

which can be rewritten as
k−1∑
i=0

k−2∑
j=0

āi ∗ mi+ j+1 ∗ b j =
k−1∑
i=0

k−2∑
j=0

āi ∗ m̂i+ j+1 ∗ b j ,

with ai , b j the coefficients respectively of qk−1 and pk−2. The inductive assumption implies

āk−1 ∗ m2k−2 ∗ bk−2 = āk−1 ∗ m̂2k−2 ∗ bk−2.

123

A Lanczos-like method for non-autonomous linear. . . 93

The leading coefficients of the ∗-polynomials q2k−2 and p2k−2 are respectively ak−1 = 1∗
and bk−2 = (βk−2 ∗ · · ·∗β1)

∗−1. Hencem2k−2 = m̂2k−2. Repeating the same argument with
the coefficient αk−1 (2.22) concludes the proof.
�

3 Convergence, breakdown, and related properties

3.1 The convergence behavior of intermediate approximations

Assuming no breakdown, the ∗-Lanczos algorithm in conjunction with the path-summethod
converges to the solutionwHU(t ′, t)v in N iterations, with N the size of A; see Theorem 2.2.
Most importantly, intermediate ∗-Lanczos iterations provide a sequence of approximations∫ t ′
t R∗(Tn)1,1(τ, t) dτ , n = 1, . . . , N , whose convergence behavior we analyze hereafter.
As we have already discussed before, under the assumption that all entries of A are smooth

over I and that all the β
(1,0)
j (t, t) �= 0, for every t ∈ I , all the α j and β j distributions are

elements of Sm�(I). The proof of this statement is very long and technical and serves
only to establish the theoretical feasibility of tridigonalization for systems of coupled linear
differential equations with variable coefficients using smooth functions. It was therefore
presented in a separate work. We refer the reader to [17] for a full exposition and proof, while
here we only state some of the main results:

Theorem 3.1 [17] Let A(t ′, t) = Ã(t ′)�(t ′ − t) be an N × N matrix composed of elements
from Sm�(I). Let αn−1 and βn be the coefficients generated by Algorithm 1 running on A
and the time-independent vectors w, v (wHv = 1). Let

β
(1,0)
j (t ′, t) := ∂

∂t
β j (t

′, t), t ′, t ∈ I .

For any 1 ≤ n ≤ N, assuming that β
(1,0)
j (t, t) �= 0 for every t ∈ I , j = 1, . . . , n − 1, we

get βn(t ′, t), αn−1(t ′, t) ∈ Sm�(I). In addition, all required ∗-inverses β∗−1
j exist and are

of the form

β∗−1
j = bLj (t

′, t) ∗ δ(3)(t ′ − t),

with bLj ∈ Sm�(I).

All bLj have explicit expansions in terms of β j which are given in [17] but not reproduced

here owing to length concerns. When βn �≡ 0, but β
(1,0)
n (ρ, ρ) = 0 for some ρ ∈ I , the

results of Theorem 3.1 hold if we restrict the intial interval I to a subinteval J ⊂ I so that
ρ /∈ J .

Thanks to these regularity results, we can establish the following bound for the approxi-
mation error:

Proposition 3.2 Let us consider the setting and assumptions of Theorem 3.1. Moreover, let U
designate the time-ordered exponential of A and let Tn be the tridiagonal matrix (2.12) such
that

wHA∗ jv = (T∗ j
n)1,1, for j = 0, . . . , 2n − 1.

Then, for t ′ ≥ t , with t ′, t ∈ I ,
∣∣∣∣∣w

HU(t ′, t)v −
∫ t ′

t
R∗(Tn)1,1(τ, t) dτ

∣∣∣∣∣ ≤
C2n + D2n

n

(2n)! (t ′ − t)2ne(C+Dn)(t ′−t).

123

94 P. L. Giscard, S. Pozza

Here

C := sup
t ′∈I

‖A(t ′)‖∞, Dn := 3 sup
t ′,t∈I 2

max
0≤ j≤n−1

{|α j (t
′, t)|, |β j (t

′, t)|}

are both finite, with ‖ · ‖∞ the matrix norm induced by the uniform norm.

