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Abstract
In this note we survey a selection of classical results and recent advances concerning our
understanding of spaces of positive scalar metrics on closed manifolds, and describe how
the basic questions can be transplanted to compact manifolds with boundary, a setting that
naturally connects to the study of data sets in general relativity. Special emphasis is devoted
to highlighting links with nearby fields and discussing some promising future directions.
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The concept of shape arguably stands among the most fundamental ones in Mathematics.
Along the course of the centuries it has been formalised in diverse ways, and Riemannian
geometry can be described as the subject where this task is accomplished by introducing the
notion of curvature. A typical question one would like to answer is, for instance,

What is it that makes a plane different from a sphere?

which amounts to properly encoding, in a quantitative fashion, the intuitive ideas of flatness
and roundness we naturally associate to these objects.

Yet, as soon as one goes beyond the study of curves and surfaces it is easily realised
that, so to say, there is not just one but many different notions of curvature, which encode
different properties and are fit for modelling different classes of geometric phenomena. This
survey aims at briefly presenting one of these notions, that of scalar curvature, providing an
overview of some of the recent developments and connecting them to classical landmarks in
the field.

1 Introduction

Let Xn denote a smooth manifold of dimension n ≥ 2. If we add a Riemannian metric g,
we have a good notion of distance, hence an effective way of differentiating vector fields
along curves (by means of the Levi-Civita connection) and, thereby, gain a well-defined
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18 A. Carlotto

tensor, the Riemann curvature tensor, which contains the information about the value of all
sectional curvatures of (X , g) at any given point. Recall that when n = 2 the only sectional
curvature coincides with the Gauss curvature of the surface in question. This notion has now
been studied for almost two centuries, and the pioneering contributions by Bonnet, Minding,
Liebmann and Hilbert (among others) have played an important role in opening the way to
modern Riemannian geometry. For instance, their study shed light on the classification of
complete surfaces of constant Gauss curvature and on the characterisation of those, within
such a list, admitting an isometric embedding in Euclidean R

3.
There are at least three different perspectives one can take in order to introduce the notion

of scalar curvature. The first, and by far best-known definition has to do with the second trace
of the Riemann tensor. So, if we take a local orthonormal frame {ei }i=1,...,n on (X , g), the
Ricci curvature is given by

Ricg(·, ·) =
n∑

i=1

Riemg(·, ei , ·, ei )

and the scalar curvature is

Rg =
n∑

i=1

Ricg(ei , ei ),

thus a smooth function Rg : X → R. Hence, the scalar curvature is the sum of the sectional
curvatures of X at the point in question. It is apparent, from this definition, that when n > 2
this function should only retain some partial amount of information about the shape of the
Riemannian manifold (X , g) or that, in other words, a lot of content should be lost because
of this algebraic operation of trace (which corresponds to averaging with respect to all 2-
dimensional linear subspaces of the tangent space). We now know how this intuition is
only partially correct, and that highly unexpected rigidity phenomena arise, showing that
seemingly mild restrictions on the scalar curvature of a manifold may have rather dramatic
global implications.

The second definition has a more straightforward geometric character. Indeed, it descends
from observing that, in the setting above, it holds for the volume of small geodesic balls
centered at a point x ∈ X the asymptotic expansion (proven e.g. in [21, Theorem 3.3])

volg(Br (x))

volδ(Br (0))
= 1 − Rg(x)

6(n + 2)
r2 + O(r4) as r → 0+,

for δ the Euclidean metric on R
n , and that this property characterizes the scalar curvature

function. Such a formula (suitably combined with the corresponding one for the area of
the boundary of small geodesic balls) also suggests that isoperimetric sets of small volume
tend to localise around maxima of the scalar curvature (which is indeed the case, see [58]
and [17]). The reader may wish to compare, at a conceptual level, these results with classical
facts connecting the Ricci curvature to the behaviour of geodesics, such as the Bonnet–Myers
theorem.

The third definition, advocated by Gromov (see [23]), introduces the scalar curvature from
a purely axiomatic perspective as the only (smooth) function satisfying certain universal
properties. Since these axioms, on which we shall not digress, are easily checked to be
satisfied by the standard definition of scalar curvature, the real point of Gromov’s claim is
that the scalar curvature function is in fact uniquely identified by such a set of very soft
requirements.
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A survey on positive scalar curvature metrics 19

To get a deeper understanding of the geometric content of this notion, we need to get back
to shapes, which means (as it often happens) to investigate the specific restrictions imposed
on a Riemannian manifold when we know it satisfies, say, certain pointwise bounds on the
scalar curvature. For the sake of definiteness, we will primarily focus on two questions.

Question 1.1 What manifolds can be endowed with a positive scalar curvature metric?

In other words, here we wonder whether there is some sort of algorithm or descriptive
procedurewhich takes as input amanifold X and produces as output an affirmative or negative
answer depending onwhether themanifold in question can or cannot be endowed a ‘positively
curved’ metric as encoded by means of the scalar curvature function.

Question 1.2 If we set R := {g : Rg > 0} what is the homotopy type of this space?

Of course, it can be argued that the first question is, in fact, a special case of the second,
but we prefer to distinguish them for expository convenience. Also, note that from a certain
viewpoint it is more natural to look at the space R modulo the pull-back action of the
diffeomorphism group of X , namely at the moduli space R/D.

Remark 1.3 A priori one can ask these questions in any of the following three cases:

• X compact, ∂X = ∅;
• X compact, ∂X �= ∅;
• X non-compact.

However, in the last two cases both of them are actually trivialised by the absence of suitable
boundary conditions or conditions at infinity (as we will discuss in more detail later). On
the contrary, for closed manifolds the two questions above played a key role in geometric
analysis over the last fifty years while remaining, at the same time, still wildly open.

In the case of surfaces, namely for n = 2, it is possible to answer both questions by means
of fairly classical tools. Indeed, a straightforward application of the Gauss–Bonnet theorem
gives that R �= ∅ only if X2 is either a sphere S2, or its quotient RP

2 (and of course in both
casesR is in fact not empty forwe can just consider roundmetrics).AboutQuestion 1.2, an old
result byWeyl [81] asserts thatR, when not empty, is path-connected, which was then (much
later) improved by Rosenberg-Stolz, who sketched in [64] the argument to conclude that this
space is actually contractible. Incidentally, it is interesting to note howWeyl’s theorem arose
in an attempt of attacking the problem of isometrically embedding spheres of positive Gauss
curvature as convex bodies in R

3 by means of what we would now callmethod of continuity;
such an embedding problem was then solved by Nirenberg in one of his very first papers
[59].

In general, when n ≥ 3 the story is a lot longer. Before embarking in a (necessarily
partial) description of what we know about it, we note how one may first wonder why we
posed the questions above for metrics with positive scalar curvature and not, for example,
for metrics with negative scalar curvature. The reason is that, as we are about to see, there is
a clear ‘broken symmetry’ between the positive and the negative scalar curvature cases. In
particular, the following statement holds:

Theorem 1.4 If n ≥ 3, all closed smooth manifolds Xn support metrics of negative scalar
curvature.
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20 A. Carlotto

To the best of our knowledge, this result was first proven by Aubin in [1]. Here we will
instead informally describe a totally different argument, which we learnt from Schoen. The
rough idea behind this approach is to choose any Riemannian metric on the manifold X and
then attach to X a sphere with a (microscopically scaled) metric of negative scalar curvature,
thereby getting on X a metric whose total scalar curvature attains a very large negative
value. At that stage, one only needs to ‘spread the negative scalar curvature’ uniformly. More
precisely, the argument proceeds in three steps.

