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Abstract
In this paper we study Vainikko integral operators which are similar to so-called cordial
integral operators and contain the classical Hardy operator, the Schur operator, and theHilbert
transformas special cases. For such operatorswe obtain normestimates and equalities,mainly
in BV type spaces in the sense of Jordan, Wiener, Riesz, and Waterman. Several examples
are also discussed.

Keywords Cordial integral operator · Vainikko integral operator · BV type space · Norm
estimate

Mathematics Subject Classification 47G10 · 26A45 · 45D05 · 45H05 · 45P05

The first author is a member of the group GNAMPA of the Istituto Nazionale di Alta Matematica (INdAM)
and of the “Research Italian Network on Approximation”; she was partially supported by Department of
Mathematics and Computer Science of the University of Perugia (Italy), by the project “Integrazione,
Approssimazione, Analisi Nonlineare e loro Applicazioni”, funded by the 2019 basic research fund of the
University of Perugia and by the 2020 GNAMPA project “Metodi di analisi reale e di teoria della misura per
l’approssimazione attraverso operatori discreti e applicazioni”.

B Laura Angeloni
laura.angeloni@unipg.it

Jürgen Appell
jurgen@dmuw.de

Simon Reinwand
sreinwand@dmuw.de

1 Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1,
06123 Perugia, Italy

2 Department of Mathematics, University of Würzburg, Emil-Fischer-Str. 30, 97074 Würzburg,
Germany

3 Department of Mathematics, University of Würzburg, Emil-Fischer-Str. 40, 97074 Würzburg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40574-020-00248-3&domain=pdf
http://orcid.org/0000-0002-2214-6751


556 L. Angeloni et al.

1 Introduction

Domenico Candeloro (called “Mimmo” by his friends) was one of the leading specialists
in the theory, methods, and applications of integral operators. He has given many important
contributions to this field, with a particular emphasis on exotic measures, non-standard inte-
grals, and multivalued maps. In the list of references at the end we mention only the more
recent papers [2–25] he wrote, in part with coauthors, in the last 20 years.

In this paper we study a class of integral operators in a much simpler setting, using only
single-valued scalar functions and integrals defined by the classical Lebesgue measure on the
real line. In spite of their simplicity, we are convinced that our results on mapping properties
of such integral operators would have been appreciated byMimmo. In our discussion we will
give particular attention to spaces of functions of bounded variation, a topic that is also very
much en vogue in the Analysis School of the University of Perugia which owes so much to
Mimmo’s scientific activity.

2 Cordial integral operators

Given a nonnegative L1 function ϕ : (0, 1) → R, in [27] the author defines an associated
Volterra integral operator Vϕ by

(Vϕx)(t) = 1

t

∫ t

0
ϕ

( s
t

)
x(s) ds =

∫ 1

0
ϕ(τ)x(tτ) dτ. (1)

Such operators are called cordial, the generating function ϕ the core of Vϕ . In [27] and [28]
the author gives necessary and sufficient conditions for Vϕ to be bounded in the spaces C ,
Cm and L∞. In the recent paper [29] he develops a parallel theory for Lebesgue spaces and
proves that Vϕ is bounded in L p (1 ≤ p ≤ ∞) iff

∫ 1

0
s−1/p|ϕ(s)| ds < ∞.

Moreover, he shows that in this case the norm ‖Vϕ‖L p→L p coincides with this integral. The
spectrum and essential spectrum of the operator are also calculated.

Cordial integral operators have a series of remarkable properties. For example, one may
show that the operator (1) has the continuumof eigenfunctions ur (t) = tr (0 ≤ r < ∞) in the
space C , and so it cannot be compact. Moreover, the eigenvalues λ satisfy ‖λI −Vϕ‖C→C =
|λ| + ‖ϕ‖L1 ; in particular, ‖Vϕ‖C→C = ‖ϕ‖L1 .