Proof Assume t ′ ≥ t . Observe that

wHU(t ′, t)v −
∫ t ′

t
R∗(Tn)(τ, t)11 dτ =

∫ t ′

t

∞∑
j=2n

wHA∗ j (τ, t)v − (T∗ j
n)1,1(τ, t) dτ,

so that
∣∣∣∣∣w

HU(t ′, t)v −
∫ t ′

t
R∗(Tn)(τ, t)11 dτ

∣∣∣∣∣ ≤
∫ t ′

t

∞∑
j=2n

∣∣∣wHA∗ j (τ, t)v
∣∣∣+
∣∣∣(T∗ j

n)1,1(τ, t)
∣∣∣ dτ.

Now supt ′∈I |wHA(t ′)v| ≤ C and
∣∣∣∣∣
∫ t ′

t
wHA∗ j (τ, t)v dτ

∣∣∣∣∣ ≤ �(t ′ − t) ∗ (C�(t ′ − t)
)∗ j = C j (t

′ − t) j

j ! .

We proceed similarly for the terms involving Tn . Theorem 3.1 implies the existence of D̂n :=
supt ′,t∈I 2 max0≤ j≤n−1

{|α j (t ′, t)|, |β j (t ′, t)|
}

< +∞. The matrix element (T∗ j
n)1,1 is given

by the sum of ∗-products of coefficients αi , βi and 1∗. Replacing all the factors in those
∗-products with D̂n�(t ′ − t) gives an upper bound for (T∗ j

n)1,1. Hence we get
∣∣∣∣
(
T∗ j
n

)
1,1

∣∣∣∣ ≤
((

D̂nPn�(t ′ − t)
)∗ j)

1,1
≤ D̂ j

n‖Pn‖ j∞�(t ′ − t)∗ j ,

where Pn is the n × n tridiagonal matrix whose nonzero entries are equal to 1. Note that
‖Pn‖∞ = 3. Hence the error can be bounded by

∞∑
j=2n

(
C j + D j

n

) (t ′ − t) j

j ! ≤ (C2n + D2n
n)

2n! (t ′ − t)2n
∞∑
j=0

2n!
(2n + j)!

(
C j + D j

n

)
(t ′ − t) j ,

≤ (C2n + D2n
n)

2n! (t ′ − t)2n
∞∑
j=0

(C + Dn)
j (t ′ − t) j

j ! ,

≤ (C2n + D2n
n)

2n! (t ′ − t)2ne(C+Dn)(t ′−t),

concluding the proof.
�

Analogously to the classical non-Hermitian Lanczos algorithm, we need to further assume
Dn to be not too large for n ≥ 1 in order to get a meaningful bound. Such an assumption can
be verified a-posteriori. The bound of Proposition 3.2 demonstrates that under reasonable
assumptions, the approximation error has a super-linear decay. Assuming no breakdown and
exact precision arithmetic, we also recall that the algorithm does necessarily converge in at
most N steps, independently of the error bound. The computational cost of the algorithm is
discussed separately in Sect. 5.

123

A Lanczos-like method for non-autonomous linear. . . 95

3.2 Breakdown

In the classical non-Hermitian Lanczos algorithm, a breakdown appears either when an
invariant Krylov subspace is produced (lucky breakdown) or when the last vectors of the
biorthogonal bases vn,wn are nonzero, but wH

n vn = 0 (serious breakdown); for further
details refer, e.g., to [33, 34, 39, 46–48]. Analogously, in the ∗-Lanczos algorithm 1, a lucky
breakdown arises when eitherwn ≡ 0 or v̂n ≡ 0. In such a case, the algorithm has converged
to the solution, as the following proposition shows.

Proposition 3.3 Assume that the ∗-Lanczos algorithm 1 does not breakdown until the nth
step when a lucky breakdown arises, i.e., v̂n ≡ 0 (or wn ≡ 0). Then

wH (A∗ j) v = eH1 (T∗ j
n) e1, for j ≥ 0,

wHU(t ′, t)v =
∫ t

0
R∗(Tn)1,1(τ, t) dτ.

Proof Assuming v̂n ≡ 0, eq. (2.13) becomes

A ∗ Vn = Vn ∗ Tn . (3.1)

By ∗-multiplying (3.1) from the left by A, we get

A ∗ A ∗ Vn = A ∗ Vn ∗ Tn,

which becomes

A∗2 ∗ Vn = Vn ∗ T∗2
n ,

using (3.1). Repeating the argument gives

A∗ j ∗ Vn = Vn ∗ T∗ j
n , j ≥ 0,

from which we get that WH
n ∗ A∗ j ∗ Vn = T∗ j

n , j ≥ 0. The proposition easily follows from
here. An analogous proof holds for the case ŵn ≡ 0.