First of all, one proves that if n ≥ 3, then Sn has a metric g− of negative scalar curvature.
In Appendix A we present the proof for the case n = 3, when the negative scalar curvature
metric can be found even left-invariant (once we identify, as it is rather standard, S3 with
SU (2)). For n > 3 the metric g− is obtained by suitably smoothing two n-dimensional discs,
whose boundaries are identified so to have negative scalar curvature in a distributional sense
(cf. [54]).

Secondly, we recall how for all n ≥ 3, the ‘two-ended Schwarzschild manifold’
(

R
n\{0}, gS =

(
1 + m

|x |n−2

)4/n−2

δ

)

is scalar flat. Chosen any Riemannianmetric g0 on X , we glue (X , g0)with (Sn, g−) employ-
ing a Schwarzschild neck whose mass parameter is wisely chosen. We then denote by g the
resulting metric on X . This whole construction can be performed so that the total scalar
curvature E(g) is as close as we wish to E(g0) + E(g−), where E(g) = ∫

X Rg stands for
the Einstein–Hilbert action functional. So, by the scaling properties of the scalar curvature, it
holds E(λ2g−) = λn−2E(g−), which attains arbitrarily large negative values once we pick
λ > 0 sufficiently large.

Lastly, we face the problem that the manifold (X , g) could still have some regions where
the scalar curvature is positive. To resolve this issue, both elliptic and parabolic methods
can be applied. The simple result needed to implement the former strategy is provided in
Appendix B.

Remark 1.5 The space of metrics of negative scalar curvature on any given closed manifold
has been studied by Lohkamp in [49], who proved that this space is always contractible.

Remark 1.6 It is in fact the case that any closed 3-manifold actually supports metrics of
negative Ricci curvature, as proven by Gao and Yau in [20].

In contrast to Theorem 1.4, smooth manifolds for which R = ∅, namely that do not
support any metric of positive scalar curvature exist in abundance. The simplest class of
examples is provided by n-dimensional tori

T n = S1 × · · · × S1︸ ︷︷ ︸
n times

.

For indeed:

Theorem 1.7 If n ≥ 3, the n-dimensional torus does not support any metric of positive scalar
curvature. In fact, if g is a metric on T n with Rg ≥ 0, then g is flat.

Roughly speaking, there are two different ways of proving this statement. The first, due
to Schoen and Yau, relies on the use of minimal hypersurfaces together with a downward
dimensional inductive scheme. While conceptually neat, it has the disadvantage of breaking
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A survey on positive scalar curvature metrics 21

down when the ambient dimension is larger than eight (although a more sophisticated exten-
sion, that is claimed to hold in all dimensions was recently presented in [69]). The second
proof, due to Gromov and Lawson, makes use of harmonic spinors hence ultimately relies on
the spin structure T n inherits as a quotient of R

n . For this reason, the latter approach (while
imposing no dimensional restrictions) does not necessarily extend to classes of manifolds,
such as e.g. those admitting a degree one map to tori, for which the Schoen–Yau method
works without additional effort.

Sketch of proof of Theorem 1.7 We follow here the mean curvature approach in [70,72,73],
and we restrict our discussion to n = 3 for simplicity. Let us start with the first statement.
So, if g ∈ R were a positive scalar curvature metric on T 3 = S1 × S1 × S1 we could simply
minimize, appealing to standard results in geometric measure theory, the area functional
within a suitable (non-trivial) homology class, so to obtain an area-minimizing (closed,
embedded) surface � of genus one. In particular, � would then be a stableminimal surface,
hence the second derivative test would give

∫

�

1

2
(|A|2 + Rg)ϕ

2 ≤
∫

�

|∇�ϕ|2 +
∫

�

Kϕ2, ∀ϕ ∈ C∞(�)

where A denotes the second fundamental form of � and K its Gauss curvature. Hence,
choosing ϕ = 1 as our test function, and exploiting our assumption on the sign of Rg we
derive that � should have positive Euler characteristic, a contradiction.

The second claimed statement is proven by ultimately appealing to the first, as we now
explain. If we denote by g a Riemannian metric on X of non-negative scalar curvature, we
can consider the evolution problem (known as Hamilton’s Ricci flow, see [27]) given by

{
∂t g(t) = −2Ricg(t)
g(0) = g,

which is uniquely solvable at least on some interval (0, τ ) for some τ > 0. The scalar
curvature evolves under the nonlinear equation ∂t Rg(t) = �g(t)Rg(t) + 2|Ricg(t) |2g(t) thus
a standard application of the parabolic maximum principle ensures that, in fact, the scalar
curvature of the metric, say, g(τ/2) is strictly positive at all points whenever g is not Ricci
flat. Hence, exploiting the first statement we proved, we conclude that g must be Ricci flat
hence, since n = 3, it must in fact be a flat metric, as we wanted to prove. ��
Remark 1.8 We remark that Theorem 1.7, in the (slightly) more general form for closed
manifolds admitting a degree one map to tori, implies the positive mass theorem by means
of a beautiful, and by now classical, compactification argument due to Lohkamp (cf. [50]).
This is not exactly the approach adopted in [71], although many ingredients are in common
(as well clarified in [69]). It is also appropriate to recall how the (Riemannian) positive mass
theorem, which a priori is just a statement about an Hamiltonian invariant of asymptotically
flat manifolds, was in turn crucial to fully resolve the Yamabe problem [68] by means of a
striking blow-up argument which allowed to take care of the cases left pending by earlier
work of Trudinger and Aubin (as it is explained in great detail in the comprehensive survey
[46] by Lee and Parker).

From an historical perspective, it is appropriate to note how the first obstructions to the
existence of positive scalar curvature metrics were discovered by Lichnerowicz in [48], by
means of a suitable Weitzenböck-type identity involving the square of the Dirac operator
hence ultimately relying on the aforementioned spin structures. The approach he pioneered
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was then further developed by many authors, including (among others) Hitchin and, as we
already pointed out, Gromov–Lawson. From this perspective, Question 1.1 was for long
time interpreted as a quest for a complete set of obstructions to the existence of positive
scalar curvature metrics on closed manifolds. The minimal hypersurface approach came
later, precisely in relation to the positive mass conjecture, and yet proved to be very effective
in many respects.

We will survey the state of the art on Question 1.1 in the first part of Sect. 2. In very loose
terms, this question has a complete, fully satisfactory answer when n = 3, has a complete,
but somewhat ‘abstract’ answer for simply connected manifolds of dimension n ≥ 5 and
is still not fully understood otherwise (in particular in the case n = 4). As an incidental
remark, this problem patently relates to that of characterizing the set of all functions that can
be realised as scalar curvature functions on a given background manifold X . For the sake of
brevity, we shall not include the discussion of this (important) matter in the present survey,
and refer the reader to the classical work by Kazdan and Warner [34,35] as well as to the
corresponding discussion in [64].

In the cases when R �= ∅, Question 1.2 raises the bar to the hard task of understanding
the deformation theory of positive scalar curvature metrics or, in other words, to get a deeper
understanding about how flexible positive scalar curvature metrics actually are. Historically,
if we set aside the n = 2 case (where the answer ultimately relies upon the uniformisation
theorem), the first results that have been obtained were all on the negative side.

Awell-known landmark, in this respect, was the pioneeringwork byHitchin [32], employ-
ing harmonic spinors to the scope of proving that for any integer k ≥ 1 the space of positive
scalar curvature metrics is disconnected on any sphere of dimension equal to 8k or 8k + 1.
We will provide a brief overview of these sorts of results in the second part of Sect. 2, to the
scope of providing (abundant) supporting evidence for the statement that in many cases of
interest the moduli spaceR/D (henceR) consists of infinitely many connected components.

