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Abstract
We prove a regularity result for minimal configurations of variational problems involving
both bulk and surface energies in some bounded open region Ω ⊆ R

n . We will deal with
the energy functional F (v, E) := ´

Ω
[F(∇v) + 1E G(∇v) + fE (x, v)] dx + P(E,Ω).

The bulk energy depends on a function v and its gradient ∇v. It consists in two strongly
quasi-convex functions F and G, which have polinomial p-growth and are linked with their
p-recession functions by a proximity condition, and a function fE , whose absolute value
satisfies a q-growth condition from above. The surface penalization term is proportional to the
perimeter of a subset E inΩ . The term fE is allowed to benegative, but an additional condition
on the growth from below is needed to prove the existence of a minimal configuration of the
problem associated with F . The same condition turns out to be crucial in the proof of the
regularity result as well. If (u, A) is aminimal configuration, we prove that u is locally Hölder
continuous and A is equivalent to an open set Ã. We finally get P(A,Ω) = H n−1(∂ Ã ∩Ω).

Keywords Free boundary problem · Perimeter penalization · Regularity · Nonlinear
variational problem

Mathematics Subject Classification 49N60 · 49Q20

1 Introduction and statement

The problem of finding the minimal energy configuration of a mixture of two materials in a
bounded open set Ω ⊆ R

n , penalized by the perimeter of the contact interface between the
two materials, has been fully examined in mathematical literature (see for example [2,3,6,8,
10,15,17–20]).

Let p > 1 and define A (Ω) as the set of all subsets of Ω with finite perimeter.
Consider F, G ∈ C1(Rn) and define fE := g +1E h, where E ∈ A (Ω) and g, h : Ω ×R →
R are two Borel measurable and lower semicontinuous functions with respect to the real vari-
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able. We will deal with the following energy functional:

F (v, E) :=
ˆ

Ω

[F(∇v) + 1E G(∇v) + fE (x, v)] dx + P(E,Ω),

where (v, E) ∈ (
u0+W 1,p

0 (Ω)
)×A (Ω), with u0 ∈ W 1,p(Ω). The regularity of minimizers

(u, A) of the functionalF was recently investigated in [6,9,10] for the constrained problem
where the volume of the region A in Ω is prescribed but the forcing term f A is zero. In
the quadratic case p = 2 Ambrosio and Buttazzo [3] proved the regularity for minimizers
of F in the case that f A is not zero. We are going to extend this result to functionals with
polinomial growth.

We assume that there exist some positive constants l, L, α, β and μ ≥ 0 such that

– F and G have p-growth:

0 ≤ F(ξ) ≤ L(μ2 + |ξ |2) p
2 , (F1)

0 ≤ G(ξ) ≤ βL(μ2 + |ξ |2) p
2 , (G1)

for all ξ ∈ R
n .

– F and G are strongly quasi-convex:
ˆ

Ω

F(ξ + ∇ϕ) dx ≥
ˆ

Ω

[F(ξ) + l(μ2 + |ξ |2 + |∇ϕ|2) p−2
2 |∇ϕ|2] dx, (F2)

ˆ

Ω

G(ξ + ∇ϕ) dx ≥
ˆ

Ω

[G(ξ) + αl(μ2 + |ξ |2 + |∇ϕ|2) p−2
2 |∇ϕ|2] dx, (G2)

for all ξ ∈ R
n and ϕ ∈ C1

c (Ω).
– there exist two positive constants t0, a and 0 < m < p such that for every t > t0 and

ξ ∈ R
n with |ξ | = 1, it holds

∣∣∣∣Fp(ξ) − F(tξ)

t p

∣∣∣∣ ≤ a

tm
, (F3)

∣∣∣∣G p(ξ) − G(tξ)

t p

∣∣∣∣ ≤ a

tm
, (G3)

where Fp and G p are the p-recession functions of F and G (see Definition 2.1).

We remark that the proximity conditions (F3) and (G3) are trivially satisfied if F and G are
positively p-homogeneous.

The first of the following assumptions on g and h is essential to prove the existence of a
minimal configuration. The same condition turns out to be crucial in the proof of the regularity
result as well. We assume that there exist a function γ ∈ L1(Ω) and two constants C0 > 0
and k ∈ R, with k < l

2p−1λ
, being λ = λ(Ω) the first eigenvalue of the p-Laplacian on Ω

with boundary datum u0, such that

– g and h satisfy the following assumptions:

g(x, s) ≥ γ (x) − k|s|p, h(x, s) ≥ γ (x) − k|s|p, (1.1)

for almost all (x, s) ∈ Ω × R.
– g and h satisfy the following growth conditions:

|g(x, s)| ≤ C0(1 + |s|q), |h(x, s)| ≤ C0(1 + |s|q), (1.2)
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for all (x, s) ∈ Ω × R, with the exponent

q ∈
{

[p,+∞) if n = 2,

[p, p∗) if n > 2

fixed.

We want to study the following problem:

min
(v,E)∈

(
u0+W 1,p

0 (Ω)
)
×A (Ω)

F (v, E). (P)

The main result of the paper is the following theorem about the regularity of solutions of
problem (P).

Theorem 1.1 Let (u, A) be a solution of (P). Then

1. u is locally Hölder continuous.
2. A is equivalent to an open set Ã, that is

L n(A
 Ã) = 0 and P(A,Ω) = P( Ã,Ω) = H n−1(∂ Ã ∩ Ω).

The idea of its proof is similar to that of Theorem 2.2 in [3], which in turns relies on the
ideas introduced in [7]. The regularity of u is proved in Theorem 4.1 and the regularity of A
follows from Proposition 5.1. The proof will be discussed in the final section.

The same arguments can be used to treat also the volume-constraint problem

min
(v,E)∈

(
u0+W 1,p

0 (Ω)
)
×A (Ω)

L n(E)=d

F (v, E), (Q)

for some 0 < d < L n(Ω). The following theorem holds true.

Theorem 1.2 There exists λ0 > 0 such that if (u, A) is a minimizer of the functional

Fλ(v, E) =
ˆ

Ω

[F(∇v) + 1E G(∇v) + fE (x, v)] dx + P(E,Ω) + λ|L n(E) − d|

for some λ ≥ λ0 and among all configurations (v, E) such that v ∈ u0 + W 1,p
0 (Ω) and

E ∈ A (Ω), then L n(A) = d and (u, A) is a minimizer of problem (Q) . Conversely, if
(u, A) is a minimizer of the problem (Q), then it is a minimizer of Fλ, for all λ ≥ λ0.