�

The ∗-Lanczos algorithm construction and its polynomial interpretation in Sect. 2.3 sug-
gest that it may be possible to deal with the serious breakdown issue by a look-ahead strategy
analogous to the one for the non-Hermitian Lanczos algorithm; see, e.g., [33, 34]. If i �= j ,
then wHv = 0, which does not satisfy the ∗-Lanczos assumption. Moreover, if i = j and A
is a sparse non-Hermitian matrix, then it may be possible that Ai i ≡ 0 and A∗2i i ≡ 0. As a
consequence, we get β1 ≡ 0. We can try to fix these problems rewriting the approximation
of the time-ordered exponential U as

eHi Ue j = (e + ei)HUe j − eHUe j ,

with e = (1, . . . , 1)H . Then one can approximate (e + ei)HU e j and eHU e j separately,
which are less likely going to have a breakdown, thanks to the fact that e is a full vector;
see, e.g., [35, Section 7.3]. Note that while this strategy can prevent a breakdown in the first
iterations, a serious breakdown might still happen in later ones.

123

96 P. L. Giscard, S. Pozza

4 Examples

In this section, we use the ∗-Lanczos algorithm 1 on examples in ascending order of difficulty.
All the computations have been performed usingMathematica 11.

Example 4.1 (Ordinary matrix exponential) Let us first consider a constant matrix

A =
⎛
⎝

−1 1 1
1 0 1
1 1 −1

⎞
⎠ .

Because A commutes with itself at all times, its time-ordered exponential coincides with its
ordinary exponential, T e

∫
A(τ) dτ ≡ eA(t ′) (we set t = 0). Note that the matrix chosen here is

symmetric only to lead to concise expressions suitable for presentation in an article, e.g.,

(
eAt

′)
11 = −1

2
sinh(2t ′) + 1

2
cosh(2t ′) + 1

2
cosh

(√
2t ′
)

, (4.1)

and that such symmetries are not a requirement of the ∗-Lanczos approach.
Now let us find the result of Eq. (4.1) with Algorithm 1. We define w := vH := (1, 0, 0),

w0 = w1∗, v0 = v1∗, from which it follows that α0(t ′, t) = −1 × �(t ′ − t) and w1 =
v̂H1 = (0, 1, 1)�(t ′ − t). Furthermore, since A is a constant matrix times �(t ′ − t), we

have A∗n = Ã
n × �(t ′ − t)∗n = Ã × (t ′ − t)n−1/(n − 1)! × �(t ′ − t) and similarly

α∗2
0 (t ′, t) = α̃2

0 × (t ′ − t)�(t ′ − t). Thus

β1 = wHA2v × (t ′ − t)�(t ′ − t) − α̃2
0(t

′ − t)�(t ′ − t) = 2(t ′ − t)�(t ′ − t).

The ∗-inverse follows as β∗−1 = 1
2 δ

′′ [18], from which we get

v1 = v̂1 ∗ β∗−1
1 = (0, 1, 1)H

1

2
δ′(t ′ − t),

Now it follows that

α1(t
′, t) = w1 ∗ A ∗ v1 = 1

2
�(t − t ′),

w2(t
′, t) = w1 ∗ A − α1 ∗ w1 − β1 ∗ w0 = (0, 1,−1)

1

2
(t ′ − t)�(t ′ − t),

v̂2(t
′, t) = A ∗ v1 − v1 ∗ α1 − v0 = (0, 1,−1)H

1

4
δ(t ′ − t),

β2 = w2 ∗ A ∗ v1 = 1

4
(t ′ − t)�(t ′ − t).

Then β∗−1
2 = 4δ′′ and so

v2 = v̂2 ∗ β∗−1
2 = (0, 1,−1)H δ′′(t ′ − t)α2 = w2 ∗ A ∗ v2 = −3

2
�(t ′ − t).

At this point we have determined the ∗-Lanczos matrices T, V andW entirely

T =
⎛
⎝

−� δ 0
2�∗2 1

2� δ

0 1
4�

∗2 − 3
2�

⎞
⎠ , V =

⎛
⎝

δ 0 0
0 1

2 δ
′ δ′′

0 1
2 δ

′ −δ′′

⎞
⎠ , WH =

⎛
⎝

δ 0 0
0 � �

0 1
2�

∗2 − 1
2�

∗2

⎞
⎠ .