From there, we will turn to some much more recent developments, namely to the phase
transition that occurs formanifolds of dimension three. In particular, wewill describe how the
Ricci flow [27] can be employed to prove positive results on the (higher-)homotopy groups
of the space of positive scalar curvature metrics on closed 3-manifolds. Thus, we will focus
on deep work by Marques [52] and on the striking recent results by Bamler and Kleiner [2]
that stem from the generalised Smale conjecture (cf. [74]) on the diffeomorphisms group of
closed 3-manifolds (cf. [30]).

Section 3 focuses instead on the study of compact manifold with boundary, namely the
second class listed in Remark 1.3. We will first discuss how the two key questions above
should be transposed to that setting. In particular, we will see how the pairing of conditions
on the scalar curvature of a manifold, and the mean curvature of its boundary is the natural
choice both from the perspective of Riemannian geometry and of general relativity, where
these problems naturally arise in the study of (certain classes of) black hole solutions to the
Einstein field equations. Once the questions are set up, we will briefly overview recent work
by the author andLi [8] aimed at starting their systematic investigation. For instance,we give a
complete topological characterization of those compact 3-manifolds that support Riemannian
metrics of positive scalar curvature and mean-convex boundary and, in any such case, we
prove that the associated moduli space of metrics is path-connected. We further explain
how to refine our methods so to construct continuous paths of non-negative scalar curvature
metrics with minimal boundary, and to obtain analogous conclusions in that context as well.
Thereby, one can derive the path-connectedness of the space of asymptotically flat, scalar
flat Riemannian 3-manifolds with minimal boundary (for any fixed background topology).
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This is by no means the first survey about positive scalar curvature metrics, and certainly
it does not aim to be a superset of the pre-existing ones. Besides the aforementioned article
by Rosenberg and Stolz [64], we would definitely recommend the text of the ICM lecture by
Schick [67] and the two parts of the recent, broad survey by Walsh [79,80]. When compared
to these works, the present survey places a lot less emphasis on the obstruction results, hence
on the higher dimensional scenario, and much more on the three-dimensional theory as it has
been recently developed. More generally, I believe many readers will witness quite a clear
shift of perspective (partly reflecting, as it is obvious, the background of the author).

It is my hope that the combination of these, rather diverse, sources might provide an
enlightening, broad-spectrum introduction to this fascinating subject, that still poses a number
of outstanding open problems.

2 The case of closedmanifolds

Throghout this section, we assume Xn to be a (smooth) compact manifold without boundary.
For the sake of expository convenience, we will also restrict to the case that of orientable
manifolds. Let us first provide a picture of the landscape in front of us as far as Question 1.1
is concerned.

The case n = 2 has been discussed above, so let us assume n ≥ 3. As a byproduct of
Perelman’s monumental work [60–62] on the Poincaré (and geometrisation) conjectures, we
have the following strikingly simple result describing the three-dimensional scenario.

Theorem 2.1 Let X3 be a connected, orientable, compact manifold without boundary, such
that R �= ∅. Then

X3 ∼=
(
S3

�	1
# · · · #S3�	p

)
#qi=1(S

2 × S1),

where # denotes a connected sum operation, and for each i = 1, . . . , p, we have that S3/	

is a spherical space form (i.e. 	i , i ≤ B, are finite subgroups of SO(4) acting freely on S3).
Viceversa, any such manifold supports Riemannian metrics of positive scalar curvature.

Recall that, given smooth connected manifolds X1, X2 (both having dimension n) their
connected sum, denoted by X1#X2, is obtained, roughly speaking, by removing small balls
around two points, say x1 ∈ X1, x2 ∈ X2 and joining them by means of a connecting neck
of the form Sn−1 × I for I = [0, 1] ⊂ R, as schematically shown in the following picture.
One can prove that this operation, properly formalised, is well-defined, i.e. that its outcome
does not depend on the choice of the basepoints (i.e. on the choice of x1 ∈ X1 and x2 ∈ X2)
and of the identification maps for the boundary spheres (cf. [38]) (Figs. 1, 2).

Remark 2.2 For the sake of comparison, Hamilton proved in [27] that a closed 3-manifold
supporting metrics of positive Ricci curvature must be a spherical quotient. More generally,
recall that the aforementioned Bonnet–Myers theorem implies at once that a manifold sup-
porting metrics of positive Ricci curvature must be compact and have finite fundamental
group. Both conclusions are false if one considers positive scalar curvature metrics instead,
as shown e.g. by considering the Riemannian products S p ×R

q and S2 × S1, respectively. In
that respect, let G be any group that can be realised as the fundamental group of a (smooth)
closed manifold, say X0. ThenG can also be realised as the fundamental group of a manifold
of positive scalar curvature, for it suffices to consider the product of X0 (endowed with any
metric) with a suitably scaled two-dimensional round sphere.
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24 A. Carlotto

Fig. 1 The connected sum operation, for three-dimensional manifolds

We note that one of the two implications in Theorem 2.1 follows at once from a classical,
yet fundamental fact about positive scalar curvature metrics:

Theorem 2.3 If two oriented manifolds X1 and X2 support positive scalar curvature metrics,
then so does their connected sum X1#X2.

The proof of this result has been presented, independently, by Gromov–Lawson in [24]
and Schoen–Yau in [72]. The argument in [24] has a rather constructive character: given g1
(respectively g2) a positive scalar curvature on X1 (respectively X2), one can build a metric
g on X1#X2 that coincides with g1 away from a small geodesic ball on X1, with g2 away
from a small geodesic ball on X2, resembles a cylindrical (product) metric near the center of
S2 × I and (most importantly) has positive scalar curvature everywhere. The construction is
thus local around two given points on the manifolds that serve as input.

Now, as far as the application above is concerned, it is clear that both S3/	 and S2 × S1

support positive scalar curvature metrics (for instance: the round, and product ones) hence
the conclusion comes straight by invoking Theorem 2.3.

It is also important to mention how this statement about realising connected sums with
positive scalar curvaturemetrics is actually just a special instance of amore general principle:

Theorem 2.4 Let X be an oriented manifold supporting positive scalar curvature metrics.
Then the same conclusion holds for any manifold X ′ that is obtained from X performing a
surgery of codimension at least 3.

Without embarking on a detailed discussion of surgery operations, which again entails
various non-trivial aspects, let us give an informal idea of what we mean. We observe that
for any p ≥ 0, q ≥ 1 one has

∂(S p × Dq) = S p × Sq−1 = ∂(Dp+1 × Sq−1)

for ∂ the standard boundary operator. Hence, we shall say that X ′ descends from X by
means of a surgery of dimension p (or codimension q) if it is obtained by removing an
embedded S p × Dq and replacing it with Dp+1 × Sq−1, glued along the common boundary.
Here n = p + q , if n denotes the dimension of X ; the connected sum operation formally
corresponds to p = 0.

Let us then proceed to the discussion of Question 1.1 for higher-dimensional manifolds.
Partly building on Theorem 2.4 it is possible to prove if X is a closed, simply connected
manifold of dimension at least 5, and if w2(X) �= 0 then X does support positive scalar
curvature metrics. Here w2(X) ∈ H2(X; Z/2Z) denotes the second Stiefel-Whitney class
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of the tangent bundle of X . This result leaves the case w2(X) = 0 open, which is indeed the
case corresponding to spin manifolds (i.e. manifolds admitting a spin structure). The situation
was then fully clarified by the following, outstanding theorem by Stolz [75].

Theorem 2.5 Let Xn be a closed, simply connected manifold of dimension n ≥ 5. Then:
R �= ∅ if and only if either X does not admit any spin structure or admits a spin structure
such that the (associated) α-invariant vanishes.