The proof of the previous theorem is a straightforward adaptation of the proof of Theorem
1.4 in [6]. The term concerning the function fE can be treated as a constant, thanks to the
boundedness stated in Theorem 4.1. We finally remark that the term λ|L n(E) − d| in the
functional Fλ can be inglobed in fE , since it is bounded. For this reason, Theorem 1.1 is
still valid also for minimal configurations ofFλ and, consequently, for solutions of problem
(Q).

2 Notation and preliminary results

Throughout the paper we denote by 〈·, ·〉 and ‖·‖ respectively the Euclidean inner product
in R

n and the associated norm. We write L n for the Lebesgue measure. Furthermore, we
denote by Br (x) the ball centered in x ∈ R

n with radius r > 0 (if x = 0, we write simply
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Br ), by ωn the measure of B1, and with Qr (x) the cube centered in x ∈ R
n with side r > 0.

We write the symbols ⇀ and → referring to weak and strong convergence, respectively.
We often denote by c a general constant that could vary from line to line, even within the
same line of estimates. Relevant dependencies on parameters and special constants will be
suitably emphasized using brackets.
Throughout this section we denote with H a function belonging to C1(Rn) and satisfying
for some positive constants l̃ and L̃ the same kind of assumptions imposed on F and G:

0 ≤ H(ξ) ≤ L̃(μ2 + |ξ |2) p
2 ,

ˆ

Ω

H(ξ + ∇ϕ) dx ≥
ˆ

Ω

[H(ξ) + l̃(μ2 + |ξ |2 + |∇ϕ|2) p−2
2 |∇ϕ|2] dx,

for all ξ ∈ R
n and ϕ ∈ C1

c (Ω). We collect some definitions and well-known results that will
be used later. We start giving the definition of p-recession function of H .

Definition 2.1 The p-recession function of H is defined by

Hp(ξ) := lim sup
t→+∞

H(tξ)

t p
,

for all ξ ∈ R
n .

Remark 2.2 It’s clear that Hp is positively p-homogeneous, which means that

Hp(sξ) = s p H(ξ),

for all ξ ∈ R
n and s > 0. It’s also true that the growth condition of H implies the following

growth condition of Hp:

0 ≤ Hp(ξ) ≤ L̃|ξ |p,

for any ξ ∈ R
n .

Next lemma establishes strong quasi-convexity of Hp , provided H verifies an appropriate
growth condition. Its proof is in [12] (Lemma 2.8).

Lemma 2.3 Let H as above. If there exist two positive constants t̃0, d̃ and 0 < m̃ < p such
that for every t > t̃0 and ξ ∈ R

n with |ξ | = 1, it holds
∣∣∣∣Hp(ξ) − H(tξ)

t p

∣∣∣∣ ≤ d̃

t m̃
,

then
ˆ

Ω

Hp(ξ + ∇ϕ) dx ≥
ˆ

Ω

[Hp(ξ) + l̃(|ξ |2 + |∇ϕ|2) p−2
2 |∇ϕ|2] dx,

for all ξ ∈ R
n and ϕ ∈ C1

c (Ω).

Let’s recall some other useful lemmas.

Lemma 2.4 Let H be as above. It holds that

|∇ H(ξ)| ≤ 2p L̃(μ2 + |ξ |2) p−1
2 ,

for all ξ ∈ R
n.
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Lemma 2.5 Let H as above. There exists a positive constant c̃ = c̃(p, l̃, L̃, μ) such that

H(ξ) ≥ l̃

2
(μ2 + |ξ |2) p

2 − c̃,

for all ξ ∈ R
n.

The proof of Lemma 2.4 can be found in [14] (Lemma 5.2), while Lemma 2.5 is proved in
[6] (Lemma 2.3). We define the auxiliary function

V (ξ) = (μ2 + |ξ |2) p−2
4 ξ,

for all ξ ∈ R
n . Next Lemma has been proved in [13] (Lemma 2.1) for p ≥ 2 and in [1]

(Lemma 2.1) for 1 < p < 2.

Lemma 2.6 There exists a constant c = c(n, p) such that

1

c
(μ2 + |ξ |2 + |η|2) p−2

2 ≤ |V (ξ) − V (η)|2
|ξ − η|2 ≤ c(μ2 + |ξ |2 + |η|2) p−2

2 ,

for all ξ, η ∈ R
n.

Lemma 2.7 Let {uh}h∈N ⊆ W 1,p(B1) and u ∈ W 1,p(B1) such that uh⇀u in W 1,p(B1).
Assume that {∇uh}h∈N is bounded in L p(B1). If

lim
h→+∞

ˆ

B1

ψ |V (∇uh) − V (∇u)|2 dy = 0, ∀ψ ∈ C∞
c (B1) s.t. 0 ≤ ψ ≤ 1,

then uh → u in W 1,p
loc (B1).

The proof of the previous lemma follows from Lemma 2.6. If p ≥ 2 the hypothesis of
boundedness of {∇uh}h∈N is superfluous. If 1 < p < 2, by Hölder inequality we gain the
stated result.

The following theorem has been proved in [12] (Theorem 2.2).

Theorem 2.8 Let H be as above and let v ∈ W 1,p(Ω) be a local minimizer of the functional

H (w,Ω) =
ˆ

Ω

H(∇w) dx,

where w ∈ v + W 1,p
0 (Ω). Then v is locally Lipschitz-continuous in Ω and there exists a

constant c = c(n, p, l̃, L̃) > 0 such that

ess supB R
2

(x0)(μ
2 + |∇v|2) p

2 ≤ c
 

BR(x0)
(μ2 + |∇v|2) p

2 dy,

for all BR(x0) ⊆ Ω .

Corollary 2.9 Let H and v ∈ W 1,p(Ω) be as in Theorem 2.8. Then there exists a constant
cH = cH (n, p, l̃, L̃) > 0 such that

ˆ

Br (x0)
(μ2 + |∇v|2) p

2 dy ≤ cH
( r

R

)n
ˆ

BR(x0)
(μ2 + |∇v|2) p

2 dy,

for all BR(x0) ⊆ Ω and 0 < r < R.
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3 Existence of minimizing couples

Theorem 3.1 The minimum problem (P) admits at least a solution.