In all of these expressions, � is a short-hand notation for �(t ′ − t) and δ, δ′ and δ′′ are
to be evaluated in t ′ − t . It is now straightforward to verify the matching moment property

123

A Lanczos-like method for non-autonomous linear. . . 97

(
T∗ j)

11 = (A∗ j)
11 for all j ∈ N.We can also check directly that the time-ordered exponential

of A is correctly determined from T using either the general formula of Eq. (2.17) or, because
the situation is so simple that all entries depend only on t ′ − t , we may use a Laplace
transform with respect to t ′ − t . This gives T(s), and the inverse Laplace-transform of the
resolvent

(
I − T(s)

)−1
11 is the desired quantity. Both procedures give the same result, namely

the derivative of eAt as it should [26], i.e.,

(Id∗ − T)∗−1
11 (t ′, 0) =

(
sinh(2t ′) + 1√

2
sinh

(√
2t ′
)

− cosh(2t ′)
)

�(t ′),

which is indeed the derivative of Eq. (4.1).

Example 4.2 (Time-ordered exponential of a time-dependent matrix) In this example, we
consider the 5 × 5 time-dependent matrix A(t ′, t) = Ã(t ′)�(t ′ − t) with

Ã(t ′) =

⎛
⎜⎜⎜⎜⎝

cos(t ′) 0 1 2 1
0 cos(t ′) − t ′ 1 − 3t ′ t ′ 0
0 t ′ 2t ′ + cos(t ′) 0 0
0 1 2t ′ + 1 t ′ + cos(t ′) t ′
t ′ −t ′ − 1 −6t ′ − 1 1 − 2t ′ cos(t ′) − 2t ′

⎞
⎟⎟⎟⎟⎠

.

The matrix Ã does not commute with itself at different times Ã(t ′)Ã(t) − Ã(t)Ã(t ′) �= 0,
and the corresponding differential system Eq. (1.1) has no known analytical solution. We use
Algorithm 1 to determine the tridiagonal matching moment matrix T such that

(
A∗ j)

11 =(
T∗ j)

11 for j ∈ N. We define w := vH := (1, 0, 0, 0, 0), w0 = w1∗, v0 = v1∗, from which
it follows that

α0(t
′, t) = cos(t ′)�(t ′ − t),

w1 = (0, 0, 1, 2, 1)�(t ′ − t),

v̂1 = (0, 0, 0, 0, t ′)H�(t ′ − t),

β1(t
′, t) = 1

2

(
t ′2 − t2

)
�(t ′ − t).

Observing that β1 = �(t ′ − t) ∗ t ′�(t ′ − t), we get β∗−1
1 = 1

t δ
′(t ′ − t) ∗ δ′(t ′ − t) =

− 1
t2

δ′(t ′ − t) + 1
t δ

′′(t ′ − t), so that

v1 = v̂1 ∗ β∗−1
1 = (0, 0, 0, 0, 1)H δ′(t ′ − t),

which terminates the initialization phase of the Algorithm. We proceed with

α1(t
′, t) = w1 ∗ A ∗ v1 = cos(t)�(t ′ − t),

w2 = w1 ∗ A − α1 ∗ w1 − β1 ∗ w0,

= (0, t ′ − t, t ′ − t, t ′ − t, 0
)
�(t ′ − t),

v̂2 = A ∗ v1 − v1 ∗ α1 − v0 = (0, 0, 0, t, −2t
)H

δ(t ′ − t),

β2 = w2 ∗ A ∗ v1 = t(t ′ − t)�(t ′ − t).

As we did for β1, we factorize β2 = �(t ′ − t) ∗ t �(t ′ − t) so that its ∗-inverse is β∗−1
2 =

1
t ′ δ

′(t ′ − t) ∗ δ′(t ′ − t) = 1
t ′ δ

′′. Then

v2 = (0, 0, 0, 1, −2
)H

δ′′(t ′ − t).