Interestingly, a certain converse is also true: if the general Volterra operator

(V x)(t) =
∫ t

0
k(t, s)x(s) ds

has the continuum of eigenfunctions ur (t) = tr (0 ≤ r < ∞), and its kernel function
k : [0, 1] × [0, 1] → R satisfies some regularity requirements, then V = Vϕ for ϕ :=
k(1, ·) ∈ L1.
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Some remarks on Vainikko integral operators in BV type spaces 557

3 Vainikko integral operators in Lebesgue spaces

In this section we slightly modify the definition (1) to cover a wider range of examples. Given
an L1 function ϕ : (0,∞) → R, let us call the operator Vϕ defined by

(Vϕx)(t) = 1

t

∫ ∞

0
ϕ

( s
t

)
x(s) ds =

∫ ∞

0
ϕ(τ)x(tτ) dτ (2)

Vainikko integral operator in the sequel. So the only difference between cordial and Vainikko
operators is that we extend the integration in (2) over the semiaxis (0,∞). Prominent exam-
ples for such operators are the Hardy operator

(Hx)(t) = 1

t

∫ t

0
x(s) ds (3)

which has the form (2) for the choice ϕ(s) := χ(0,1](s), the Schur operator

(Sx)(t) =
∫ ∞

0

x(s)

max {s, t} ds (4)

which has the form (2) for the choice ϕ(s) := 1/max {1, s}, and the (strongly singular)
Hilbert transform

(T x)(t) =
∫ ∞

0

x(s)

s + t
ds (5)

which has the form (2) for the choice ϕ(s) := 1/(1 + s).
Our first result gives a two-sided estimate for the norm of a Vainikko operator in the

Lebesgue space L p[0,∞). To this end, we will use the shortcut

ϕθ (s) := sθϕ(s) (s > 0), (6)

where |θ | ≤ 1.

Theorem 3.1 For 1 < p < ∞, suppose that the Vainikko integral operator Vϕ defined by (2)
maps L p[0,∞) into itself. Let ϕ : [0,∞) → R be measurable with the property that

‖ϕ−1/p‖L1 < ∞.

Then Vϕ is bounded and satisfies the estimate∣∣∣∣
∫ ∞

0
s−1/pϕ(s) ds

∣∣∣∣ ≤ ‖Vϕ‖L p→L p ≤
∫ ∞

0
s−1/p|ϕ(s)| ds. (7)

Consequently, in case ϕ ≥ 0 or ϕ ≤ 0, the norm ‖Vϕ‖L p→L p of Vϕ coincides with the
right-hand side of (7).

Proof Although the proof may be found in [29] for L p[0, 1], we give here another proof
which requires slightly different arguments, since L p(I ) is not included in Lq(I ) for q ≤ p
in case of an unbounded interval I . To estimate the norm ‖Vϕ‖L p→L p , we use the fact that
the bilinear form

〈y, z〉 :=
∫ ∞

0
y(t)z(t) dt (y ∈ L p, z ∈ L p′)

establishes a duality between L p and L p′ for p′ := p/(p − 1), in the sense that

‖y‖L p = sup {〈y, z〉 : ‖z‖L p′ ≤ 1}, ‖z‖L p′ = sup {〈y, z〉 : ‖y‖L p ≤ 1}.
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For x ∈ L p and y := Vϕx we get, by Fubini’s theorem

〈y, z〉 =
∫ ∞

0

(
1

t

∫ ∞

0
ϕ

( s
t

)
x(s) ds

)
z(t) dt =

∫
Q

1

t
ϕ

( s
t

)
x(s)z(t) dt ds

=
∫
Q

{( s
t

)(p−1)/p2
[
1

t
ϕ

( s
t

)]1/p
x(s)

}

×
{(

t

s

)(p−1)/p2 [
1

t
ϕ

( s
t

)]1/p′

z(t)

}
dt ds,

where Q := (0,∞) × (0,∞). Therefore Hölder’s inequality implies

|〈Vϕx, z〉| ≤
{∫

Q

( s
t

)1−1/p ∣∣∣ϕ
( s
t

)∣∣∣ |x(s)|p dt
t
ds

}1/p

×
{∫

Q

(
t

s

)1/p ∣∣∣ϕ
( s
t

)∣∣∣ |z(t)|p′ dt

t
ds

}1/p′

.