Proof We initially remark that problem (P) can be written as follows:

min
E∈A (Ω)

{E (E) + P(E,Ω)}, (3.1)

where

E (E) = min
v∈u0+W 1,p

0 (Ω)

ˆ

Ω

[F(∇v) + 1E G(∇v) + fE (x, v)] dx (3.2)

Since F , G are strongly quasi-convex and g, h are lower semicontinuous in the real variable
s, the functionalF is lower semicontinuous with respect to the weak convergence of ∇vh in
L p and the strong converge of vh in L p (see [5] or [16]). Moreover, the coerciveness of

ˆ

Ω

[F(∇v) + 1E G(∇v)] dx

is granted by Lemma 2.5. Therefore the minimum problem (3.2) admits a solution. Let
{Ah}h∈N ⊆ A (Ω) be a minimizing sequence for problem (3.1). It follows that the sequence
{P(Ah,Ω)}h∈N is bounded and so, by compactness, there exists A ∈ A (Ω) such that
1Ah → 1A in L1

loc(Ω). Let uh ∈ u0 + W 1,p
0 (Ω) a solution of problem (3.2) associated

with Ah , for all h ∈ N. The sequence {uh}h∈N is bounded in W 1,p(Ω); indeed, by (1.1) and
Poincaré inequality we obtain

min
v∈u0+W 1,p

0 (Ω)

F (v,Ω) ≥ F (uh, Ah) ≥ l
ˆ

Ω

|∇uh |p dx +
ˆ

Ω

γ dx − k
ˆ

Ω

|uh |p dx

≥ l
ˆ

Ω

|∇uh |p dx +
ˆ

Ω

γ dx − 2p−1k

×
ˆ

Ω

|uh − u0|p dx − 2p−1k
ˆ

Ω

|u0|p dx

≥ (l − 2p−1kλ)

ˆ

Ω

|∇uh |p dx +
ˆ

Ω

γ dx − 2p−1k
ˆ

Ω

|u0|p dx .

Hence, we can extract a subsequence (not relabelled) such that uh⇀u in W 1,p(Ω). By
definition of minimum we infer

E (A) ≤
ˆ

Ω

[F(∇u) + 1AG(∇u) + f A(x, u)] dx .

Applying again Ioffe lower semicontinuity result (see for instance [16] or [4], Theorem 5.8)
to the integrand

�(x, s1, s2, ξ) := F(ξ) + s1G(ξ) + g(x, s2) + s1h(x, s2),

where x ∈ Ω , s1 ∈ [0, 1], s2 ∈ R and ξ ∈ R
n , we obtain

E (A) ≤
ˆ

Ω

[F(∇u) + 1AG(∇u) + f A(x, u)] dx =
ˆ

Ω

�(x, 1A, u,∇u) dx

≤ lim inf
h→+∞

ˆ

Ω

�(x, 1Ah , uh,∇uh) dx = lim inf
h→+∞ E (Ah).
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Therefore, by the lower semicontinuity of perimeter we finally gain

E (A) + P(A,Ω) ≤ lim inf
h→+∞[E (Ah) + P(Ah,Ω)],

which proves that A is a minimizer of problem (3.1) and so (u, A) is a minimizing couple of
problem (P). ��

4 Higher integrability and Hölder continuity of minimizers

The following theorem shows that local minimizers of the functional F (·, E), with E ∈
A (Ω) fixed, are Hölder continuous and a higher integrability property for the gradient holds
true. The proof of this result is standard and can be carried on adopting the obvious adaptation
in the proof of Theorem 3.1 in [3].

Theorem 4.1 Let (u, A) be a solution of (P). Then the following facts hold:

– u is locally bounded in Ω by a constant depending only on n, p, q, α, β, l, L, μ, C0,

‖u‖L p(Ω) and is locally Hölder continuous in Ω .
– Let Ω0 � Ω , τ = dist(Ω0, ∂Ω) and K = {x ∈ Ω : dist(x,Ω0) ≤ τ

2 }. Then there exist
two constants γ > 0 and r > p depending only on n, p, q, β, l, L, μ, C0, ‖u‖L∞(K )

such that
ˆ

Q R
2

(y)

|∇u|r dx ≤ γ

[
Rn

(
1− r

p

)(ˆ

Q R(y)

|∇u|p dx

) r
p + Rn

]
,

for all y ∈ Ω0 and Q R(y) ⊆ K .

5 Regularity of the set

The following proposition is the main result of this section and also the main ingredient to
prove Theorem 1.1.

Proposition 5.1 Let (u, A) be a solution of (P). Then for every compact set K ⊆ Ω there
exists a constant ξ ∈ (0, dist(K , ∂Ω)) such that if y ∈ K and for some ρ < ξ it holds

ˆ

Bρ(y)

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bρ(y)) < ξρn−1,

then

lim
η→0

η1−n
[ˆ

Bη(y)

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bη(y))

]
= 0.

The proof of the previous proposition relies on Proposition 5.5, which is an iteration of the
decay estimate in Theorem 5.4. The following definition is crucial in the rescaling argument
used in the proof of Theorem 5.4 (see (5.11)).

Definition 5.2 (Asymptotically minimizing sequence) Let {(uh, Ah)}h∈N ⊆ W 1,p(B1) ×
A (B1) and {λh}h∈N ⊆ R

+. We say that the sequence {(uh, Ah)}h∈N is λh-asymptotically
minimizing if and only if for any compact set K ⊆ B1 and any couple {(u′

h, A′
h)} ⊆
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W 1,p(B1)×A (B1) formed by a bounded sequence {u′
h}n∈N inW 1,p(B1)with spt(uh −u′

h) ⊆
K and a sequence of sets {A′

h}n∈N with Ah
A′
h ⊆ K , we have

ˆ

B1

[Fp(∇uh) + 1Ah G p(∇uh)] dy + λh P(Ah, B)

≤
ˆ

B1

[Fp(∇u′
h) + 1A′

h
G p(∇u′

h)] dy + λh P(A′
h, B) + ηh,

(5.1)

where {ηh}h∈N ⊆ R is an infinitesimal sequence.