123

98 P. L. Giscard, S. Pozza

Continuing in this fashion yields the tridiagonal output matrix T5 ≡ T,

T=

⎛
⎜⎜⎜⎜⎝

cos(t ′)� δ 0 0 0
1
2 (t

′2−t2)� cos(t)� δ 0 0
0 t(t ′−t)� α̃2(t ′, t)� δ 0
0 0 − 1

2 (3t
2−4t t ′+t ′2)� α̃3(t ′, t)� δ

0 0 0 (−2t2+3t t ′−t ′2)� α̃4(t ′, t)�

⎞
⎟⎟⎟⎟⎠
,

with

α̃2(t
′, t) = (t ′ − t) sin(t) + cos(t),

α̃3(t
′, t) = 1

2

(
4(t ′ − t) sin(t) − ((t − t ′)2 − 2

)
cos(t)

)
,

α̃4(t
′, t) = 1

6

((
(t − t ′)2 − 18

)
(t − t ′) sin(t) + (6 − 9(t − t ′)2

)
cos(t)

)
,

and the bases matrices

V5 =

⎛
⎜⎜⎜⎜⎝

δ 0 0 0 0
0 0 0 δ(3) −2δ(4)

0 0 0 0 δ(4)

0 0 δ′′ −δ(3) δ(4)

0 δ′ −2δ′′ 2δ(3) −3δ(4)

⎞
⎟⎟⎟⎟⎠

, WH
5 =

⎛
⎜⎜⎜⎜⎝

δ 0 0 0 0
0 0 � 2� �

0 �∗2 �∗2 �∗2 0
0 �∗3 2�∗3 0 0
0 0 �∗4 0 0

⎞
⎟⎟⎟⎟⎠

.

In all of these expressions, � and δ(n) are short-hand notations respectively for �(t ′ − t)
and δ(n)(t ′ − t). All the required β∗−1

j were calculated using the strategies described in [18],
getting the factorized ∗-inverses

β∗−1
3 = 1

t
�(t ′ − t) ∗ δ(3)(t ′ − t), β∗−1

4 = t ′

t2
�(t ′ − t) ∗ δ(3)(t ′ − t).

We have also verified that
(
A∗ j)

11 = (
T∗ j)

11 holds for j up to 9. The ∗-resolvent of T
has no closed-form expression, its Neumann series likely converging to a hitherto undefined
special function. Ultimately, such difficulties are connected with the propensity of systems
of coupled linear ordinary differential equations with non-constant coefficients to produce
transcendent solutions.

5 Outlook: numerical implementation

We do not expect closed-forms to exist in most cases for the entries of time-ordered matrix
exponentials as these can involve complicated special functions [2]. Also, very large matrices
A(t ′) are to be treatable by the algorithm for it to be relevant to most applications. For these
reasons, it is fundamental to implement the ∗-Lanczos algorithm numerically, e.g., using
time discretization approximations.

As shown in [26], there exists an isometry
 between the algebra of distributions of D(I)
equipped with the ∗-product and the algebra of time-continuous operators (for which the time
variables t ′ and t serve as line and row indices). Consider, for simplicity, a discretization of
the interval I with constant time step �t ; then these operators become ordinary matrices.
Specifically, given f , g ∈ Sm�(I), their discretization counterparts are the lower triangular
matrices F,G. Moreover, the function f ∗ g corresponds to the matrix FG�t , with the usual
matrix product. In other terms, the isometry
 followed by a time discretization sends the

123

A Lanczos-like method for non-autonomous linear. . . 99

∗-product to the ordinary matrix product times �t . Similarly, the Dirac delta distribution is
sent to the identity matrix times 1/(�t), the kth Dirac delta derivative δ(k) is sent to the finite
difference matrix

(
Mδ(k)

)
i j = 1

(�t)k+1

{
(−1)i− j

(k
i− j

)
, if i ≥ j

0, else
,

and � is sent to the matrix (M�)i j = 1 if i ≥ j and 0 otherwise. Most importantly, in
this picture, the ∗-inverse of a function f (t ′, t) ∈ D(I) is given as F−1/(�t)2, with F
the lower triangular matrix corresponding to f . Moreover, the time-discretized version of
the path-sum formulation Eq. (2.17) only involves ordinary matrix resolvents. At the same
time, the final integration of R∗(Tn)11 yielding wHU v becomes a left multiplication byM�.
Therefore, a numerical implementation of the time-discretized ∗-Lanczos algorithm only
requires ordinary operations on triangular matrices.