Remark 2.6 For the basic background on the map α, which is a graded ring homomorphism
from the set of spin cobordism classes to the real K -homology of a point, we refer the reader
to the beautiful monograph by Lawson and Michelsohn [43].

Remark 2.7 When one considers closed (oriented) manifolds that are not simply connected,
the characterization given by Theorem 2.5 ceases to hold: for instance, as we saw with
Theorem 1.7, the three-dimensional torus T 3 supports no positive scalar curvature metric, in
spite of being a spin manifold with vanishing α-invariant.

Remark 2.8 For n = 2, 3 all closed simply connected manifolds do admit positive scalar
curvature metrics. For n = 4, there are lots of simply connected manifolds that do not admit
positive scalar curvature metrics. In fact, this is the case for any K3 surface (cf. [44,45]).

It turns out that the issues raised in the two remarks above are not at all isolated, for in fact
we still do not have a clear/complete understanding of the situation when the fundamental
group is not trivial (cf. [4,66]) or when n = 4.

On the one hand, let us remind the reader that the key contribution in [75] was to prove that
a spinmanifold with vanishing α-invariant does admit ametric of positive scalar curvature: as
was pointed out to us by Hanke, for non simply connected manifolds (in dimension ≥ 5) we
have almost no general existence results for positive scalar curvature metrics, except for very
specific fundamental groups. Some information in the case of odd order abelian fundamental
groups may be found in [28].

On the other hand, the world of four-dimensional manifold seems to be peculiar with
respect to Question 1.1 as well. Its investigation is naturally connected to Seiberg-Witten
theory, see [76] by Taubes and [65] by Ruberman (as well as references therein). In that
respect, we wish to mention the existence of simply connected spin manifolds that have van-
ishing α-invariant and yet do not admit any positive scalar curvature metric. This ultimately
relies on a striking theorem by Teicher [77, Theorem 5.8] constructing simply connected
general-type complex surfaces which are spin and have signature zero (cf. [56]), for indeed
employing the Seiberg-Witten invariants one proves that all compact algebraic surfaces of
‘general type’ do not admit metrics of positive scalar curvature [57].

Let us now turn our attention to Question 1.2. The network of problems around this
question has been extensively studied for decades, yet the landscape in front of us is still
very poorly understood, except in special cases. One such case corresponds to the scenario
when the background manifold X is a closed (orientable) surface X2. Like we wrote in the
introduction, in this case the space R of positive scalar curvature metrics, when not empty
(which occurs if and only if X2 is a sphere), is contractible. Actually, this conclusion follows
from a more general statement, proven by the author in joint work [10] with Wu. To present
it, we will employ this notation. Given a Riemannian metric g we denote by [g] the pointwise
conformal class of g, that is, g1 ∈ [g] if g1 = e2ug for some smooth function u on X . Further,
let C denote the set of conformal classes of metrics on X , and π the associated projection
map.
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Theorem 2.9 Let S be a non-empty space of Riemannian metrics satisfying the following two
properties:

(1) one fiber is star-shaped, namely: there exists a metric ḡ ∈ S such that

e2tu ḡ ∈ S ∩ π−1([g]) for all 0 ≤ t ≤ 1, whenever e2u ḡ ∈ S ∩ π−1([ḡ]);
(2) S is invariant under diffeomorphisms, i.e.

g ∈ S if and only if φ∗g ∈ S for all φ ∈ D.

Then S is contractible.

Although [10] deals with compact surfaces with boundary, hence with the (somewhat
more general) problems we will present in Sect. 3, the translation to the closed setting is
straightforward. Theorem 2.9 implies the contractibility of R because all fibers of R are
actually convex in the sense that if gi = e2ui g ∈ S ∩ π−1([g]), i = 1, 2, then

e2(t1u1+t2u2)g ∈ S ∩ π−1[g] for all t1, t2 ≥ 0 such that t1 + t2 = 1,

due to the well-known equation describing the change of Gauss curvature under pointwise
conformal deformations, that reads

e2uKe2ug = Kg − �gu.

Sketch of proof of Theorem 2.9 We first note that an elementary argument, based on the use
of volume forms, implies that the set C is contractible, see e.g. [10, Appendix A]. This fact
holds true for any n-dimensional oriented manifold, without specific reference to the setting
in question.

Hence the theorem is proven by showing that the set S in the statement is homotopy
equivalent to C, which in turn is done by constructing a section of S over C. One way of
proving the uniformisation theorem relies on the Beltrami equation, and that approach pro-
vides (as a byproduct) a homeomorphism  : C → D+• , the space of orientation-preserving
diffeomorphisms of the sphere that fix three given marked points. That said, one defines the
map σ : C → S by factoring through D+• as shown in the diagram

C S

D+• ,

σ



namely one sets

σ([g]) = (([g]))∗g.
This definition is well-posed because of assumption (2) in the statement. That being said,
one checks at once that π ◦ σ = 1C , the identity on the set of conformal classes, while on
the other hand (exploiting assumption (1) in the statement) σ ◦ π � 1S , where � stands for
the homotopy relation. Hence, S is homotopy equivalent to C. ��

In spite of its simplicity, the case of surfaces is quite instructive, as it exhibits some
features that are much harder to detect in the higher-dimensional scenario. In particular, a
trivial (but non secondary) remark is that the conclusion that R be contractible does not,
in general, imply that the associated moduli space R/D be contractible as well (nor, of
course, the converse is true). For instance, in the setting above one can easily prove that
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the moduli space in question is homeomorphic to the space obtained by quotienting the set{
u ∈ C∞(S2) : 2 − �g0u > 0

}
(for g0 the standard round metric) with respect to the right

action of PSL2(C). Namely, the equivalence relation is defined as

u ∼ v ⇐⇒ v = η∗u + fη for some η ∈ PSL2(C),

where fη is uniquely determined by the equation η∗g0 = e fηg0.
So, the readermight get convinced (at least at some heuristic level) that the full understand-

ing of R does not per sé trivialise, in any sense, the problem of determining the homotopy
type of the associated moduli space.

As anticipated above, the case n = 3 is very peculiar. Till about a decade ago, essentially
no general result about R or R/D was available. This ceased to be the case when Marques
showed in [52] how to employ Perelman’s work on the Ricci flow with surgery, together with
a number of other tools, to prove the following statement.

Theorem 2.10 Let X3 be a connected, orientable, compactmanifoldwithout boundary. Then:
either the space of positive scalar curvature metricsR is empty, or the moduli spaceR/D is
path-connected. In addition, when X3 is diffeomorphic to the three-dimensional sphere S3

then the space R is itself path-connected.

Remark 2.11 When X3 = S3, then we know by [12] that Diff+(S3) is contractible. Thanks
to this fact, together with the path-connectedness of the moduli space, the conclusion for R
is straightforward. In fact, we now know a lot more about Diff(S3): by work of Hatcher [30]
this space is actually homotopy equivalent to O(4). The attempt of suitably generalising this
sort of conclusion to all closed 3-manifolds (i.e. to prove the generalised Smale conjecture)
was a driving force for recent research in geometric analysis, on which we will come back
later when briefly discussing the contributions by Bamler and Kleiner.

The proof presented byMarques contains several beautiful ideas and cannot be reasonably
presented here in any detail. We will just limit ourselves to sketch it, with a focus on some
specific aspect that will get back in play in Sect. 3.