In the proof of Theorem 5.4 we will show that the sequence of appropriately rescaled
minimal configurations of problem (P) is asymptotically minimizing. The following
theorem is concerned with the behaviour of asymptotically minimizing sequences.

Theorem 5.3 Let {λh}h∈N ⊆ R
+ and {(uh, Ah)}h∈N ⊆ W 1,p(B1) × A (B1). Assume that

(uh, Ah) is λh-asymptotically minimizing and that

(i)
{´

B1
[Fp(∇uh) + 1Ah G p(∇uh)] dy + λh P(Ah, B1)

}

h∈N is bounded.

(ii) uh⇀u in W 1,p(B1).
(iii) 1Ah → 1A in L1(B1) and λh → +∞.
(iv) G p(∇uh) is locally equi-integrable in B1.

Then

(a) uh → u in W 1,p
loc (B1).

(b) λh P(Ah, Bρ) → 0, for all ρ ∈ (0, 1).
(c) A = ∅ or A = B1 and u minimizes the functional

´
B1

[Fp(∇v) + 1AG p(∇v)] dy among

all v ∈ u + W 1,p
0 (B1).

Proof Let’s prove (a). The hypothesis (iv) implies that

lim
h→+∞

ˆ

B1

ψ[1AG p(∇uh) − 1Ah G p(∇uh)] dy = 0, ∀ψ ∈ C∞
c (B1). (5.2)

Let ũh := (1 − ψ)uh + ψu, ψ ∈ C∞
c (B1), with 0 ≤ ψ ≤ 1. Then

∇ũh = (u − uh)∇ψ + (1 − ψ)∇uh + ψ∇u. Testing (Ah, ũh), we have
ˆ

B1

[Fp(∇uh) + 1Ah G p(∇uh)] dy ≤
ˆ

B1

[Fp(∇ũh) + 1Ah G p(∇ũh)] dy + ηh, (5.3)

where {ηh}h∈N ⊆ R is the infinitesimal sequence in (5.1). By the convexity of Fp and G p

and Lemma 2.4, it follows that
ˆ

B1

[Fp(∇ũh) + 1Ah G p(∇ũh)] dy

≤
ˆ

B1

[Fp((1 − ψ)∇uh + ψ∇u) + 1Ah G p((1 − ψ)∇uh + ψ∇u)] dy

+
ˆ

B1

〈∇Fp((u − uh)∇ψ + (1 − ψ)∇uh + ψ∇u), (u − uh)∇ψ〉 dy

+
ˆ

B1

〈∇G p((u − uh)∇ψ + (1 − ψ)∇uh + ψ∇u), (u − uh)∇ψ〉 dy

≤
ˆ

B1

[(1 − ψ)Fp(∇uh) + ψ Fp(∇u) + 1Ah [(1 − ψ)G p(∇uh) + ψG p(∇u)] dy

+ c(p, L, β)

ˆ

B
(μ2 + |(u − uh)∇ψ + (1 − ψ)∇uh + ψ∇u|2) p−1

2 |(u − uh)∇ψ | dy.
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Using the previous one in (5.3), we obtain
ˆ

B1

ψ[Fp(∇uh) + 1Ah G p(∇uh)] dy

≤
ˆ

B1

ψ[Fp(∇u)

+ 1Ah G p(∇u)] dy + c(p, L, β)

ˆ

B
(μ2 + |(u − uh)∇ψ

+ (1 − ψ)∇uh + ψ∇u|2) p−1
2 |(u − uh)∇ψ | dy + ηh .

(5.4)

The second term in the right hand side is infinitesimal; indeed, using the Hölder inequality,
we have
ˆ

B
(μ2 + |(u − uh)∇ψ + (1 − ψ)∇uh + ψ∇u|2) p−1

2 |(u − uh)∇ψ | dy

≤ ‖u − uh‖L p(B1)

(ˆ

B1

(μp + |(u − uh)∇ψ |p + |(1 − ψ)∇uh |p + |ψ∇u|p) dy

) p−1
p

,

which tends to 0 as h approaches +∞. So we can inglobe the second term in the right hand

side of (5.4) in ηh . Add
ˆ

B1

ψ1AG p(∇uh) dy to both sides in (5.4) in order to obtain

ˆ

B1

ψ[Fp(∇uh) + 1AG p(∇uh)] dy ≤
ˆ

B1

ψ[Fp(∇u) + 1Ah G p(∇u)] dy

+
ˆ

B1

ψ[1AG p(∇uh) − 1Ah G p(∇uh)] dy + η̃h,

where {η̃h}h∈N ⊆ R is infinitesimal. Thanks to (5.2), we can pass to the upper limit and
obtain

lim sup
h→+∞

ˆ

B1

ψ[Fp(∇uh) + 1AG p(∇uh)] dy ≤
ˆ

B1

ψ[Fp(∇u) + 1AG p(∇u)] dy.

Finally, by lower semicontinuity, we gain

lim
h→+∞

ˆ

B1

ψ[Fp(∇uh) + 1AG p(∇uh)] dy =
ˆ

B1

ψ[Fp(∇u) + 1AG p(∇u)] dy. (5.5)

By the strong quasi-convexity of Fp and G p and Lemma 2.6, we have
ˆ

B1

ψ |V (∇uh) − V (∇u)|2 dy

≤ c(n, p)

ˆ

B1

(μ2 + |∇uh |2 + |∇u|2) p−2
2 |∇uh − ∇u|2 dy

≤ c(n, p, l)

[ ˆ

B1

[ψ(Fp(∇uh) − Fp(∇u)) − 〈∇Fp(∇u), ψ(∇uh − ∇u)〉] dy

+
ˆ

B1

[ψ1A(G p(∇uh) − G p(∇u)) − 1A〈∇G p(∇u), ψ(∇uh − ∇u)〉] dy

]
.

(5.6)

Let h → +∞ in (5.6). By the ii) and (5.5), we infer

lim
h→+∞

ˆ

B1

ψ |V (∇uh) − V (∇u)|2 dy = 0.
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530 L. Lamberti

Thanks to Lemma 2.7 and the arbitrariety of ψ , we conclude that uh → u in W 1,p
loc (B1).

Let’s prove b). Since λh → +∞ and the energies are bounded by an appropriate constant c,
it holds that

P(Ah, B1) ≤ c

λh
.