We can now meaningfully evaluate the numerical cost of the time-discretized version of
the algorithm. Let Nt be the number of time subintervals in the discretization of I for both the
t and t ′ time variables. Then time-discretized ∗-multiplications or ∗-inversions cost O(N 3

t)

operations. Considering a sparse time-dependent matrix A(t) with Nnz nonzero elements,
the ∗-Lanczos algorithm therefore necessitates O(Ni × N 3

t × Nnz) operations to obtain the
desiredwHU v. Here Ni is the number of iterations needed to get an error lower than a given
tolerance. Unfortunately, as well-explained in [36], the presence of computational errors
can slow down the (usual) Lanczos algorithm convergence. Hence, in general, we cannot
assume Ni ≈ N since the ∗-Lanczos algorithm could analogously require more iterations.
However, in many cases, the (usual) Lanczos algorithm demands few iterations to reach the
tolerance also in finite precision arithmetic. We expect the ∗-Lanczos algorithm to behave
analogously, giving Ni � N in many cases. Concerning Nt , there is no reason to expect that
is would depend on N since Nt controls the quality of individual generalized functions. We
also remark that the ∗-Lanczos algorithm can exploit the sparsity structure of the matrix A,
making it inherently competitive when dealing with large sparse matrices that are typical of
applications.

The classical numerical methods (e.g., Runge–Kutta methods) for the approximation of
the system of ODEs (1.1) are known to perform poorly in certain cases. These include for
example, very large system sizes, or in the presence of highly oscillatory coefficients. Conse-
quently, in the last decades, novel techniques have been sought and proposed, many of which
are based on theMagnus series; see, for instance, [4, 23, 49–56]. However, for large matrices,
these methods are known to be highly consuming in resources. This motivates the research
of novel approaches in particular for large-scale problems. Here the guaranteed convergence
of the ∗-Lanczos algorithm in a finite number of iterations, the sequence of approximations
it produces, its ability to exploit matrix sparsity and its relations with numerically well stud-
ied Lanczos procedures are all promising elements which justify further works on concrete
numerical implementations. More precise theoretical results about the overall approximation
quality and further issues on numerical applications of the present algorithm are beyond
the scope of this work. They will appear together with a practical implementation of the
algorithm in a future contribution.

123

100 P. L. Giscard, S. Pozza

6 Conclusion

In this work, we constructed the ∗-Lanczos algorithm as a biorthogonalization process of
Krylov subspaces composed of distributions with respect to the ∗-product, a convolution-like
product. The algorithm relies on a non-commutative operation and is analogous in spirit to
the non-Hermitian Lanczos algorithm. The ∗-Lanczos algorithm can express the element of
a time-ordered exponential of size N × N by the path-sum continued fraction (2.17). To our
knowledge, such an expression is the only one composed ofO(N) scalar integro-differential
equations. Such a time-ordered exponential approximation relies on the matching moment
property proved in this paper.

The overall approach generates a controllable sequence of time-ordered exponential
approximations, offers an innovative perspective of the connection between numerical linear
algebra and differential calculus, and opens the door to efficient numerical algorithms for
large-scale computations.

Acknowledgements We thank Francesca Arrigo, Des Higham, Jennifer Pestana, and Francesco Tudisco for
their invitation to the University of Strathclyde, without which this work would not have come to fruition.
The first author was supported in part by 2019 Alcohol project ANR-19-CE40-0006 and 2020 Magica
project ANR-20-CE29-0007. The second author was supported by Charles University Research programs
No. PRIMUS/21/SCI/009 and UNCE/SCI/023.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85(4), 631–632
(1952). https://doi.org/10.1103/PhysRev.85.631

2. Xie, Q., Hai, W.: Analytical results for a monochromatically driven two-level system. Phys. Rev. A 82,
032117 (2010)

3. Hortaçsu, M.: Heun functions and some of their applications in physics. Adv. High Energy Phys. 2018,
8621573 (2018)

4. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep.
470(5), 151–238 (2009)

5. Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955)
6. Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138,

979–987 (1965)
7. Lauder, M.A., Knight, P.L., Greenland, P.T.: Pulse-shape effects in intense-field laser excitation of atoms.

Opt. Acta 33(10), 1231–1252 (1986)
8. Reid, W.T.: Riccati matrix differential equations and non-oscillation criteria for associated linear differ-

ential systems. Pac. J. Math. 13(2), 665–685 (1963)
9. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems, vol. 1.Wiley-interscience, NewYork (1972)

10. Corless, M., Frazho, A.: Linear Systems and Control: An Operator Perspective. Pure and Applied Math-
ematics. Marcel Dekker, New York (2003)

11. Blanes, S.: High order structure preserving explicit methods for solving linear-quadratic optimal control
problems. Numer. Algor. 69(2), 271–290 (2015)

12. Benner, P., Cohen, A., Ohlberger, M., Willcox, K.: Model Reduction and Approximation: Theory and
Algorithms. Computational Science and Engineering. SIAM, Philadelphia (2017)

13. Kučera, V.: A review of the matrix Riccati equation. Kybernetika 9(1), 42–61 (1973)
14. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems.