Given a closed orientable 3-manifold X that supports positive scalar curvature metrics we
know from Theorem 2.1 that it takes the form of a connected sum of finitely many pieces that
are either spherical space forms or handles. Hence, for any such manifold Marques defined a
preferred, path-connected subsetO ⊂ R consisting ofmodel metrics. In the simplest case of
S3 one has that O/D only consists of one point (the equivalence class of the round metric),
while in general model metrics are obtained by attaching to a central round sphere the other
summands by means of Gromov–Lawson connected sum operations. That said, one needs to
develop a strategy to connect, by means of continuous paths of smooth metrics, an arbitrary
initial point in g0 ∈ R to an element in g ∈ O.

To construct these paths, one would like to employ Hamilton’s Ricci flow. In order to
clarify the point, let us observe how one could prove that the space of metrics on S3 of
positive Ricci curvature is path-connected. We follow the same conceptual scheme as above.
Hence, given g0, a metric of positive Ricci curvature, as initial datum for the evolution we
know (by themain theorem in [27]) that the renormalised flowwill converge to a roundmetric.
Hence, if we look at the evolution in the quotient modulo the action of diffeomorphisms, we
prove that any initial equivalence class can be joined to that associated to the standard round
metric, which then implies the path-connectedness result we want.

The problem here is that under our assumptions, namely that g0 ∈ R, the (renormalised)
flow will not in general converge to a round metric, but will indeed develop finite time
singularities so that suitable operations, again called surgeries (but totally unrelated to the
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Fig. 2 Connecting arbitrary initial metrics in R with model metrics, in the case when X ∼= S3 so that O/D
is the equivalence class of the round metric

construction which lies behind the statement of Theorem 2.4), are needed to continue the
flow. More precisely, we take g0 ∈ R as input and look at the spacetime plot of the Ricci
flow with surgery (as defined by Perelman) as output. Due to the positive scalar curvature
assumption, there will be a finite extinction time t j+1 > 0 as well as, possibly, finitely many
intermediate singular times t1, . . . t j (with 0 < t1 < · · · < t j < t j+1) where surgeries occur.
Using the blow-up analysis by Perelman (i.e. his classification of singularities), Marques
proved that the (possibly disconnected) Riemannian manifold one has short before time t� is
isotopic to a Gromov–Lawson connected sum of the pieces one sees at time t�. Hence, the
conclusion comes by means of a backward-in-time induction argument provided one proves
the following two assertions:

(a) the Gromov–Lawson connected sum of Riemannian manifolds that can be separately
isotoped to model metrics is itself isotopic to a model metric, and

(b) short before the extinction time t j+1 the Riemannian manifold one sees is isotopic to a
model metric.

Each of these two statement is, in turn, quite non-trivial to prove. The former relies, among
other tools, on the use ofKuiper’s developingmap (cf. [40,41]), a reference toy problem being
that of proving that the Gromov–Lawson connected sum of two round spheres is conformally
diffeomorphic to a round sphere. The latter exploits, instead, Perelman’s fundamental result
asserting that, short before the singular time, the Riemannian manifold we see satisfies the
so-called (C, ε)-canonical neighborhood property, i.e. it is covered by geometric pieces we
understand well (essentially: caps and necks with suitable curvature bounds). A highly non-
trivial covering argument is employed to close the proof of this second ancillary statement.

To say something more about Question 1.2 for three-dimensional manifolds, we need
to get back to the generalised Smale conjecture, i.e. to the conjecture that for all closed,
irreducible, geometric manifolds there exists a homotopy equivalence between the space D
of diffeomorphisms and the space of isometries associated to a homogeneous Riemannian
metric of maximal symmetry. Without opening an additional digression on this problem,
we shall mention here how the conjecture has been recently proven by Bamler–Kleiner [2].
The key tool, in their approach, is the result (motivated by well-known statements due to
Perelman) that there is a unique, canonical singular Ricci flow, and that the associated Ricci
flow spacetimes depend continuously/smoothly (in a suitable sense) on their initial data. In
this approach, the problem of suitably defining and constructing surgeries is somewhat by-
passed by means of a more robust approach, where the flow is not necessarily regarded in
purely classical, smooth terms. As a vague analogy, the reader may wish to compare this sort
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of result to the construction of weak mean curvature flows as level set flows, as originally
proposed by Evans and Spruck in [18] and, indiependently, by Chen, Giga and Goto in [13].
In any event, using this methodology (crucially relying on earlier work by Kleiner and Lott
[37], whose program was then completed in [3]), Bamler and Kleiner succeeded in proving
the following remarkable result:

Theorem 2.12 Let X3 be a connected, orientable, compact manifold without boundary. Then
the space of positive scalar curvature metrics R is either empty or contractible.

This provides a complete understanding of the spaceR for closed manifolds of dimension
three, so let us now focus on the case n > 3. In analogy with what we described above for
Question 1.1, the results that have been obtained mostly rely on the index theoretic analysis
of Dirac operators (or generalisations thereof) or, in the special case of four-manifolds, on
gauge-theoretic tools. To make a long story short, and oversimplifying things to the extreme,
we can assert that

‘if the background manifold has dimension n ≥ 4 the moduli spaceR/D has, in many
cases of interest, infinitely many connected components.’

In particular, in any of these cases, the same conclusion holds forR as well. That being said,
following the chronological order of the events, a very brief overview of some landmark
results goes as follows. Concerning the space R of positive scalar curvature metrics on Sn :

• in 1974, Hitchin proved in [32] that it is disconnected when n ≡ 0, 1 (mod 8);
• in 1983, Gromov–Lawson proved in [26] that it has infinitely many connected compo-

nents when n = 7;
• in 1988, Carr proved in [11] that it has infinitely many connected components when

n ≡ −1 (mod 4), n ≥ 7.

Further refining the last of the results mentioned above, Kreck and Stolz proved in [39] that
themoduli spaceR/D of Sn also has infinite connected components forn ≡ −1 (mod4), n ≥
7.

In addition, Botvinnik and Gilkey discussed in [6] how to construct examples of closed,
orientable manifolds of any pre-assigned dimension n ≥ 5 for which, again, the moduli
space in question has infinitely many connected components. This result has recently been
improved by Reiser in [63]. Lastly, for what concerns the case n = 4, in [65] Ruberman
constructed, on the one hand, examples of closed orientable manifolds for which R has
infinitely many connected components and, on the other, examples of closed non-orientable
manifolds for which the moduli space has itself infinitely many components.

Remark 2.13 To the best of our knowledge, it is still unclear whether for any n ≥ 4 it is
possible to construct simply connected manifolds such thatR has infinitely many connected
components.

The results we have listed above do not, by any means, provide a complete overview of
the recent advances in the field. In particular, we have witnessed some partial, yet striking,
progress on the problem of determining the higher homotopy groups of R. In that respect,
we refer the reader to [7,29,82] and references therein.
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3 The case of compact manifolds with boundary

Let us now transition to the case when Xn is a compact manifold with boundary. What can
one say about Questions 1.1 and 1.2? It turns out that, quite surprisingly, both questions are
trivialised by the following theorem, due to Gromov [22, Theorem 4.5.1].

Theorem 3.1 Let Xn be a compact manifold with n ≥ 3. If ∂X �= ∅, then Xn always
supports positive scalar curvature metrics, i.e. R �= ∅. In fact, Xn always supports metrics
with positive sectional curvature.

