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Abstract

In this work we continue the investigation, started in Campbell et al. (On the interplay
between hypergeometric functions, complete elliptic integrals and Fourier—Legendre series
expansions, arXiv:1710.03221,2017), about the interplay between hypergeometric functions
and Fourier-Legendre (FL) series expansions. In the section “Hypergeometric series related
to w,w* and the lemniscate constant”, through the FL-expansion of [x(1 — x)]* (with
nw+le %N) we prove that all the hypergeometric series

Z(—1)"(4n+1) [1(2;1)]3 Z(4n+1) [i(2n T
p(n) 4n\ n ’ p(n) 4n n) ’

n>0 n>0
Gn+1)T1 2n\]* 1 [1/2n\7? 1 [1/2n\7?
,; p(n)2 [T(nﬂ ’,;p(m [T<n>] ’gp(m [?(n)]

return rational multiples of %, # or the lemniscate constant, as soon as p(x) is a polynomial
fulfilling suitable symmetry constraints. Additionally, by computing the FL-expansions of

1ogxx and related functions, we show that in many cases the hypergeometric ;1 Fy(...,z)
function evaluated at z = %1 can be converted into a combination of Euler sums. In particular

we perform an explicit evaluation of

1 1 /2n\7? 1 1 /2n\7?
Z:(2n—i-1)2 [E(n)] ’ ;(2774‘1)3 |:47<”)] .

n>0 >0

In the section “Twisted hypergeometric series” we show that the conversion of some
p+1Fp(..., £1) values into combinations of Euler sums, driven by FL-expansions, applies
equally well to some twisted hypergeometric series, i.e. series of the form ), ., a,b, where
ap is a Stirling number of the first kind and Zn>0 bu" = pr1Fp(...52). B
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List of symbols
k=X i
o @2n+ D2’

n>0
IBP
FL
PFD
CS

Taylor
[x"]f (x)

(@i :=T(a+k)/I(a),aecR{, keN,
Hy = [} a1, x € R,
H, (s) := ) 1, k%’ se€R, neNT,

, . 1
S (8) =3 k0 rTy

Hp/q (s) :=¢(5) = p" D k=0 (kaW’ s>1, p,ge Nt

Py2x — 1)
K@) = fi? ——d __ xe (0,

/1—x sin? (u)

E@) = [? Y1 = xsin> wdu, x € 0, 1),

Jx) = [T (1= xsin26)”? do,

Catalan’s constant

Integration by parts
Fourier-Legendre expansion
Partial fraction decomposition
Cauchy—-Schwarz inequality,
(f, &% < lIfl2llgl

Taylor series at the origin
Coefficient of x” in the Maclau-
rin series of f(x)

Rising Pochhammer symbol

Harmonic number

Generalized Harmonic number,
with H, := H,(1)
Generalized Harmonic number
running over odd integers, with
oy = iy (1)

Generalized Harmonic number
with fractional argument

nth shifted Legendre polyno-

. n
mial, ;- 45 [x" (1 — x)"]

Complete elliptic integrals of

the first kind, with the param-
eter being the elliptic modulus
Complete elliptic integrals of
the second kind, with the param-
eter being the elliptic modulus
Generalized complete elliptic
integral

Additionally, we will employ the simplified notation for hypergeometric functions:

2a+3 2b+1

2a+1

4 9 4 9

3P [ 241
¢ =3

’

2a+1 2a+3 2b+1.
1] = am (2, 22, 2

2d+1.
> ,c,—; ,1).

Unless differently stated, we will also assume that the variables involved in our series range

over the interval (0, 1).

1 Hypergeometric series related to 7, 12 and the lemniscate constant

In our previous works ([7,8]) we stressed many consequences of the following principle:
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Remark Many hypergeometric functions have a Fourier-Legendre expansion whose coef-
ficients still have a hypergeometric structure. In particular, given a hypergeometric series
pFe(o D) = ano a, = fol f(x) g(x)dx and assuming that both f an g have man-
ageable FL-expansions, the original series can be converted into an equivalent one. In many
practical cases, the transformed series can be directly computed from Euler sums [3] with
low (< 5) weight.