(8)

Using the change of variables s := tτ we get
∫ ∞

0

( s
t

)1−1/p ∣∣∣ϕ
( s
t

)∣∣∣ dt

t
=

∫ ∞

0
τ−1/p|ϕ(τ)| dτ,

and applying again Fubini’s theorem we conclude that the first integral in (8) is
∫
Q

( s
t

)1−1/p ∣∣∣ϕ
( s
t

)∣∣∣ |x(s)|p dt
t
ds =

(∫ ∞

0
τ−1/p|ϕ(τ)| dτ

) (∫ ∞

0
|x(s)|p ds

)
.

A similar calculation gives

∫
Q

(
t

s

)1/p ∣∣∣ϕ
( s
t

)∣∣∣ |z(t)|p′ dt

t
ds =

(∫ ∞

0
τ−1/p|ϕ(τ)| dτ

) (∫ ∞

0
|z(t)|p′

dt

)

for the second integral in (8). Combining these equalities we end up with

|〈Vϕx, z〉| ≤ ‖x‖L p‖z‖L p′

(∫ ∞

0
τ−1/p|ϕ(τ)| dτ

)1/p (∫ ∞

0
τ−1/p|ϕ(τ)| dτ

)1/p′

which in view of 1/p + 1/p′ = 1 proves the claim. ��

To illustrate Theorem 3.1 let us go back to our examples mentioned above.

Example 3.1 For ϕ(s) := χ(0,1](s) we have

‖ϕ−1/p‖L1 =
∫ ∞

0
s−1/pϕ(s) ds =

∫ 1

0
s−1/p ds = p

p − 1
(9)

which gives the precise norm ‖H‖L p→L p of the Hardy operator (3) in L p; in particular,
‖H‖L2→L2 = 2. Similarly, for ϕ(s) := 1/max {1, s} we have

‖ϕ−1/p‖L1 =
∫ ∞

0
s−1/pϕ(s) ds =

∫ 1

0
s−1/p ds +

∫ ∞

1
s−1−1/p ds = p2

p − 1
(10)
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which gives the precise norm ‖S‖L p→L p of the Schur operator (4) in L p; in particular,
‖S‖L2→L2 = 4. Finally, for ϕ(s) := 1/(1 + s) we have

‖ϕ−1/p‖L1 =
∫ ∞

0
s−1/pϕ(s) ds =

∫ ∞

0

s−1/p

1 + s
ds = π

sin(π/p)
(11)

which gives the precise norm ‖T ‖L p→L p of the Hilbert transform (5) in L p; in particular,
‖T ‖L2→L2 = π .

The question ariseswhether or not it is possible to extend Theorem 3.1 to the extreme cases
p = 1 or p = ∞. Here, the norm equalities in Theorem 3.1 illustrate the difference between
the operator (3), on the one hand, and the operators (4) and (5), on the other. Since the last
expression in (9) tends to 1 as p → ∞, say, onemight hope that the Hardy operator alsomaps
L∞ into itself with ‖H‖L∞→L∞ = 1; this may be in fact verified by a simple calculation.
On the other hand, since the last expression in (10) or (11) tends to ∞ as p → ∞, one might
suspect that the Schur operator and the Hilbert transform do not map L∞ into itself. Indeed,
for x(t) ≡ 1 we get

(Sx)(t) =
∫ ∞

0

ds

max {s, t} = 1 +
∫ ∞

t

ds

s
, (T x)(t) =

∫ ∞

0

ds

s + t
=

∫ ∞

t

ds

s
,

and so Sx /∈ L∞ and T x /∈ L∞.