So, as it is also plausible from a PDE perspective, we must add ‘boundary conditions’ for
the questions above to be of some interest. Of course, a priori this leaves room for different
choices. Motivated by later applications to the study of initial data sets for (certain classes
of) asymptotically flat, black hole solutions to the Einstein equations, we will focus here on
pointwise conditions on the mean curvature of ∂X . To elaborate on this, let us quickly recall
a few basic facts about the mathematical foundations of general relativity. Let us consider
a Lorentzian manifold (L, γ ), of dimension 1 + 3, and assume it solves the Einstein field
equations

Gγ = 8πT (3.1)

where Gγ := Ricγ − 1
2 Rγ γ (we assume, for the sake of simplicity, to work with a vanish-

ing, or anyway negligible, cosmological constant), and T is the stress-energy tensor which
describes the physical sources. Now, let X be a spacelike hypersurface inside L , and let g and
h denote its first and second fundamental forms, respectively. A straightforward computation
shows that the Gauss and Codazzi equations, combined with (3.1), imply that (X , g, h) shall
satisfy the system

{
Rg − ‖h‖2g + (trg h)2 = 16πμ

divg(h − (trg h)g) = 8π J ,

for μ the energy density and J the momentum densisty associated to T . These equations,
known as Einstein constraints, turn out to be a necessary and sufficient condition for a triple
(X , g, h) to isometrically embed in a spacetime solving the field equations. For indeed, a
celebrated theorem due to Choquet-Bruhat (see [14], as well as later work with Geroch [15])
ensures that any such triple constitues an initial data set for a well-posed hyperbolic problem
(as are the Einstein field equations, when written in a suitable gauge).

Now, in the simplest of all cases, namely when h = 0 (the so-called Riemannian case)
it is readily seen that the constraints reduce to a single condition on the scalar curvature. In
particular, when the sources are assumed (as it is most often the case) to satisfy the dominant
energy conditionμ ≥ |J |g wewould be looking formetrics of positive (in fact: non-negative)
scalar curvature on X . Analogous remarks hold true, more generally, in the so-calledmaximal
case, i.e. when trg h = 0. This is a crucial conceptual link, which lies behind the reduction
of the positive mass conjecture to Question 1.1 for a certain class of closed manifolds, as we
remarked in the introduction.

That being said, in many situations of physical relevance the solutions one deals with
exhibit an event horizon, which bounds a black hole region, from where physical signals
cannot escape. This is for instance the case with the familiar Schwarzschild spacetime, whose
Penrose diagram is sketched in Fig. 3. If (L, γ ) is a black hole solution of the Einstein
equations, the trace of the event horizon on a spacelike hypersurface inherits an additional
condition, on the (null) mean curvature, which can equivalently be posed as a possibly
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Fig. 3 A sketchy Penrose diagram for the Schwarzschild black hole solution

inhomogeneous condition on the Riemannian mean curvature of ∂X within (X , g). Then,
once again, through suitable compactification arguments, we can derive results for black
hole spacetimes from theorems concerning compact 3-manifolds with boundary (with a
Riemannian metric).

Therefore, given Xn a compact orientable manifold and g a smooth Riemannian metric
on X , and denoted by

{
Rg : X → R the scalar curvature of (X , g)

Hg : ∂X → R the mean curvature of ∂X ,

the general themewewish to develop in this section is the study of sets of Riemannianmetrics
on X that are ‘cut’ by two pointwise conditions involving these two curvature functions. For
example, one can consider

M := {g : Rg > 0, Hg > 0}, or H := {g : Rg ≥ 0, Hg = 0}.
To streamline the exposition we will mostly focus on the case of M, although one may

develop a similar program forH, on which we will get back later on. We can then ask similar
questions as in the closed case, namely:

(a) Given X as above, can we decide whether M �= ∅?
(b) What is the homotopy type of the moduli space M/D?

Note that, in this caseD shall denote the space of (proper) diffeomorphisms of X , without
the assumption that they restrict to the identity along the boundary ∂X .

Remark 3.2 There are obviously otherways of recastingQuestions 1.1 and 1.2. An interesting
choice, that turns out to be quite natural from the topologists’ perspective is to impose collar
boundary conditions, i.e. study positive scalar curvature metrics that take the form of a
product near the boundary. We will not further describe this problem here, but rather refer
the reader to [5,78] as well as references therein (in particular: classical work by Gajer [19])
for various contributions around this theme.

To get a feeling for these questions, and to better convince ourselves of the close analogy
with the corresponding questions in the closed case, let us first consider compact surfaceswith
boundary. In this case, the Gauss–Bonnet theorem implies that, if M �= ∅, then χ(X) > 0
and thus X must be diffeomorphic to a two-dimensional disc D2. Furthermore, thanks to
the uniformisation theorem, it can be shown that M is contractible. In fact, in [10] we
proved Theorem 2.9 for surfaces with boundary (which, in particular, allows to deduce the
contractibility of both M and H).

Very little is known, for the two questions above, when n ≥ 4. We shall instead focus on
three-dimensional manifolds, and briefly present some of the main results in [8].
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Theorem 3.3 ([8, Theorem 1.1]) Let X3 be a connected, orientable, compact manifold with
boundary, such that M �= ∅. Then there exist three integers A, B,C ≥ 0, not all zero, such
that X is diffeomorphic to a connected sum of the form

Pγ1# · · · #PγA#S
3/	1# · · · #S3/	B#

(
#Ci=1S

2 × S1
)

.

Here: Pγi , i ≤ A, are genus γi handlebodies; 	i , i ≤ B, are finite subgroups of SO(4)
acting freely on S3. Viceversa, any such manifold supports Riemannian metrics of positive
scalar curvature and mean-convex boundary.

In the statement, as above, the symbol # denotes an interior connected sum. Also, note
that we allow γ = 0 (i.e. genus zero handlebodies) and that taking the interior connected sum
with a copy of P0 is equivalent to removing an open ball away from the boundary. Before
sketching the proof of Theorem 3.3, let us mention some related results. In particular, it is
natural to ask how the answer to our questions changes replacing the strict inequalities in the
definition of M with weak inequalities. The answer is given by the following statement.

Theorem 3.4 Let X3 be a connected, orientable, compact manifold with boundary. Then the
following three assertions are equivalent:

(i) MR>0,H>0 �= ∅;
(ii) MR>0,H≥0 �= ∅;
(iii) MR≥0,H>0 �= ∅.
Furthermore, each of these is equivalent to

(iv) MR≥0,H≥0 �= ∅,
unless X3 ∼= S1 × S1 × I (in which case the space MR≥0,H≥0 only contains flat metrics,
making the boundary totally geodesic).

The proof of this result, which we will not present here, exhibits various connections with
the torus rigidity theorem (cf. Theorem 1.7) and the positive mass theorem. Instead, we shall
now give an outline of the proof of Theorem 3.3. In particular we first prove that all manifolds
as in the statement support a metric in M and then we prove that all manifolds for which
M �= ∅ are of that form.

Proof of Theorem 3.3 Let us first deal with the second assertion. Thanks to Theorem 2.1, since
the statement of Theorem 3.3 only involves connected sums in the interior (thus not affecting
the boundary), it suffices to show that for any γ ≥ 0 the handlebody Pγ can be endowed
with a metric of positive scalar curvature and mean-convex boundary. One way to see this is
to notice that for any γ ≥ 0 there exists, in round S3, a minimal surface of genus γ (thanks
to classical work by Lawson [42]): any such surface is two-sided and unstable, thus if we
consider a small deformation by means of the first eigenfunction of the Jacobi operator we
will determine two domains, one of which is mean-convex and has scalar curvature equal to
6 at all points.

Let us now discuss the other implication, which is a lot subtler. The key trick to attack
it is an old, but perhaps not so well-known remark by Gromov–Lawson [25, Lemma 5.7],
asserting that if X satisfies M �= ∅ then its double DX satisfies R �= ∅. In other words,
whenever X3 supports metrics of positive scalar curvature and mean-convex boundary, we
can endow its (topological) double DX with a metric of positive scalar curvature. We will
get back later to the proof of this statement (which does indeed play a fundamental role in

123



A survey on positive scalar curvature metrics 33

Fig. 4 For a compact manifold with boundary X , we compare DX versus FX

the global economy of [8]) but, for the time being, let us give it for granted and see how to
proceed.