Let h → +∞ in the previous inequality. By semicontinuity we infer that P(A, B1) = 0.
Thanks to isoperimetric inequality it follows that A = ∅ or A = B. We’ll discuss the case
A = ∅, being the other one similar. For h large enough, by the isoperimetric inequality we
have

L n(Ah) = min{L n(Ah),L n(B1 \ Ah)} ≤ c(n)

(
c

λh

) n
n−1

.

Denoting 1h(ρ) = 1Ah∩∂ Bρ , for all h ∈ N and ρ ∈ (0, 1), the coarea formula provides that

L n(Ah) =
ˆ 1

0
dρ

ˆ

∂ Bρ

1h(ρ) dH n−1 ≤ c(n)

(
c

λh

) n
n−1

,

which means that the sequence of functions

{
λh

´
∂ Bρ

1h(ρ) dH n−1
}

h∈N
converges to 0 in

L1(0, 1). Thus, it converges to 0 for almost every ρ ∈ (0, 1). Then, for every ρ ∈ (0, 1)
fixed, we can find a sequence {ρh}h∈N ⊆ (

ρ,
1+ρ
2

)
such that

λh

ˆ

∂ Bρh

1h(ρh) dH n−1 → 0, (5.7)

as h approaches +∞. Comparing {(uh, Ah)}h∈N and {(uh, Ah \ Bρh )}h∈N , using (5.7) and
the equality

P(Ah \ Bρh , B1) = P(Ah, B1 \ Bρh ) +
ˆ

∂ Bρh

1h(ρh) dH n−1,

there exists an infinitesimal sequence {ηh}h∈N ⊆ R such that

λh P(Ah, Bρh ) ≤ λh P(Ah, B1) ≤ λh P(Ah \ Bρh , B1) + ηh

= λh P(Ah, B1 \ Bρh ) + λh

ˆ

∂ Bρh

1h(ρh) dH n−1 + ηh

= λh

ˆ

∂ Bρh

1h(ρh) dH n−1 + ηh,

provided h is so large that Ah ⊆ B ρ+1
2
. Thus, thanks to (5.7) the sequence {λh P(Ah, Bρh )}h∈N

is infinitesimal and we can conclude that

λh P(Ah, Bρ) → 0,

as h approaches +∞, since ρh > ρ.
Let’s prove c). Comparing (Ah, uh) with (Ah, ũh) = (Ah, uh + ϕ), where ϕ ∈ C1(B1)

and supp(ϕ)⊆ Bρ , we have
ˆ

Bρ

[Fp(∇uh) + 1Ah G p(∇uh)] dy ≤
ˆ

Bρ

[Fp(∇ũh) + 1Ah G p(∇ũh)] dy + ηh,
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with {ηh}h∈N ⊆ R infinitesimal and ρ ∈ (0, 1) arbitrary. Thanks to a), we can use the
dominated convergence theorem in order to pass to the limit as h approaches+∞, obtaining

ˆ

Bρ

[Fp(∇u) + 1AG p(∇u)] dy ≤
ˆ

Bρ

[Fp(∇(u + ϕ)) + 1AG p(∇(u + ϕ))] dy.

By the arbitrariety of ρ and ϕ we can conclude the proof. ��
The following theorem is the main tool for proving Proposition 5.1.

Theorem 5.4 (Energy decay estimate) Let K ⊆ Ω be a compact set, δ = dist(K , ∂Ω) > 0
and ε ∈ (0, 1). Let c̃ = c̃(p, l, L, α, β, μ) and cH = cH (n, p, l, L, α, β) the constants of
Lemma 2.5 and Corollary 2.9 for

H (w) =
ˆ

B1

[Fp(∇w) + G p(∇w)] dx .

Moreover, let τ ∈ (0, 1) such that τ ε < 1
2(1+ωn c̃) . Then there exist two positive constants γ

and θ such that for any solution (u, A) of the problem (P) and for any ball Bρ(y) with y ∈ K
and ρ ∈ (0, δ

2 ) the two estimates
ˆ

Bρ

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bρ) ≤ γρn−1,

ρn ≤ θ

[ ˆ

Bρ

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bρ)

]
,

imply that
ˆ

Bτρ (y)

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bτρ(y))

≤ cH (1 + β)L

l
τ n−ε

[ˆ

Bρ

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bρ)

]
.

Proof Let’s suppose by contradiction that there exist two sequences {γh}h∈N and {θh}h∈N
which tend to 0, a sequence of minimizing couples {(wh, Dh)}h∈N of (P) and a sequence of
balls {Bρh (xh)}h∈N, with xh ∈ K and ρh ∈ (0, δ

2 ), for all h ∈ N, such that these estimates
hold:

ˆ

Bρh (xh)

[Fp(∇wh) + 1Dh G p(∇wh)] dx + P(Dh, Bρh (xh)) = γhρn−1
h ,

(5.8)

ρn
h ≤ θh

[ ˆ

Bρh (xh)

[Fp(∇wh) + 1Dh G p(∇wh)] dx + P(Dh, Bρh (xh))

]
,

(5.9)
ˆ

Bτρh (xh)

[Fp(∇wh) + 1Dh G p(∇wh)] dx + P(Dh, Bτρh (xh))

>
cH (1 + β)L

l
τ n−ε

[ ˆ

Bρh (xh)

[Fp(∇wh) + 1Dh G p(∇wh)] dx + P(Dh, Bρh (xh))

]
.

(5.10)

In what follows it will be important that the sequence {wh}h∈N is locally equibounded in Ω .
It descends from Theorem 4.1 once we have proved that {wh}h∈N is bounded in W 1,p(Ω),
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which holds true; indeed, by the minimality of (wh, Dh), (F1), (1.1) and Poincaré inequality
it follows that

min
v∈u0+W1,p(Ω)

F (v, Ω) ≥ F (wh , Dh) ≥ l
ˆ

Ω
|∇wh |p dx +

ˆ

Ω
γ dx − k

ˆ

Ω
|wh |p dx

≥ l
ˆ

Ω
|∇wh |p dx +

ˆ

Ω
γ dx − 2p−1k

ˆ

Ω
|wh − u0|p dx − 2p−1k

ˆ

Ω
|u0|p dx

≥ (l − 2p−1kλ)

ˆ

Ω
|∇wh |p dx +

ˆ

Ω
γ dx − 2p−1k

ˆ

Ω
|u0|p dx,

since k < l
2p−1λ

. Rescale the functions wh ; define

uh(y) := wh(xh + ρh y) − wh

ρ

p−1
p

h γ
1
p

h

∈ W 1,p(B1), Ah := Dh − xh

ρh
, λh = 1

γh
, (5.11)

where wh = ffl
B1

wh(xh + ρh y) dy, for all h ∈ N. By the usual change of variables x :=
xh + ρh y, we have:

ˆ

Bρh (xh)

[Fp(∇wh) + 1Dh G p(∇wh)] dx + P(Dh, Bρh (xh))

= γhρn−1
h

[ˆ

B1

[Fp(∇uh) + 1Ah G p(∇uh)] dy + λh P(Ah, B1)

]
.