Such approach turned out to be pretty effective in computing hypergeometric series involv-
2
ing [ﬁ (2")] of [6 L (gZ) (2:)] Starting with the identity

n

L2(0,1) 2 B
K(x) = 27(2H+I)Pn(2x 1

n>0

we proved that many series involving central binomial coefficients or their squares can be
computed in explicit terms, most of the times depending on 7, K, log(2), log(1 4 +/2) and
r (%) By considering the moments

1 1
/ xTK (x)dx, / xTE(x)dx
0 0

and similar integrals associated to generalized elliptic integrals, we proved that the FL-
machinery is able to produce representations for 7 in terms of ratios of 3 > functions. Such
representations have been usually proved through the contiguity relations for hypergeometric

functions [19]. The current section is about the application of the same idea to hypergeometric
x(1—0)]"
Jx(1—x)
investigation is the identity

1 1 /2n\7?
\/ﬁng’l)nZ(Mi—i—l) [ﬂ(:)] Pon(2x — 1) (1

n>0

functions of the

kind, with n € N. In particular, the starting point of our current

which is a simple consequence of Rodrigues’ formula for Legendre polynomials. By Bonnet’s
recursion formula, if the FL-expansion of f(x) is given by ano ¢y Py(2x — 1), then the
FL-expansion of g(x) = x - f(x) is given by ano dy P,(2x — 1), where for any n > 1

n+1

200 +3) "

n 1
dp = ———cp—1+ =
n 2(2n_l)cn 1+2Cn+
Additionally, the symmetry of Legendre polynomials ensures that the FL-expansion of
f(1 — x) is simply given by ano cn(—1)"P,(2x — 1). In particular it is straightforward

to exploit (1) to compute the FL-expansion of , / 1=~ and of 1=x broducing the following

—X X
FL-expansion for /x(1 — x):

LZQJ)Z 4dn + 1 i 21\ 17 B
*=x "= 8,;(n+1)(1—2n) [zw(n)] Pan2x = 1). @

2
: 1 (2n 1 . 4n+1 1 (2n .
Since 77 (') ~ T A = 400, the series D, .o m [47(,1)] is absolutely

convergent and the equality above holds as a pointwise equality for any x € [0, 1], too. Since
P, (0) = (—1)" [% (2:)], the evaluation of (2) at x = % leads to
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626 M. Cantarini, J. D’Aurizio

1 _y @n+D(=D" [1 2n\] 3
7 ~—4m+ 1A —-2n) 4"\ n
n>0
and the application of Parseval’s identity leads to
1 3(4n+1) 1 /2n\7*
— = — , 4
w2 HZ(:) 32(n + 1)2(1 — 2n)? [4” (n >:| @

while by computing the inner product between |/ ;= and ,/ ]% we have
E_28n2+8n+1 1 2m\7* )
2 _n>0 n+1)2 4n \ p ’

which are Ramanujan-like formulas for % and # The RHS of (5) depends on 4F3

I, 1,1 .
%, %, %, %; 11,2, l). The formula above can be seen as a consequence of the contigu-
1,2,2

ity relations for 4 F3 functions; nevertheless, it does not seem to be recognized by computer
algebra systems. We may notice that for (moderately) large values of n the main term in the
RHS of (3) behaves like rﬁ% and the main term of the RHS of (4) behaves like n% In terms
of the contiguity relations for hypergeometric functions, (3) is equivalent to

On the other hand, the procedure which allowed us to derive the FL-expansion of +/x (1 — x)

from the FL-expansion of \/ﬁ can be applied again. It leads to the FL-expansions of
[x(1 — )% and [x(1 — x)17/%
9 dn+1 1 (2n\7?
(1 — )P = 2 # [7( n)i| P, (2x — 1),
256 n>0 (n + 1)2 (f - I’l)2 4 n

2257 (4n+1) 1 /2n\7?
|y = [f< )} Pon(2x — 1),
[x( x)] 4096 g (n+1)3 (% _n)3 4\ n on (2x )