Theory Systems & Control: Foundations & Applications. Birkhäuser, Basel (2003)
15. Hached,M., Jbilou,K.:Numerical solutions to large-scale differential Lyapunovmatrix equations.Numer.

Algor. 79(3), 741–757 (2018)

123

https://doi.org/10.1103/PhysRev.85.631

A Lanczos-like method for non-autonomous linear. . . 101

16. Kirsten, G., Simoncini, V.: Order reduction methods for solving large-scale differential matrix Riccati
equations. SIAM J. Sci. Comput. 42(4), 2182–2205 (2020). https://doi.org/10.1137/19m1264217

17. Giscard, P.-L., Pozza, S.: Tridiagonalization of systems of coupled linear differential equations with
variable coefficients by a Lanczos-like method. Linear Algebra Appl. 624, 153–173 (2021). https://doi.
org/10.1016/j.laa.2021.04.011

18. Giscard, P.-L., Pozza, S.: Lanczos-like algorithm for the time-ordered exponential: the ∗-inverse problem.
Appl. Math. 65(6), 807–827 (2020). https://doi.org/10.21136/am.2020.0342-19

19. Magnus,W.: On the exponential solution of differential equations for a linear operator. Comm. Pure Appl.
Math. 7(4), 649–673 (1954)

20. Casas, F.: Sufficient conditions for the convergence of the Magnus expansion. J. Phys. A 40(50), 15001–
15017 (2007). https://doi.org/10.1088/1751-8113/40/50/006

21. Fel’dman, E.B.: On the convergence of the Magnus expansion for spin systems in periodic magnetic
fields. Phys. Lett. 104A(9), 479–481 (1984)

22. Maricq, M.M.: Convergence of the Magnus expansion for time dependent two level systems. J. Chem.
Phys. 86(10), 5647–5651 (1987)

23. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365
(2000). https://doi.org/10.1017/S0962492900002154

24. Moan, P.C., Niesen, J.: Convergence of the Magnus series. Found. Comput. Math. 8(3), 291–301 (2007).
https://doi.org/10.1007/s10208-007-9010-0

25. Sánchez, S., Casas, F., Fernández, A.: New analytic approximations based on the Magnus expansion. J.
Math. Chem. 49(8), 1741–1758 (2011)

26. Giscard, P.-L., Lui, K., Thwaite, S.J., Jaksch, D.: An exact formulation of the time-ordered exponential
using path-sums. J. Math. Phys. 56(5), 053503 (2015)

27. Balasubramanian, V., DeCross, M., Kar, A., Parrikar, O.: Quantum complexity of time evolution with
chaotic Hamiltonians. J. High Energ. Phys. 134 (2020)

28. Giscard, P.-L., Bonhomme, C.: Dynamics of quantum systems driven by time-varying Hamiltonians:
solution for the Bloch–Siegert Hamiltonian and applications to NMR. Phys. Rev. Res. (2020). https://doi.
org/10.1103/PhysRevResearch.2.023081

29. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33, 892–922
(2004)

30. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev.
20(4), 801–836 (1978)

31. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five
years later. SIAM Rev. 45(1), 3–49 (2003)

32. Higham, N.J.: Functions of Matrices. Theory and Computation, p. 425. SIAM, Philadelphia (2008)
33. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms. I.

SIAM J. Matrix Anal. Appl. 13(2), 594–639 (1992)
34. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms. II.

SIAM J. Matrix Anal. Appl. 15(1), 15–58 (1994)
35. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Ser. Appl.

Math. Princeton University Press, Princeton, p. 363 (2010)
36. Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numer. Math. Sci. Comput.

Oxford University Press, Oxford (2013)
37. Pozza, S., Pranić, M.S., Strakoš, Z.: Gauss quadrature for quasi-definite linear functionals. IMA J. Numer.

Anal. 37(3), 1468–1495 (2017)
38. Pozza, S., Pranić, M.S., Strakoš, Z.: The Lanczos algorithm and complex Gauss quadrature. Electron.