4 Vainikko integral operators inWiener spaces

In view of the importance of integral operators in spaces of functions of bounded (classical or
generalized) variation, it seems reasonable to study the operator (2) in the space BV and its
various generalizations. This is the purpose of this section. In contrast to L p-spaces, however,
BV -type spaces have a reasonable norm only for functions on compact intervals, but not on
the semiaxis [0,∞). Since our main emphasis is on norm estimates in this paper, in what
follows we consider functions x : [0, 1] → R. In this case for norm estimates we will use
the fact that

‖ϕθ‖L1 ≤ ‖ϕ‖L1 ,
∣∣(Vϕx)(0)

∣∣ =
∣∣∣∣
∫ 1

0
ϕ(τ)x(0) dτ

∣∣∣∣ ≤ ‖ϕ‖L1 |x(0)|. (12)

Given p ∈ [1,∞) and a partition P := {t0, t1, . . . , tm−1, tm} of [0, 1], we denote by

Varp(x, P; [0, 1]) :=
m∑
j=1

|x(t j ) − x(t j−1)|p

the Wiener p-variation of x : [0, 1] → R w.r.t. P , and by

Varp(x) = Varp(x; [0, 1]) := sup
P

Varp(x, P; [0, 1])

its totalWiener p-variation on [0, 1]. In case Varp(x; [0, 1]) < ∞ we write x ∈ BVp[0, 1].
The set BVp[0, 1] equipped with the norm

‖x‖BVp := |x(0)| + Varp(x; [0, 1])1/p
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560 L. Angeloni et al.

is a Banach space [32]. A particular important special case is of course p = 1, where we
obtain the classical Jordan variation

Var(x) = Var(x; [0, 1]) := sup
P

Var(x, P; [0, 1]) = sup
P

m∑
j=1

|x(t j ) − x(t j−1)|

and the space BV1[0, 1] = BV [0, 1] equipped with the norm ‖x‖BV := |x(0)| +
Var(x; [0, 1]).
Theorem 4.1 In case ϕ ∈ L p the operator Vϕ is bounded in BVp and satisfies the estimates∣∣∣∣

∫ 1

0
ϕ(s) ds

∣∣∣∣ ≤ ‖Vϕ‖BVp→BVp ≤ ‖ϕ‖L p . (13)

Proof Fix x ∈ BVp and a partition P := {t0, t1, . . . , tm−1, tm} of [0, 1]. Then we get, by
Jensen’s inequality,

m∑
j=1

|(Vϕ x)(t j ) − (Vϕx)(t j−1)|p =
m∑
j=1

∣∣∣∣∣
∫ 1

0
ϕ(s)

[
x(st j ) − x(st j−1)

]
ds

∣∣∣∣∣
p

≤
∫ 1

0
|ϕ(s)|p

m∑
j=1

∣∣x(st j ) − x(st j−1)
∣∣p ds ≤ ‖ϕ‖pL p

Varp(x).

Combining this estimate with (12) we conclude that ‖Vϕx‖BVp ≤ ‖ϕ‖L p‖x‖BVp , which
proves the upper estimate in (13).

For the proof of the lower estimate it suffices to take e(t) ≡ 1 and to note that, for all

p ≥ 1, ‖e‖BVp = 1, ‖Vϕe‖BVp =
∣∣∣∫ 1

0 ϕ(s) ds
∣∣∣. ��

Since BV1 = BV , we get the estimate∣∣∣∣
∫ 1

0
ϕ(s) ds

∣∣∣∣ ≤ ‖Vϕ‖BV→BV ≤
∫ 1

0
|ϕ(t)| ds (14)

as a special case of (13). Consequently, in case ϕ ≥ 0 or ϕ ≤ 0 a.e. on [0, 1] the norm
‖Vϕ‖BV→BV coincides with the L1-norm of ϕ. It is not clear whether or not this is also true
if ϕ changes its sign on subsets of positive measure. However, the lower and upper bounds
in the estimates (13) may drift apart the more “symmetric” ϕ changes sign and has large
absolute values, as the following example suggests.