Except for the extra term [4% (Zr:'
expansions for the generalized elliptic integrals we studied in our previous work. The

evaluation at x = % produces

2
)] , these expansions are essentially identical to the FL-

n 3
1 _y 9(4n + 1)(=1) |:i<2n>:| ! ©
7 80+ D+ 2)(1 =213 —2n) [ 47\ n
1—2 225(4n + 1)(=1)" [L 2n T -
T 1601+ D(n+2)(n+3)(1—20)(3 —2n)(5 — 2n) [ 4" (n> ’
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where, for (moderately) large values of n, the main term of the RHS of (6) behaves like nglﬁ

and the main term of the RHS of (7) behaves like ﬁ (6) and (7) are equivalent to the
contiguity relations

32 3 1 1 3

522 3F2(—§,§,§,1,3,_1)+3F2(_§’ 55532747_1)7

256 51 1 333

o=sah(-h i hLa-)+5 53R (-3 3 b5

and Parseval’s identity ensures

1 2835 3 (4n+1) [ 1 (m)T ®
2= 2 | an )
T 16384 =0 (n+ 1)% (% _ n)2 4n \ p
1 35083125 (4n+1) [ 1 <2n>]4 o
= 2 | an )
T 4194304 =0 (n+ 1)% (% _ I’l)3 47\ n

where, for (moderately) large values of n, the main term of the RHS of (8) behaves like
nig and the main term of the RHS of (9) behaves like n% (8) and (9) are equivalent to the
contiguity relations

16384 3 31 1 1 1 33

52 =4 (27 LA ) Fabs (o0, 005 5 244 1),
16777216
W=64'4F3 (_%,—%,%,%§1,4,4§ 1)+25'4F3 (_%,_%,%,%275,52 1)~

Theorem 1 By induction on k we get that for any odd k € N the following identity holds
pointwise over [0, 1]:

2
¢ (k) G+ 500
[x(1=x)]2 = —"—57 i Py (2x — 1)
8623 g+ Dt - (3 —n)ap
Corollary 1 If p(x) € Z(x) is a polynomial with even degree, with simple roots belonging to
the set { ., —3,-2,—1, %, %, %, .. .}, and such that p(x) = p (—% — x), then

3
Z(—l)n 4n +1 |:i<2n>i|
p(n) [4'\n

n>0
is a rational multiple of % and

dn+1T71 20\ dn+171 20\
Z p(n)? |:47<n)] ’ Z p(n) I:E<”>i|

n>0 n>0

are rational multiples of ﬁ

Proof If p(n) fulfills the mentioned constraints, ﬁ can be written as a linear combina-
tion with rational coefficients of @ +‘1‘;‘:{ 1_ I ERCESICT +;)’E]Ll2,l)(3_2n) etcetera. The claim is

therefore a straightforward consequence of Theorem 1. O
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628 M. Cantarini, J. D’Aurizio

By considering the inner product between different FL-expansions provided by Theorem 1
we also get that

Corollary 2 If p(x) € Z(x) is a monic polynomial with even degree, with simple or dou-

,%, %, %,] and such that p(x) =

Z4n+1 |:1<2n)]4
pn) 4"\ n

n>0

ble roots belonging to the set §...,—3,—-2,—1

)4 (—% — x), then

is a rational multiple of #

The evaluation of the identity of Theorem 1 at x = % leads to

3
oran+n[FC] 2 162

=— — (10)
= i+ De(3—n), T (21
and if we apply Parseval’s identity to the statement of Theorem 1 we get
4
@n+ 1)) 212 ey
= . (8))
o (n+ 1)% (% _ ")13 2k (4k)!(2k)12

Another function of the [x(1 — x)]7 kind has a simple FL-expansion which is related to
central binomial coefficients:

e(1— )14 = L«ﬁz 3 [4i (2’1”)] Py, (2x — 1). (12)

1
r(z) w=o
The evaluation at x = % and Parseval’s identity lead to

2 B RN
e g ] -2

n>0

4
2 (', 1 1 2n\T* T (3)
— K — J— =

71/0 () dx Z4n+1[4n<n)] 1672

n>0

while by combining (1) and (12) we get

Sl -5

n>0

This provides a furher proof of K (1) = ﬁ]“ (%)2, not directly relying on Clausen’s

formula, giving the equality between 2 Fy (a, b; a + b + %; z)z and3 F» <2a, 2b,a+b;a+b

+ % 2a + 2b; z). Given the generating function for Legendre polynomials, the identity
2
JllTx “on 2 ano P,(2x — 1) is straightforward. If we combine the FL-expansions of

1 1
JI—x and Yx=—x)
results ([2,14]):

with Theorem 1 we obtain the following extension of Bauer’s and Levrie’s
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Theorem 2 For any k € Nt we have

s BT _rap reep

So+Di(z-n),  27V2 F(k—i-%)zl“(k—i-%)!