Thanks to such a remark, it is enough to classify the compact orientable three-manifolds
X with boundary such that

DX ∼=
(
S3

�	1
# · · · #S3�	p

)
#qi=1(S

2 × S1),

which is a purely topological matter. To take care of this, we proceed in two steps.

Step 1 Assume that there are only spherical boundary components. In this case we compare
the outcome of two topological operations we can perform on X : the first one is the double
D and the second one is the filling F . Rather than formally defining these operations (which
are quite intuitive anyway), we depict them by means of the following picture (Figs. 4, 5, 6).

What is always true, and rather easy to check, is that these two operations are related by
the following equation

DX ∼= (FX#FX) #d−1
i=1 (S2 × S1),

where d is the number of boundary components of X . Keeping in mind that the left-hand
side of this equation is given (it is provided by Theorem 2.1), we solve this equation for FX
(using Milnor’s uniqueness theorem of prime decomposition of three-manifolds [55]) and
get, for suitable integers p′, q ′

FX ∼=
(
S3

�	1
# · · · #S3�	p′

)
#q

′
i=1(S

2 × S1).
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At that stage, we solve for X by simply removing finitely many balls in the interior, namely
we obtain

X ∼=
((

S3
�	1

# · · · #S3�	p′

)
#q

′
i=1(S

2 × S1)

)
\

r⋃

i=1

Bi ,

which is what we wanted, provided we just keep in mind that any ball removed corresponds
to the connected sum with a solid disc, which we denote P0 (a genus zero handlebody).

Step 2 In the general case, namely when one needs to handle boundary components of
positive genus, the key remark is that any such boundary component must be compressible in
X . This is a standard notion in geometric topology, for which we refer the reader e.g. to the
monograph by Jaco [33]. In our specific setting, where any surface we deal with is two-sided
and orientable (being a connected component of the boundary ∂X ) this condition is equivalent
to the non-injectivity of the fundamental group of the surface in the fundamental group of X
(the morphism being the map induced by the inclusion). The reason why such claim is true
is quite simple: if that were not the case, we could construct in X a stable minimal surface
of positive genus, which is impossible by well-known facts about the second variation of the
area functional (as we have seen above in sketching the proof of Theorem 1.7).

That being said, any such boundary component comes with a compressing disc andwe can
compress along that disc obtaining a new compact 3-manifold with boundary, say Z , such
that DX ∼= DZ#(S2 × S1). At this stage, either Z only has spherical boundary components
(in which case we invoke Step 1 or, if not, it has other non-spherical boundary components. In
the latter alternative, we perform yet another compression. Because of the previous equation
relating DX and DZ , the process must finish after finitely many steps, hence we eventually
reduce to a compact manifold with boundary, say Z0, to which Step 1 applies. At that stage,
we can determine Z0 and, hence, reconstruct X by arguing backwards, i.e. by unwinding the
compression operations we have just performed. In particular, we note that X is obtained by
taking finitely many boundary connected sums of Z0 with D2 × [0, 1]. For any γ ≥ 1, the
boundary connected sum

(S3\B3) #∂ (D
2 × [0, 1])#∂ · · · #∂ (D

2 × [0, 1])︸ ︷︷ ︸
γ times

is diffeomorphic to a genus γ handlebody. Thereby, reconstructing X from Z0 we can con-
clude the proof of Theorem 3.3. ��

Once these aspects have been clarified, we can proceed and start looking at the structure
of the spaceM, in those cases when it is not empty. In particular, we can determine π0(M).

Theorem 3.5 ([8, Theorem 1.2]) If M �= ∅, then M/D is path-connected. In the special
case X3 ∼= D3, then M is path-connected.

Remark 3.6 Here are some general comments about this statement.

• This conclusion is not known for any n ≥ 4, not even for Dn , but (relying on the analogy
with the closed case) it is reasonably expected to be false in many cases of interest.

• The same conclusion as in Theorem 3.5 also holds for the three larger spacesMR≥0,H>0,
MR≥0,H≥0 and MR>0,H≥0 thanks to Theorem 3.4 and related, simple deformation
arguments, unless X3 ∼= S1 × S1 × I (in which case the conclusion is still true, due to
the characterization of the metrics in MR≥0,H≥0).
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Fig. 5 A diagram showing the inclusions of the four spaces of metrics defined in terms of scalar curvature and
boundary mean curvature

• The proof of Theorem 3.5 is a combination of elliptic and parabolic methods. In addition,
although the statement concerns smooth metrics, the methods we employ are partly non-
smooth (i.e. along the course of our arguments we need to deal with metrics that exhibits
certain types of singularities along codimension one interfaces).

Essentially, this theorem is proven through twomain steps, that are hereby briefly outlined.
The first one is essentially an ‘isotopic version’ of the Gromov–Lawson doubling construc-
tion. That is to say, given g ∈ M = MR>0,H>0, we build an isotopy (gμ)μ∈[0,1] starting at
g0 = g, such that gμ ∈ M for all μ ∈ [0, 1) and that g1 has positive scalar curvature and
totally geodesic boundary (in fact, it can be smoothly doubled).

Fig. 6 The first step: reducing the problem to a question about closed manifolds with a certain symmetry
(which we call reflexive triples)

This isotopy being constructed, the idea for the second step is that we can then flow the
metric on the closed manifold obtained as the double of X with metric g1, so to connect it to
a subset of model metrics, to be suitably defined in this context. But before moving on, let
us now outline the idea of the proof behind this isotopic doubling construction.

As it is shown in the picture below, in the Gromov–Lawson doubling construction one
considers the set Tε = {

(x, h) ∈ X × R : d((x, h), X ′) = ε
}
consisting of the points in space

X × R, with its product metric, at tiny distance ε from a small inward deformation X ′ of X .
It is apparent that the set Tε shall consist, roughly speaking, of two isometric copies of X ′
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and the portion of a tube (corresponding to the set of points at distance ε from ∂X ′ × {0}
in X × R. Such a tube consists of meridians parametrised by an angle θ ∈ [−π/2, π/2].
The values θ = ±π/2 correspond to the singular interfaces, where the induced metric is not
smooth.

In [25] it is observed that if g ∈ M then the induced metric on Tε has, away from
such interfaces, positive scalar curvature. Such interfaces can be smoothened by different
methods, see e.g. [54] or [53], and in both cases the smoothing can be performed so that
the resulting metric on DX still has positive scalar curvature. What we discovered in [8] is
that an additional, somewhat suprising, property holds true: for any value of θ0 ∈ (0, π/2)
the mean curvature of the manifold with boundary defined by the inequality θ ≥ θ0 (a set
drawn in Fig. 7 in magenta) is strictly positive, which naturally defines a family of (singular)
metrics on X all having positive scalar curvature and mean-convex boundary. Hence, the
point is to suitably desingularise these metrics, so to gain a continuous path of smooth
metrics. What we do in [8] is first to regularise by means of a localised fiberwise convolution,
which produces a new family of metrics that may fail to have positive scalar curvature in a
small strip around the interface, and then ‘reimpose the constraints’ i.e. conformally deform
these metrics using the first eigenfunction of the conformal Laplace operator with Neumann
boundary conditions. Using results by Mantoulidis–Schoen [51] on the smooth dependence
of (suitably normalised) eigenfunctions with respect to the background metrics, combined
with a variation of an argument by Li-Mantoulidis [47] providing a uniform, positive lower
bound for the first eigenvalue of that operator (which in turn relies on the application of
Moser’s Harnack inequality) we can finally obtain the desired isotopy.