Rescale the estimates (5.8), (5.9) and (5.10), obtaining

ˆ

B1

[Fp(∇uh) + 1Ah G p(∇uh)] dy + λh P(Ah, B1) = 1, (5.12)

ρh ≤ θhγh, (5.13)
ˆ

Bτ

[Fp(∇uh) + 1Ah G p(∇uh)] dy + λh P(Ah, Bτ ) >
cH (1 + β)L

l
τ n−ε. (5.14)

We want to apply Theorem 5.3 to the sequence {(uh, Ah)}n∈N.
Firstly, let’s prove that {(uh, Ah)}n∈N is λh-asymptotically minimizing. Let K ′ ⊆ B1 be a

compact set and {(u′
h, A′

h)}h∈N such that {u′
h}h∈N is a bounded sequence in W 1,p(B1) with

spt(u′
h − uh)⊆ K ′ and A′

h ⊆ B1 with A′
h
Ah ⊆ K ′.

Rescale the functions u′
h :

w′
h(x) := ρ

p−1
p

h γ
1
p

h u′
h

(
x − xh

ρh

)
+ wh ∈ W 1,p(Bρh (xh)), D′

h = xh + ρh A′
h .

Compare the two sequences {(wh, Dh)}h∈N and {(w′
h, D′

h)}h∈N: by the minimality of
{(wh, Dh)}h∈N and by (1.2) we have
ˆ

B1

[Fp(∇u′
h) + 1A′

h
G p(∇u′

h)] dy + λh P(A′
h, B)

= 1

γhρn−1
h

[ˆ

Bρh (xh)

[Fp(∇w′
h) + 1D′

h
G p(∇w′

h)] dx + P(D′
h, Bρh (xh))

]

≥ 1

γhρn−1
h

[ ˆ

Bρh (xh)

[F(∇wh) + 1Dh G(∇wh)] dx + P(Dh, Bρh (xh))
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+
ˆ

Bρh (xh)

[ fDh (x, wh) − fD′
h
(x, w′

h)] dx

+
ˆ

Bρh (xh)

{[Fp(∇w′
h) − F(∇w′

h)] + 1D′
h
[G p(∇w′

h) − G(∇w′
h)]} dx

]

≥ 1

γhρn−1
h

[ ˆ

Bρh (xh)

[F(∇wh) + 1Dh G(∇wh)] dx + P(Dh, Bρh (xh))

− C0

ˆ

Bρh (xh)

[2 + |wh |q + |w′
h |q ] dx

+
ˆ

Bρh (xh)∩{|∇w′
h |≥t0}

{[Fp(∇w′
h) − F(∇w′

h)] + 1D′
h
[G p(∇w′

h) − G(∇w′
h)]} dx

+
ˆ

Bρh (xh)∩{|∇w′
h |<t0}

{[Fp(∇w′
h) − F(∇w′

h)] + 1D′
h
[G p(∇w′

h) − G(∇w′
h)]} dx

]

In the sixth line of the previous inequality we need Fp and G p in place of F and G, so by
(F3) and (G3) we infer

ˆ

Bρh (xh)

[F(∇wh) + 1Dh G(∇wh)] dx ≥
ˆ

Bρh (xh)∩{|∇wh |≥t0}
[F(∇wh) + 1Dh G(∇wh)] dx

≥
ˆ

Bρh (xh)∩{|∇wh |≥t0}
[Fp(∇wh) + 1Dh G p(∇wh)] dx − 2a

ˆ

Bρh (xh)

|∇wh |p−m dx

≥
ˆ

Bρh (xh)

[Fp(∇wh) + 1Dh G p(∇wh)] dx − c(n, p, L, β, t0)ρ
n
h

− 2a
ˆ

Bρh (xh)

|∇wh |p−m dx .

Thus by homogeneity, (F3) and (G3) we get

ˆ

B1

[Fp(∇u′
h) + 1A′

h
G p(∇u′

h)] dy + λh P(A′
h, B)

≥
ˆ

B1

[Fp(∇uh) + 1Dh G p(∇uh)] dx + λh P(Ah, B)

− C0

γhρn−1
h

ˆ

Bρh (xh)

(|wh |q + |w′
h |q) dx − c(n, p, L, β, t0)

ρh

γh

− 2a

γhρn−1
h

ˆ

Bρh (xh)

[|∇w′
h |p−m + |∇wh |p−m] dx .

In order to prove that {(uh, Ah)}h∈N is λh-asymptotically minimizing, we need to show that

lim
h→+∞

[
C0

γhρn−1
h

ˆ

Bρh (xh)

(|wh |q + |w′
h |q) dx + c(n, p, L, β, t0)

ρh

γh

+ 2a

γhρn−1
h

ˆ

Bρh (xh)

[|∇w′
h |p−m + |∇wh |p−m] dx

]
= 0.
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By (5.13) it’s clear that limh→+∞ ρh
γh

= 0. Since {wh}n∈N is locally equibounded in Ω , also

limh→+∞ 1
γhρn−1

h

´
Bρh (xh)

|wh |q dx = 0. It remains to prove that

lim
h→+∞

1

γhρn−1
h

ˆ

Bρh (xh)

|w′
h |q dx = 0, (5.15)

lim
h→+∞

1

γhρn−1
h

ˆ

Bρh (xh)

[|∇w′
h |p−m + |∇wh |p−m] dx = 0. (5.16)

Let’s prove (5.15). Since {wh}h∈N is locally equibounded by a constant M > 0, substituting
the expression of wh from (5.11) it follows that