5 [ﬁ(zf)]z 2 re?

=t e (3 —n), - wI(4k)

Additionally, if p(x) € Z[x] is a monic polynomial with even degree, with simple roots

belonging to the set I o, —3,-2,—1, %, %, %, .. .], and such that p(x) = p (—% — x),
then
> s [#(0)]
orerd p(n) | 4"\ n
4
)
is a rational multiple of o and

1 [1/20\7°
,g) p(n) [4" (n )]

is a rational multiple of %

We may also notice that by combining the FL-expansions of m and «/7 we have
1 dx x>x2 ! 2dx 1
- —x 2 = = V2K (3)
0 VX =x)2—-x) 0 V(1 —x2)2-x2)
FL 2 Z(‘ﬁ 1)4n+1 1 20\
= T — i
=0 47\ n

LV TNGIEY ((ﬁ -1 )

which can be deduced from K (x) = 2/\(}1\/1(7;71«/7@ [4]. Such identity relates K (v/k1),

K (5/k4) and the lemniscate constant, where k; = A*(j) are the elliptic singular values,
~ o KWTR)
algebraic numbers fulfilling KB = N

If we combine Theorem 1 with the FL-expansion for the logarithm
0,1 1
log(x) ( : -1+ Z( 1)n+l ( + ?) Py(2x — 1)
n>1
we get that for any odd k € N

r+4)°
(k + 1)!

pk)  wk? o (F ) [# (,f)]

CE ) 2 S ek D ()

1
[Hij2 — Hig1] = fo log(x) [x(1 —x)1"/* dx
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holds, and by letting k = (2j — 1) we have

Q) (% + %) [Ln(zn")]
4j/ 2 2(n +21)+,-1(% in)

n>1

2

2j (_1)m+l
=2log2) —1— ) ——

J m=1
which is an acceleration formula relating 4F3 (1, 1,3 3 2 —J32,2,2+J; 1) and 3F,

(% % % =k % j+2; 1). By Rodrigues’ formula the FL-expansion of /x (1 — x) is given

by

Vx(l—x) =

4ﬁ I;O (4n +3)(1 —4n) [47(’1 )] Py, (2x — 1)

and by considering the inner product between the FL-expansions of [x (1 — )4 we imme-

diately get
1_Z 1 1 (2n\]°
7 4~ @dn+3)(1—4n) [4\n)]"
n>0

whichis equivalentto 3 F» ( 2 é, 1, Z, 1) = orto computing fol x4 A =x)K (x) dx.
A similar problem concerns the explicit evaluatlon of

2 i 1 l+[l<2nﬂ2 = oAb EL3
2 27 27 27 25 725
=0 @Rn+ 1) 4"\ n

Taylor 2

1
——/ K (x?) log(x) dx.
T Jo

;1)

[NS][o%}

We may notice that K (x) = )", . Pn(2x — l)z,fﬁ and

logx

4
Jx gp@x DE=D” [822k+1 2n+1:|

hence we may convert the original series into a combination of Euler sums:

1 1 /2n\7?

2
n>0 n>0 (2n + 1)
_ T Z Hyy (—1)" _ iz Hy(—1)"
Cn+12 7= Cnt1)2
n>1
then by invoking Y, | Hyx" = _IOI#IZ_Z) and fo ZFlog(z)dz = —m we immediately

have

(—D"H, /1 log(1 + z%) log(z)
D A G
0

— (2n+1)? 1+ z?
3
=2ImL K log(2 ———1 2
m Liz (4£) — K log(2) — o 16og()
Z (=1)"Hyy 1 log( ) (log(l —iz) log(l +iz) J
<@t 1?2 =iz 1+iz )
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—Im Liz (4¢) - EK log(2) + @ + E log?(2),

through the functional identities for Liy and Li3. The terms related to K log(2) and log2 2)
simplify and this leads to the unexpected identity:

2 27 27 25 27 £ 2! 27
= 2n+1)> [4"\ n

372 1og2(2) 16
= Im Liz (1££). 13
3 + 2 - 13( 5 ) ( )

—

2 2
1 (2 1 (2 4K—-6
Since Zn>0 2n— 1)2 [411 (nn)] = ; and Zn>() (2n— l)’é [7( n)] = T
we also get:

1 1 (2n Z_F L _1 1 _ 1.y 1 1.4
Zm 47 n =4 3(—7,—5,—5,—5, R )
n>0

372 log?(2) 16 8
= — — Im Liz (2) — —(K = 1).
8 2 T 3(2) 71( )

The LHS of (13) is well-approximated by the more elementary

—Z—:S—Z—i+4log(2)
“2n+1)% (n+ o)) 2

2
and similar approximated identities can be produced by replacing [4% (2;’)] with ( 1 1) in
w\n+z

the series representing ||f(x)||L2(0 D for f(x) = [x(1 — x)]k/2 and k being an odd natural

number. As an alternative, using Theorem 2,

6 o« [0
DNy IS i T

n>0 n>1

implies m ~ 4 — % log(2), with the magnitude of the difference being < 6 - 1073, Many
series involving squared central binomial coefficients, and eventually harmonic numbers, can
be managed in a similar fashion. The following series appear in [5-7], too:

Hy [ 1 (20\]? 2 !
Zn+1[47<n>] _—;/0 K (x)log(1 — x) dx

n>0
2 2 1 1
-2 -
T +’;(2n+1)2<n+n+1>

16
= (1 —log(2))
17

3jL%_l g4+—(K+lOg(2))— f(2+3log 2),

Y [1<2")T——/ K () log(x)d
S [a\n)] T )y TEEE

%
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2 2= (1 1
T 2+Z(2 +1)2<7+n+1>

n>1

16

T
L7 4 2 16lo)
T 9 7 9 3t

The approximation error in the former case is < 5- 1072 and in the latter case itis < 2-1073.

. . logk (x) logk(x)
Theorem 3 The computation of the FL-expansions of ==~ and V3 allows to convert any

2
: . 1 1 (2n 1 1 (2n . .
hypergeometric series of the ano erEsyd [4—,,(” )] or Zn>0 e [4” ( )] kind into
a combination of Euler sums, since the derivatives of the initial functions are immediately
related to Stirling numbers of the first kind and central binomial coefficients.

can be computed by noticing that

2
For instance, the FL-expansion of log%

d" (log?x (—D"
HC e T—
where trivially C, = % and B, = 2”713,1 1+2C,, 1. By letting B, = (2”71)”1?,, we
get En = En—l +ﬁ,hence B, = (2n 1)” Zk 1 2k T Similarly A, = n= 1An 1+ Bu-1
leads to

_@n-DI 1
An = on 8 Z Qk — D2m — 1)

l<k<m<n

2
2n — D! " 1 " 1
= 7" .4 I -
on (1; 2k — 1) 1; 2k — 1)2

f * is given by
(l—x)n 2
> @n+ 1P, 2x - 1) ‘ [An — Bylog(x) + C,log”(x)] dx
n>0 I’lf
N S 16
=) (=D"P,2x—1) |32 -
ng(:)( VB Cx—1) (;2k+1> 2n+1;2k+1+(2n+1)2

2
This approach leads to the equality between ), m [4% (ZnH)] and

—/ K () log?(x) dx = —/ K(x )lo‘?x)

2
_82(—1)"(ZZ=02£+1) _§Z%+i2&
- s n>0 (2}1 + 1)2 T n>0 (2}1 + 1)3 T n>0 (2n * 1)4.
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The evaluation of the original series is now shown to be equivalent to the evaluation of

standard and alternating Euler sums with weight 4. We trivially have 2 >0 m = ’2771

and since ) | Hyx" = log(l x) we also have
1
ZZZ:OW _Z Hont1 _12 Hy
@n+13 @Qn+1)3 2 = (2n+ 1)3

H2n Hy,
-2 Z @n? 2 20 @n+1)?