Example 4.1 For c > 0, consider the bang-bang function ψc : [0, 1] → R defined
by ψc(t) := cχ[0,1/2](t) − cχ(1/2,1](t). Clearly, ‖ψc‖L p = c for all p ∈ [1,∞], and∫ 1
0 ψc(t) dt = 0. Moreover, it is not hard to see that ψc ∈ BVp for all p ≥ 1 with

‖ψc‖BVp = |ψc(0)| + Varp(ψc; [0, 1])1/p = 3c. (15)

So we may apply the operator Vψc to ψc itself and obtain, by (1),

(Vψcψc)(t) =
∫ 1

0
ψc(τ )ψc(tτ) dτ =

{
0 for 0 ≤ t ≤ 1/2,
c2(2 − 1/t) for 1/2 < t ≤ 1.

This implies that

‖Vψcψc‖BVp = |Vψcψc(0)| + Varp(Vψcψc; [0, 1])1/p = c2. (16)

Thus, a comparison of (15) and (16) shows that ‖Vψc‖BVp→BVp ≥ c/3. We conclude that
the lower bound in (13) is 0, while the upper bound is c which may become arbitrarily large.
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Some remarks on Vainikko integral operators in BV type spaces 561

5 Vainikko integral operators in Riesz spaces

Another generalization of the space BV is due to Riesz [26]. Given p ∈ [1,∞) and a partition
P := {t0, t1, . . . , tm−1, tm} of [0, 1] as before, we denote by

RVarp(x, P; [0, 1]) :=
m∑
j=1

|x(t j ) − x(t j−1)|p
(t j − t j−1)p−1

the Riesz p-variation of a function x w.r.t. P . The total Riesz p-variation of x : [0, 1] → R

on [0, 1] is then given by

RVarp(x) = RVarp(x; [0, 1]) := sup
P

RVarp(x, P; [0, 1]).

In case RVarp(x; [0, 1]) < ∞ we write x ∈ RBVp[0, 1]. The set RBVp[0, 1] equipped
with the norm

‖x‖RBVp := |x(0)| + RVarp(x; [0, 1])1/p

is a Banach space [26]. In spite of their similarity, the spaces BVp and RBVp have quite
different properties. First of all, the scale of spaces BVp is increasing in p, while the scale
of spaces RBVp is decreasing in p. Moreover, every function in the Riesz space RBVp is
continuous for p > 1, but RBV1 = BV contains of course many discontinuous functions.
However, the most interesting property of Riesz spaces is that, for 1 < p < ∞, from
x ∈ RBVp it follows that x is absolutely continuous with x ′ ∈ L p and RVarp(x) = ‖x ′‖p

L p
,

and vice versa [1]. This means that Riesz discovered Sobolev spaces, at least in the scalar
case, 20 years before Sobolev. This fact allows us to use Theorem 3.1 for finding a condition
for Vϕ to map RBVp into itself.

Theorem 5.1 In case ϕ ∈ L1 the operator Vϕ is bounded in RBVp and satisfies the estimates
∣∣∣∣
∫ 1

0
ϕ(s) ds

∣∣∣∣ ≤ ‖Vϕ‖RBVp→RBVp ≤ ‖ϕ‖L1 . (17)

Consequently, in case ϕ ≥ 0 or ϕ ≤ 0, the norm ‖Vϕ‖RBVp→RBVp of Vϕ coincides with the
right-hand side of (17).

Proof The case p = 1 is covered by (14), so let 1 < p < ∞. In this case, x is absolutely
continuous and x ′ ∈ L p . Moreover, using the second integral in (2) we see that

(Vϕx)
′(t) =

∫ 1

0
ϕ(τ)τ x ′(tτ) dτ = (Vϕ1x

′)(t), (18)

where we have used the notation (6). From ϕ ∈ L1 it follows that also ϕ1−1/p ∈ L1; so
Vainikko’s result implies that Vϕ maps RBVp into itself and, by (18),

RVarp(Vϕx) = ‖Vϕ1x
′‖p

L p
≤ ‖Vϕ1‖p

L p→L p
‖x ′‖p

L p
≤ ‖ϕ1−1/p‖p

L1
RVarp(x)

≤ ‖ϕ‖p
L1
RVarp(x).