1

γhρn−1
h

ˆ

Bρh (xh)

|w′
h |q dx = ρh

γh

ˆ

B1

|ρ
(p−1)

p
h γ

1
p

h u′
h + wh |q dy

≤ c(q)

[
ρh

γh
ρ

(p−1)q
p

h γ

q
p

h

ˆ

B1

|u′
h − uh |q dy + ρh

γh

ˆ

B1

|wh(xh + ρh y)|q dy

]

≤ c(n, p, q)
ρh

γh
ρ

(p−1)q
p +1

h γ

q
p −1

h

( ∥∥u′
h

∥∥q
W 1,p(B1)

+ ‖uh‖q
W 1,p(B1)

)
+ c(n, q, M)

ρh

γh
,

where we used the Sobolev embedding theorem. Since q ≥ p, {u′
h}h∈N and {uh}h∈N are

bounded in W 1,p(B1) and limh→+∞
ρh

γh
= 0, we conclude that (5.15) holds true. We are left

to prove (5.16). By Hölder inequality we get

1

γhρn−1
h

ˆ

Bρh (xh)

[|∇w′
h |p−m + |∇wh |p−m] dx

≤ c(n, p, m)

γhρn−1
h

[(ˆ

Bρh (xh)

|∇w′
h |p dx

)1− m
p +

( ˆ

Bρh (xh)

|∇wh |p dx

)1− m
p
]
ρ

nm
p

h

= c(n, p, m)

γhρn−1
h

(
γhρn−1

h

)1− m
p

[(ˆ

B1

|∇u′
h |p dy

)1− m
p +

( ˆ

B1

|∇uh |p dy

)1− m
p
]
ρ

nm
p

h

≤ c(n)

(
ρh

γh

) m
p ( ∥∥u′

h

∥∥p−m
W 1,p(B1)

+ ‖uh‖p−m
W 1,p(B1)

)
.

Since limh→+∞
ρh

γh
= 0 and {u′

h}h∈N, {uh}h∈N are bounded in W 1,p(B1), we obtain (5.16).

Thanks to (5.12) there exist a function u ∈ W 1,p(B1) and a set of finite perimeter A ⊆ B1

such that

uh⇀u inW 1,p(B1) and 1Ah → 1A in L1(B1).

We are finally in position to apply Theorem 5.3 to {(uh, Ah)}h∈N. It remains only to prove
that G p(∇uh) is locally equi-integrable, which we will prove later. As a consequence of
Theorem 5.3 we have that A = ∅ or A = B1. We’ll discuss the case A = ∅, being the other
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one similar. Thanks to Corollary 2.9 and Lemma 2.5, by lower semicontinuity we infer

ˆ

Bτ

|∇u|p dy ≤
ˆ

Bτ

(μ2 + |∇u|2) p
2 dy ≤ cH τ n

ˆ

B1

(μ2 + |∇u|2) p
2 dy

≤ 2cH
l

τ n
(ˆ

B1

Fp(∇u) dy + ωnc̃

)

≤ 2cH
l

τ n
(
lim inf
h→+∞

ˆ

B1

Fp(∇uh) dy + ωnc̃

)
.

(5.17)

Using inequality (5.12), (5.14) and the (b) of Theorem 5.3, we gain

2cH
l

τ n
(
lim inf
h→+∞

ˆ

B1

Fp(∇uh) dy + ωnc̃

)
= 2cH

l
τ n

(
1 − lim sup

h→+∞
λh P(Ah, B1) + ωnc̃

)

≤ 2cH
l

τ n(1 + ωnc̃) <
cH

l
τ n−ε

<
1

(1 + β)L
lim

h→+∞

ˆ

Bτ

Fp(∇u) dy

≤
ˆ

Bτ

|∇u|p dy.

Comparing the previous estimate with (5.17) we reach a contradiction. We are only left to
prove the equi-integrability of G p(∇uh) in B1. It’s enough to prove that for all t ∈ (0, 1)
there exists r > p such that

sup
h∈N

ˆ

Bt

|∇uh |r dy < +∞. (5.18)

Indeed, fix ε > 0, a compact set K ′ ⊆ B1 and A ⊆ K ′. Then by the growth condition of G p

and the Hölder inequality, it follows that

sup
n∈N

ˆ

A
G p(∇uh) dy ≤ βL

ˆ

A
|∇uh |p dy ≤ βLL n(A)1−

p
r

(
sup
h∈N

ˆ

Bt

|∇uh |r dy

) p
r

.

In order to prove (5.18), we can apply Theorem 4.1: there exist two constants γ > 0 and
r > p depending only on n, p, q, β, l, L, μ, C0, ‖wh‖L∞(K ) such that for all h ∈ N and
y ∈ K , with dist(Q2ρh (y), K )≤ δ

2 we have the following local higher summability:

ˆ

Qρh (y)

|∇wh |r dx ≤ γ

[
ρ

n
(
1− r

p

)

h

(ˆ

Q2ρh (y)

|∇wh |p dx

) r
p + ρn

h

]
.

It can be also shown that the dependence of γ and r on ‖wh‖L∞(K ) is uniform with respect
to h, since {wh}h∈N is locally equibounded in Ω .
Fix t ∈ (0, 1). By a covering argument it follows that

ˆ

Btρh (xh)

|∇wh |r dx ≤ c(n, t)γ

[
ρ

n
(
1− r

p

)

h

(ˆ

Bρh (xh)

|∇wh |p dx

) r
p + ρn

h

]
.
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Rescale and write the estimate in terms of uh :

ˆ

Bt

|∇uh |r dy ≤ c(n, t)γ

[(ˆ

B1

|∇uh |p dy

) r
p +

(
ρh

γh

) r
p
]

≤ c(n, t, r , M ′)γ
[
1 +

(
ρh

γh

) r
p
]
,

where M ′ > 0 is an upper bound for {‖uh‖W 1,p(Ω)}h∈N. Using (5.13) we prove our assertion.
��

The last proposition that we need to prove Proposition 5.1 follows from the previous result
and is based on an iteration argument.

Proposition 5.5 Let K , γ, θ, δ be given by Theorem 5.4 and let (u, A) be a solution of (P).
Let y ∈ K and denote

�(ρ) =
ˆ

Bρ(y)

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bρ(y)), ∀ρ ∈
(
0,

δ

2

)
.