Trans. Numer. Anal. 50, 1–19 (2018)
39. Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl. 13(2),

567–593 (1992)
40. Draux, A.: Polynômes Orthogonaux Formels. Lecture Notes in Math., vol. 974. Springer, Berlin, p. 625

(1983)
41. Schwartz, L.: Théorie Des Distributions, Nouvelle édition, entièrement corrigée, refondue et augmentée.

Hermann, Paris (1978)
42. Halperin, I., Schwartz, L.: Introduction to the Theory ofDistributions. University of Toronto Press, Toronto

(2019). https://doi.org/10.3138/9781442615151. https://toronto.degruyter.com/view/title/550976
43. Volterra, V., Pérès, J.: Leçons sur la Composition et les Fonctions Permutables. Éditions Jacques Gabay,

Paris (1928)
44. Giscard, P.-L., Thwaite, S.J., Jaksch, D.: Walk-sums, continued fractions and unique factorisation on

digraphs (2012). arXiv:1202.5523 [cs.DM]

123

https://doi.org/10.1137/19m1264217
https://doi.org/10.1016/j.laa.2021.04.011
https://doi.org/10.1016/j.laa.2021.04.011
https://doi.org/10.21136/am.2020.0342-19
https://doi.org/10.1088/1751-8113/40/50/006
https://doi.org/10.1017/S0962492900002154
https://doi.org/10.1007/s10208-007-9010-0
https://doi.org/10.1103/PhysRevResearch.2.023081
https://doi.org/10.1103/PhysRevResearch.2.023081
https://doi.org/10.3138/9781442615151
https://toronto.degruyter.com/view/title/550976
http://arxiv.org/abs/1202.5523

102 P. L. Giscard, S. Pozza

45. Kılıç, E.: Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions. Appl.
Math. Comput. 197(1), 345–357 (2008)

46. Taylor, D.R.: Analysis of the look aheadLanczos algorithm. PhD thesis, University of California, Berkeley
(1982)

47. Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsymmetric matrices. Math.
Comp. 44(169), 105–124 (1985)

48. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algo-
rithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)

49. Hochbruck, M., Lubich, C.: Exponential integrators for quantum-classical molecular dynamics. BIT
Numer. Math. 39(4), 620–645 (1999). https://doi.org/10.1023/A:1022335122807

50. Budd, C.J., Iserles, A., Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in lie
groups. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 983–1019 (1999). https://
doi.org/10.1098/rsta.1999.0362

51. Iserles, A.: On the global error of discretization methods for highly-oscillatory ordinary differential
equations. BIT Numer. Math. 42(3), 561–599 (2002). https://doi.org/10.1023/A:1022049814688

52. Iserles, A.: On the method of Neumann series for highly oscillatory equations. BIT Numer. Math. 44(3),
473–488 (2004). https://doi.org/10.1023/B:BITN.0000046810.25353.95

53. Degani, I., Schiff, J.: RCMS: Right correction Magnus series approach for oscillatory ODEs. J. Comput.
Appl. Math. 193(2), 413–436 (2006). https://doi.org/10.1016/j.cam.2005.07.001

54. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian
systems: A review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp.
553–576. Springer, Berlin (2006)

55. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Efficient methods for linear Schrödinger equation in the
semiclassical regimewith time-dependent potential. Proc. R. Soc. AMath. Phys. Eng. Sci. 472, 20150733
(2016)

56. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Bocan
Raton (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1023/A:1022335122807
https://doi.org/10.1098/rsta.1999.0362
https://doi.org/10.1098/rsta.1999.0362
https://doi.org/10.1023/A:1022049814688
https://doi.org/10.1023/B:BITN.0000046810.25353.95
https://doi.org/10.1016/j.cam.2005.07.001

	A Lanczos-like method for non-autonomous linear ordinary differential equations
	Abstract
	1 Introduction
	1.1 Existing analytical approaches: Pitfalls and drawbacks
	1.2 The non-Hermitian Lanczos algorithm: background
	1.3 Outline

	2 The ast-Lanczos algorithm
	2.1 The ast-product and ast-moments
	2.2 Building up the ast-Lanczos process
	2.3 Matching ast-moments through *-biorthonormal polynomials

	3 Convergence, breakdown, and related properties
	3.1 The convergence behavior of intermediate approximations
	3.2 Breakdown

	4 Examples
	5 Outlook: numerical implementation
	6 Conclusion
	Acknowledgements
	References