So together with (12) this yields ‖Vϕx‖RBVp ≤ |(Vϕx)(0)| + RVarp(Vϕx)1/p ≤
‖ϕ‖L1‖x‖RBVp .

The lower estimate in (17) is proved exactly as before. ��
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Observe that RBV∞ = Lip, the linear space of all Lipschitz continuous maps with norm

‖x‖Lip = |x(0)| + li p(x; [0, 1]), where li p(x; [0, 1]) := sup
{ |x(s)−x(t)|

|s−t | : 0 ≤ s, t ≤ 1,

s �= t
}

. So we get in addition as a fringe benefit from Theorem 5.1 the following

Theorem 5.2 The operator Vϕ is bounded in Lip iff ϕ1 ∈ L1. In this case we have

∣∣∣∣
∫ 1

0
ϕ(s) ds

∣∣∣∣ ≤ ‖Vϕ‖Lip→Lip ≤ ‖ϕ‖L1 .

Consequently, in case ϕ ≥ 0 or ϕ ≤ 0, the norm ‖Vϕ‖Lip→Lip of Vϕ coincides with ‖ϕ‖L1 .

Observe that this result for the space Lip may be easily proved directly. In fact, from
|x(s)−x(t)| ≤ L|s−t | it follows that |(Vϕx)(s)−(Vϕx)(t)| ≤ ∫ 1

0 ϕ(τ)|x(τ s)−x(τ t)| dτ ≤
L‖ϕ1‖L1 |s − t |, hence li p(Vϕx) ≤ ‖ϕ1‖L1 li p(x) ≤ ‖ϕ‖L1li p(x).

Let us illustrate our results by means of our “test animals”, the Hardy operator (3), the
Schur operator (4), and the Hilbert transform (5).

For ϕ(s) := χ(0,1](s) we have ‖ϕ‖p
L p

= ∫ ∞
0 χ(0,1](s)p ds ≡ 1 and ‖ϕ1−1/p‖L1 =∫ ∞

0 s1−1/pχ(0,1](s) ds = ∫ 1
0 s1−1/p ds < ∞ for any p ≥ 1. So the Hardy operator is

bounded in BVp for 1 ≤ p < ∞ and in RBVp for 1 ≤ p ≤ ∞.

On the other hand, forϕ(s) := 1/max {1, s}wehave ‖ϕ‖p
L p

= ∫ 1
0 1 ds+∫ ∞

1 s−p ds < ∞
for p > 1, and ‖ϕ1−1/p‖L1 = ∫ 1

0 s1−1/p ds + ∫ ∞
1 s−1/p ds = ∞. So the Schur operator

maps the space BVp for p > 1 into itself, but none of the spaces RBVp .
Finally, for ϕ(s) := 1/(1 + s) we have ‖ϕ‖p

L p
= ∫ ∞

0
ds

(1+s)p = ∫ ∞
1

ds
s p < ∞ for p > 1,

and ‖ϕ1−1/p‖L1 = ∫ ∞
0

s1−1/p

1+s ds = ∞ for p > 1. So for p > 1 the Hilbert transform maps
the space BVp into itself, but not the space RBVp .

We close this section with another operator which depends on a real parameter α and is,
in contrast to the Hilbert transform, weakly singular.

Example 5.1 For α > 0, consider the Liouville operator

(Lαx)(t) = 1

tα

∫ t

0
sα−1x(s) ds. (19)

This operator has the form (2) for the choice ϕ(s) := sα−1χ(0,1](s). Since ‖ϕ−1/p‖L1 =∫ 1
0 s−1/psα−1 ds = 1

α−1/p , the operator (19) maps L p for pα > 1 into itself. Moreover,

since ‖ϕ‖p
L p

= ∫ 1
0 s(α−1)p ds and ‖ϕ1−1/p‖L1 = ∫ 1

0 sα−1/p ds, the Liouville operator is
bounded in BVp for α > 1 − 1/p, i.e., p < 1/(1 − α), and in RBVp for every α > 0.