:l:;l _ H2n 1/ log(1 — x2)log?(x) .,
72 = (2n)3 11— 2
I Thacors [0 b
= —% + %log(2)§(3) + /01 W
= T oe ) - /01 W
- e -2 ).

in agreement with De Doelder [10] and Sitaramachandra Rao [18]. Recalling that 7, (s) =

JfZ
=0 (o +1)2 itis enough to exhibit a slight gen-

eralization of Theorem 4.1 of Flajolet and Salvy [11]. Though the residues of [w(—s) + y]
they prove the following reduction formula for quadratic Euler sums:

H Hn2 Hn
Yy Z D gy 99E D)4

na+l1
n>1 n>1

> o ﬁ in order to evaluate the series

which restricted to the case g = 2, by symmetry, simply leads to

H? H, 13z*
=2y T
2 =225 5
n>1 n>1

In our case we may notice that, in the same spirit, Y ., -2 equals

A2
n>0 (2n41)

1
> ; ,
0<j,k<n (2n+1) (2k+ 1)(2]+1)

_ 1 o 1
Z n+1)22j +1)2 Z Q2n+ 12Qk+ 125 +1)

0<j<n 0<j<k=<n
1 1
| 2j+1 ~ 2k+1
- 2) - (2 4 Qn+ D2k— )
P V) Ha@ 4 A+ 3 5 P

0<j<k=<n

574 s
= = — 4+ 2(,1,2).
384 Z(2n+1)22 2]+1 384+ ., )
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For any n € N we have

1 2
A= R (v +21022 ( )
" Res 3 \y F2loe@+y (v +¥ ()
since for any n € N the Laurent series of y + v (z) centered at z = —n is given by

H” + H,+(H,(2)+¢12) (z+n)+ 0z + n)?) and, similarly, for any even n € N the
Laurent series of § (y +21log(2) + ¥ (%)) centered at z = —n is given by
1
z+n

1 1
+5 (Huj2 4+ 210g(2)) + 1 (Huj2(2) +¢(2)) (z+n) + O((z + n)?).

Therefore the computation of ) - (2‘;:1)2 can be performed by considering the residues of

é (v +2log@) + v (3 ))2 (y + ¥ (z)), which b01ls down to computing the residue at the

. 4
origin (” — log?(2)) and the Euler sums D ons1 ng = %, n>1 52 - 360, together

n
with the less elementary ), ., H”nljz” .

On the other hand, we may also consider that, by continuing 7%, to negative integers through
<7f_1 =0and <7f_(n+2) = e%ﬂn,

H? H? A, 1
2 (2n-:1)2 =2)_ (2n—:1)2 -2) (2n+nl)3 2 @n+ D4
nez n>0 n>0 n>0

_lz(w("+%)—¢(%))2

2
4 = 2n+1)
2
1 + § _ 1
= —— Z Res 7 cot(mwz) v (Z 2) 14 (2)
4 7=—2m+1)/2 2z+1
m=>0
2 -l
71 2 °
og ( )+ 9%

This identity has many direct consequences:

. log*(2)
7(1,1,2) = — —122 —Lis(3).
(1.1.2) = oo+ - log?(2) = == ~ Lis (3)
11 log(2) log(1 + 2) (=1 Hy
— | 2B WO T, N
m 2/0 i+ 2
I g2~ PO T —2 Lis (4)
= 360 12 51081 e
H: +H, QT 120\ 2 [!
Znﬁi’l“()[f( ")] = 7/ K (x*)log?(1 — x) dx
n+1 4\ n 7 Jo
n>0
96 87 128

64
= — - — - — log(2) + — log 2),
T 3

and it also allows the explicit evaluation of

1

H, H
Z n 22n -9 Z . 3
n>1 n a,b,n>1 a (a + n)( + n)

_ 2// wlog(1 — w)log(l — z) wd
a 0,1)2 1-— w2 <
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On the interplay between hypergeometric series. . . 635

in terms of 7, log(2), ¢(3) and Li4 (1), although such formula is pretty much involved and
not really relevant in the forthcoming manipulations.
We are now ready to tackle the alternating Euler sums with Weight 4 involving the powers

of #%,. By mimicking the approach used to evaluate Y, _, 5~ we have that

A2
n=0 @nt1)
(R (=D" A (=D"