Fig. 7 A cartoon picture for the Gromov–Lawson doubling trick, and our isotopic counterpart

The net outcome of this construction is thus the reduction of our problem into one concern-
ing the space of positive scalar curvaturemetrics satisfying a suitable equivariance constraint.
More specifically, we define a category of reflexive n-manifolds, that are (loosely speaking)
triples (M3, g, f ) where (M3, g) is a closed Riemannian manifold and f ∈ C∞(M, M)

is an isometric involution f 2 = id , f �= −id that is conjugate to a ‘standard reflection’.
However, note that if M is non-connected, there may be reflexive pairs as well (couples of
identical connected components). That being said, what we still need to do in order to prove
Theorem 3.5 is to show that any reflexive triple of positive scalar curvature can be joined,
through a reflexive isotopy of classes of R to a model triple.
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Fig. 8 The backward inductive scheme

Because of the statement of Theorem 3.3, the definition of model triples takes quite some
effort when compared to the closed case, i.e. to [52]. First of all, we need to get a classification
for suitably equivariant necks, and then we need to devise a general procedure to assign to
each X a collection of equivariant necks, of the different types, (together with, possibly, some
spherical space forms) in a way that the inductive scheme behind the proof of Theorem 2.10
might work as well. In that respect, it may be appropriate to note, for instance, how the
doubling map X �→ DX is (highly) non-injective: for instance S2 × S1 can be obtained by
doubling either S2 × I or D2 × S1 (and in the two cases the corresponding model metrics
will be very different).

That being said, we evolve an initial reflexive triple through a suitable equivariant Ricci
flow with surgery, due to Dinkelback–Leeb [16]. Hence, we follow the conceptual path that
has been described in Sect. 2, which we depict in the Fig. 8. All technical tools need to be
transplanted to this (special) equivariant setting, and in particular a key point to make the
backward induction work is to show that the equivariant connected sum of reflexive triples
that can be (separately) isotoped to model triples can be isotoped, within reflexive triples, to
a model triple as well.

Here are a couple of final remarks about the contributions in [8]. First of all, we can
obtain similar results for spaces of metrics of positive (or: non-negative) scalar curvature and
minimal boundary such as e.g. the space H defined above (cf. [8, Sect. 6]). This requires
some extra care, and indeed there are subtle technical points coming into play, but the general
argument resembles the approach we have described in this section. From there, fairly stan-
dard compactification arguments allow to deduce path-connectedness results for spaces of
asymptotically flat metrics on, say,R3 minus a finite number of balls with non-negative scalar
curvature andminimal ormean-convex boundary conditions. This has quite non-trivial impli-
cations. For instance, when the background topology is that of R

3\B this result implies that
we can connect any given asymptotically flat solution of the (Riemannian) vacuum Einstein
constraint equations, through a continuous path of solutions (namely: through a continuous

123



38 A. Carlotto

path of smooth, asymptotically flat and scalar flat metrics with minimal boundary) to the
simplest one we know, the Schwarzschild solution. The fact that this can be done is, in a
sense, far from obvious as we know how large and rich the space of such solutions can be
(the reader may take a look at the localised data constructed by Schoen and the author in [9]).
Differently phrased, such a connectedness result rules out a nightmare scenario of infinitely
many islands of solutions, with the most exotic ones separate from the others. As it has been
recently pointed out in [31] this positive conclusion is consistent with the landscape predicted
by the so-called Final State Conjecture in general relativity.
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Appendix A. Left-invariant metrics on S3

Here we present the proof of the following simple, yet partly surprising result:

Proposition A.1 The three-dimensional sphere S3, identified with the Lie group SU(2), sup-
ports left-invariant metrics of negative scalar curvature.

Proof Given the identification in the statement, the tangent space at the identity (namely:
su(2)) is spanned by the basis

e1 =
(
i 0
0 −i

)
, e2 =

(
0 1

−1 0

)
, e3 =

(
0 i
i 0

)
.

Hence, we define on su(2):

g(ei , e j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ1 if i = j = 1

μ2 if i = j = 2

μ3 if i = j = 3

0 else

Set εi = ei/
√

μi for i = 1, . . . , 3. Then, as it easily checked (cf. e.g. [36] for all details), the
sectional curvatures of (S3, g) are given by

Kg(ε1, ε2) = −3
μ3

μ1μ2
+ μ2

μ1μ3
+ μ1

μ2μ3
+ 2

μ1
+ 2

μ2
− 2

μ3

and cyclic permutations. Hence, the scalar curvature of this manifold is given by

Rg = 2(Kg(ε1, ε2) + Kg(ε1, ε3) + Kg(ε2, ε3))

= −2

(
μ3

μ1μ2
+ μ2

μ1μ3
+ μ1

μ2μ3

)
+ 4

(
1

μ1
+ 1

μ2
+ 1

μ3

)

constrained to the open octant {μ1 > 0, μ2 > 0, μ3 > 0}. Therefore, choosing μ1 = σ ,
μ2 = σ 2, μ3 = σ 3 for a parameter σ > 0, we obtain

Rg = −2(1 + σ−2 + σ−4) + 4(σ−1 + σ−2 + σ−3)
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thus Rg � −2σ−4 as σ → 0+, whence the conclusion is straightforward. ��

Appendix B. Trichotomy theorem

We shall state here, for the sake of completeness a basic but fundamental fact about the
conformal geometry of closed manifolds of dimension at least three, that is sometimes cited
in the literature as trichotomy theorem.

Theorem B.1 Let (Xn, g0) be a closed Riemannian manifold. Define the Yamabe invariant
of the conformal class [g0] = {g = e2 f g0 : f ∈ C∞(X)} as

Y ([g0]) = inf{E(g) : g ∈ [g0], volg = 1},
where E(g) = ∫

X Rg. Then, there are exactly three mutually distinct possibilities:

(1) Y ([g0]) > 0, if and only if there exists g ∈ [g0] with Rg > 0, if and only if λ1(−L) > 0.
(2) Y ([g0]) = 0, if and only if there exists g ∈ [g0] with Rg = 0, if and only if λ1(−L) = 0.
(3) Y ([g0]) < 0, if and only if there exists g ∈ [g0] with Rg < 0, if and only if λ1(−L) < 0.

Here L is the conformal Laplace operator, i.e.

Lu = �g0u − c(n)Rg0u, c(n) = n − 2

4(n − 1)
.

It is perhaps appropriate to note here how, in sketching the proof of Theorem 1.4, we did
not rely on the full strength of the statement above but only the following straightforward
lemma.

Lemma B.2 Given a closed Riemannian manifold (Xn, g0), if E(g0) < 0, then λ1(−L) < 0.
As a result, there exists g ∈ [g0] with Rg < 0.

Proof We recall the variational characterization of the first eigenvalue of an elliptic operator,
which in this case reads

λ1(−L) = inf
u∈H1\{0}

∫
X |∇u|2 + c(n)Rg0u

2
∫
X u2

.

Now, an admissible competitor for the above minimization problem is u = 1, so

λ1(−L) ≤ c(n)

∫
X Rg0

volg0(X)
= c(n)

E(g0)

volg0(X)
< 0.

If we set g = u4/(n−2)g0 and recall that R(g) = −c(n)−1u− n+2
n−2 Lu, we can just deform

the Riemannian manifold (X , g0) using the first (positive) eigenfunction of the conformal
Laplacian. This is an elliptic way of spreading the curvature, as we explained above.
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