6 Vainikko integral operators inWaterman spaces

Finally, let us recall yet another BV -type space which was introduced byWaterman [30] and
has very interesting applications.

Let Λ := (λk)k be a positive decreasing sequence satisfying limk→∞ λk = 0 and∑∞
k=1 λk = ∞. Recall that the Waterman variation of a function x : [0, 1] → R w.r.t.

a collection S = {[ak, bk] : k = 1, 2, . . . , n} (with n variable) of pairwise non-overlapping
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Some remarks on Vainikko integral operators in BV type spaces 563

intervals [ak, bk] ⊂ [0, 1] is defined by

VarΛ(x, S; [0, 1]) :=
n∑

k=1

λk |x(bk) − x(ak)|,

and the totalWaterman variation of x on [0, 1] by
VarΛ(x; [0, 1]) := sup

S
V arΛ(x, S; [0, 1]).

In case VarΛ(x; [a, b]) < ∞ we write x ∈ ΛBV [0, 1]. The set ΛBV [0, 1] equipped with
the norm

‖x‖ΛBV := |x(0)| + VarΛ(x; [0, 1])
is a Banach space [30]. A typical example is of course Λq := (k−q)k for 0 < q ≤ 1; this
has important applications to Fourier series. Thus, in [31] it was shown that, for f ∈ Λq BV ,
the Fourier series of f is everywhere (C, β)-bounded for β = q − 1, and (C, α)-summable
for α > q − 1. Moreover, these estimates for α and β are sharp. The starting point for the
study of Waterman spaces was the choice q = 1; in this case the elements of the space
Λ1BV =: HBV are called functions of bounded harmonic variation.

Theorem 6.1 In case ϕ ∈ L1 the operator Vϕ is bounded inΛBV and satisfies the estimates
∣∣∣∣
∫ 1

0
ϕ(s) ds

∣∣∣∣ ≤ ‖Vϕ‖ΛBV→ΛBV ≤ ‖ϕ‖L1 . (20)

Consequently, in case ϕ ≥ 0 or ϕ ≤ 0, the norm ‖Vϕ‖Lip→Lip of Vϕ coincides with ‖ϕ‖L1 .

Proof Fix x ∈ ΛBV and a collection S = {[ak, bk] : k = 1, 2, . . . , n} of non-overlapping
intervals [ak, bk] ⊂ [0, 1]. Then

n∑
k=1

λk
∣∣(Vϕx)(bk ) − (Vϕx)(ak )

∣∣ =
n∑

k=1

λk

∣∣∣∣∣
∫ 1

0
ϕ(s)

[
x(sbk ) − x(sak )

]
ds

∣∣∣∣∣

≤
∫ 1

0
|ϕ(s)|

n∑
k=1

λk |x(sbk ) − x(sak )| ds ≤ ‖ϕ‖L1VarΛ(x).

Adding this estimate to (12) we see that ‖Vϕx‖ΛBV ≤ ‖ϕ‖L1‖x‖ΛBV , which proves the
upper estimate in (20). For the proof of the lower estimate we take the same function e(t) ≡ 1
as in the proof of Theorem 4.1. ��

To conclude, let us summarize our norm estimates for the most important example, the
Hardy operator (3), in the following

Example 6.1 We already know that ‖H‖L p→L p = p/(p − 1) for 1 < p < ∞ and

‖H‖L∞→L∞ = 1. Since
∫ 1
0 ϕ(s) ds = 1 and ‖ϕ‖L p = 1 for ϕ(s) = χ(0,1](s),

from Theorems 4.1, 5.1 and 6.1 we conclude that ‖H‖BVp→BVp = ‖H‖RBVp→RBVp =
‖H‖ΛBV→ΛBV = 1.
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