2 (2n + 1)? _22 2n+1)3 ZO 2n + 1)*

3w (1))
:_12 Res : T 1'Z/(Z—'_Z) 1'[/(2)
4 wers z=—Q2m+1)/2 sin(wz) 27+ 1

3

D" D"
=T~ 3 Y [—”( S T H @) +210g<2)>}

24 m>] 2m3 2
3
T log2) - 240 - / DD o,

where the last integral depends on ji1: it equals 1238”8 1°g46(2) + %2 log?(2) — 4 Lis (5) —
1 1og(2)¢(3). Similarly

Z (_l)n‘%{;{%
= 2n +1

R N (—)" A2 (—)" (—1y"
=23 2n+1 _32(2 +1)2+ Z(z +1)3_§)(2n+1)4

. ad (w(z+§;—w(é))3

— E Res -
z=—Qm+1)/2 sin(wz)(2z + 1)
m=>0

T T, | 6 (Huo 23 (Hpa(@) 72
= loe @ 8’;( 1)|:m<2 >+m< > o
T ml 3 [ Hu1 1 2
P [W (Pt o) - 535 - 11
= 2 log? (2)+—1og(2) —g(3)+— (S (HZ — Hy(2))
3 128 16 = m mo
_ B 37 [!log?(1+x)
=3 log (2)+*10g(2) ?85(3)4‘ E/ mdx
= Rlog () + —1og(2) @4(3)
such that

1 12\ 11111 333
Z(2n+1)3 [47<n>] =sFi(3.3 00303335 1)
n>0

(=" log?(2) w? 3 4
=2 - — T log(2) + 2 (3) + — B(4).
n 2 g 6 1 108@ + 783+ 30AE)
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636 M. Cantarini, J. D’Aurizio

The previous equation gives an explicit relation between a cubic, alternating Euler sum with
weight four and a quadratic, alternating sum with the same weight. These series are further
generalizations of the quadratic, alternating Euler sums with weight four computed by Xu,

. . n'#} 1
Yang and Zhang in [20]. The combination 2}, ., ( 22“ —3> ez ((2 )+1)2 has been
computed by Zheng in [23] ((4.5a), (4.5b)), by exploiting the Dougall-Dixon theorem and
by comparing the coefficients of suitable infinite products. In the FL-setting we may notice

that
log(1l — x) L2(0.1)

2K(x)— N

SZ%P,,(zx— 1) (14)

n>0

immediately leads to

(VL7 & ) / ogx ,
4 =— +4nlog’2)—4 | K
62 mt1 3 TArle@ -4 | (x)ﬁ

73 1 1 20\ 7
~ +4mlog’(2) +8 — | =
o arlog’) + n§(2n+1)2 [4(}1)}

1073
= + 87 log?(2) — 128 Im Liz (4£).

D",

>0 W in a similar

By exploiting the expansion of 1\(}%—% it is possible to compute Y
way. Proving the following identities is a simpler task:

- [1(2">T Fs(311,1:2,2,2:0)
— V3 | =a4r3(3, 7,1, 152,2,2;
a1 (4 \n

=1;6[3—2K—71+7110g(2)],

1 L2\ T 11 . .
Zm w0 )] =R 11, 152,2,2,21)

n>0

—3[64—64K—24n+3n3—128 Im Lis (4) + 327 log(2) — 2
= 3(44) 4+ 327 log(2) — 127 log*(2)] .
b

They can be deduced in a straightforward way from the FL-expansions of + E(x) (computed
in our previous work [8]), log(x) and log (x). They also lead to

1 1 /2n\7? L 4
st [ e g =
n>0

2
Z 1 i 2n :l.zpl(_i _3'1.])22
n>0(2n—l)2(2n—3)2 4n \ n 9 2 2 27’

which are consistent with the representations of % obtained in [8] by computing the moments
of generalized elliptic integrals. Similar manipulations might be useful in improving the
state of the art about the irrationality measure of m, since it is much simpler to estimate
the irrationality measure of log(2) through Beukers-like integrals and Viola’s method, as
done by Viola himself and Marcovecchio in [15]. Hypergeometric functions extending the
“usual” kernels x4 (1 — x)b and P, (x) have been crucial in the work of Zudilin [22] about