Moreover, let ε ∈ (0, 1) and σ ∈ (n − 1, n − ε) such that there exists τ ∈ (0, 1) satis-

fying
cH (1 + β)L

l
τ n−ε < τσ and τ ε < 1

2(1+ωn c̃) . Set ξ = min{dist(y, ∂Ω), γ, τσ γ θ}. If

�(ρ) < ξρn−1 for some ρ ∈ (0, ξ), then

�(η) < τ−σ γρn−1
(

η

ρ

)σ

, ∀η ∈ (0, ρ].

In particular,

lim
η→0

η1−n�(η) = 0.

Proof Let’s assume that �(ρ) < ξρn−1 for some ρ ∈ (0, ξ). Since � is nondecreasing, it
suffices to show by induction on j ∈ N0 that

�(η j ) < γρn−1
(

η j

ρ

)σ

,

where η j = τ jρ. Since we chose ξ < γ , the inequality holds true if j = 0. Let’s assume
that it holds true for j > 0. By induction we state

�(η j )

ηn−1
j

< γ

(
η j

ρ

)σ−n+1

< γ,

that is�(η j ) < γ ηn−1
j . If θ�(η j ) > ηn

j , thanks to the choice ξ < dist(y, ∂Ω), we can apply
Theorem 5.4 and the inductive hypothesis in order to obtain

�(η j+1) ≤ τσ �(η j ) < τσ γρn−1
(

η j

ρ

)σ

= γρn−1
(

η j+1

ρ

)σ

.

If θ�(η j ) ≤ ηn
j , then we can state

ηn
j

θ
< γρn−1

(
η j+1

ρ

)σ

.
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Indeed

ηn
j ρ

σ

γ θρn−1ησ
j+1

= τ−nρσ−n+1ηn−σ
j+1

γ θ
= τ nj−σ j−σ ρ

γ θ
< τ(n−σ) j < 1,

since ξ < τσ γ θ . Finally, using that � is non-decreasing, we have

�(η j+1) ≤ �(η j ) ≤ ηn
j

θ
< γρn−1

(
η j+1

ρ

)σ

,

which concludes the proof. ��
Finally, we can prove Proposition 5.1 choosing ξ = min{dist(K , ∂Ω), γ, τσ γ θ}, where
γ, τ, σ, θ are given by Proposition 5.5.

6 Proof of themain theorem

In this section we give the proof of Theorem 1.1, which makes use of the results we obtained
in the previous sections.

Proof (of Theorem 1.1) The assertion 1. follows fromTheorem 4.1. Let’s prove the statement
2.

Define

Ω0 =
{

y ∈ Ω : lim
ρ→0

ρ1−n
[ˆ

Bρ(y)

[Fp(∇u) + 1AG p(∇u)] dx + P(A, Bρ(y))

]
= 0

}
.

Thanks to Proposition 5.1we infer thatΩ0 is an open set. Let’s call ∂∗ A the reduced boundary
of A. It holds that

∂∗ A =
{

x ∈ Ω : lim sup
ρ→0+

P(A, Bρ(x))

ρn−1 > 0

}

and by De Giorgi’s structure theorem (see for istance Theorem 15.9 of [21]) it holds that
P(A, ·) = H n−1

|∂∗ A . It’s clear that Ω0 ⊆ Ω \ ∂∗ A.
Let x ∈ Ω0. Since Ω0 is an open set, choose ρ > 0 such that Bρ(x) ⊆ Ω0. By the

isoperimetric inequality, we infer

min{L n(A ∩ Bρ(x)),L n(Bρ(x) \ A)} ≤ c(n)P(A, Bρ(x))
n

n−1 = 0,

which implies that 1A = 1 a.e. in Bρ(x) or 1A = 0 a.e. in Bρ(x). Define the open set

Ã = {x ∈ Ω0 : 1A = 1 a.e. in a neighbourhood ofx}.
Let’s prove that H n−1((Ω \ Ω0)
∂∗ A) = 0. Since ∂∗ A ⊆ Ω \ Ω0, it’s clear that
H n−1(∂∗ A \ (Ω \ Ω0)) = 0. It remains to prove that H n−1((Ω \ Ω0) \ ∂∗ A) = 0.
Define

Sε =
{

y ∈ Ω : lim sup
ρ→0+

ρ1−n
ˆ

Bρ(y)

[Fp(∇u) + 1AG p(∇u)] dx > ε

}
,

for ε > 0. It’s clear that

(Ω \ Ω0) \ ∂∗ A ⊆
⋃

ε>0

Sε. (6.1)
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Using a density argument, thanks to Lemma 1.2 of [11] we can estimate

εH n−1(Sε) ≤ c(n)

ˆ

Sε

[Fp(∇u) + 1AG p(∇u)] dx, ∀ε > 0.

We deduce that H n−1(Sε) < +∞. It implies that L n(Sε) = 0 and so, from the previous
inequality, we finally infer that H n−1(Sε) = 0, for all ε > 0. Thanks to (6.1) we prove our
claim.
Let’s prove that A and Ã are equivalent. One one hand, by the definition of Ã we have

L n( Ã) =
ˆ

Ã
1A dx = L n( Ã ∩ A),

which implies thatL n( Ã \ A) = 0; on the other hand, sinceH n−1(Ω \Ω0) = H n−1(∂∗ A)

< +∞, we deduce that L n(Ω \ Ω0) = 0 and hence

L n(A \ Ã) = L n((A \ Ã) ∩ Ω0) =
ˆ

Ω0\ Ã
1A dx = 0.

SinceL n(A
 Ã) = 0,we infer that P(A,Ω) = P( Ã,Ω).Moreover, sinceΩ∩∂ Ã ⊆ Ω\Ω0

and H n−1((Ω \ Ω0)
∂∗ A) = 0, we have

H n−1(Ω ∩ ∂ Ã) ≤ H n−1(Ω \ Ω0) = H n−1(∂∗ A) = P(A,Ω) = P( Ã,Ω).

The converse inequality can be obtained from the following one that holds true for any Borel
set C ⊆ R

n and can be obtained by De Giorgi’s structure theorem:

P(C,Ω) ≤ H n−1(Ω ∩ ∂C).

Choosing C = Ã, we conclude the proof. ��
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