@ Springer



On the interplay between hypergeometric series. . . 637

the irrationality measure of 72, too. An application of the Cauchy-Schwarz inequality leads

to
2
6y [+C)]
WS e+D (=)

n>1

) 1 e [Ee]
: Z(n+1>(n—%)(n+%)nzl (1) (2= 3)

n>1

= 87 4log(2 ! 4
= 5( -7 = 0g())<§—;>

4
where the series mvolvmg [ I (2")] has been computed by considering the FL-expansions
of /x(1 —x) and m. This already leads to m &~ 3.141609 and it can be generalized
by replacing the (n + 1) (3 — n) term with (n + D¢ (3 — n), fork > 1. Approximations of

zero through linear combinations with rational coefficients of 1, 7, 73, log(2) and ¢(3) can

be produced by considering the more accurate estimation [ 41,, (2”)] ~ ( 1 ) —
n+

32n(n+})3
asn > 1.
We may also consider that by creative telescoping, the following identity holds forany n € N:
112
Z r(m-3)
2
m=1 1" (_%) (n+ Dm (% - ")m
1 4" Jm
= Gy TV 2f3 2o (1
Gn+ 121 (3)" ()

3
If we multiply both sides by (—1)"(4n + 1) [ (2")] and sum over n > 0 we get

Fn— 1) o 0" D[]
Sl & ernon,

n>0

111 1. 5.
= 307772 —4F3 (172,5,5,1,1,1,—1) (16)
and by exploiting the consequence of Parseval’s identity provided by (10) we get
2 I(m=13)16"m?? 1
D S e B AR R
T T (—Z) (2m)!12 T
6
r (%) 1111 5
= 3077772 — 4k (1’5’2’7;1’1’1;_1> (17
reducing the problem of evaluating a 4 F3 (..., —1) with quarter-integer parameters to the

problem of evaluating a 3F»(..., 1) with quarter-integer parameters. On its turn the last
problem is equivalent to finding the L% normover S' for, Fy (3,15 3:2) = fol (]_Zf#)m.
In the opposite direction the identity above can be seen as an acceleration formula, since the
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638 M. Cantarini, J. D’Aurizio

main term of the series defining 4 F3(..., —1) has an alternating sign and a faster decay to
zero with respect to the main term of the series defining 3 F> (..., 1).

n

2
If we multiply both sides of (15) by [ﬁ (2”)] and sum over n > 0, by Theorem 2 we get

r(3)’ o Vx+a?)
Nad 1 11.55 1111 55
= 3 23F2 (@1752 1,1;—1>—4F3 (Zst§a§;1317Z;l>'
r(z)
3
Similarly, if we multiply both sides of (15) by [4% (zn")] and sum over n > 0, by Theorem
2 we get
1\2 [l,zn] 1\4
ZF(m—Z) () @) s
e 4 4> 4> 4>720020 4>

2 Twisted hypergeometric series

When manipulating hypergeometric series through the binomial or Euler’s transforms,
generalized harmonic numbers H,(s) may appear among the factors of the new main

. . 2 . . .
term. For instance, some solutions to the Basel problem ¢(2) = % exploit the identity

¢2) =235 ,g’:,. In this context it is pretty natural to wonder if a technique for the
explicit evaluation of some ,F(...; £1) allows the evaluation of twisted series too, i.e.
series of the form Zn>0 H, (s)a, where Zn>0 a, = pFy(...; £1). Some cases involving
central binomial coefficients and H, or H», have already been investigated by Campbell
through integral transforms (see [6]); this section is devoted to showing how to deal with
such twisted series through the FL. machinery.

Rodrigues’ and Bonnet’s formulas lead to the FL-expansions

log*(1—x) =2+ P,(2x —1)|2 Ly 2+4 UL
o —Xx) = X — -+ — — “1,
J " n n+1 n n+1 -l

n>1
4n + 1
log(x)log(1 —x) = (2—¢(2) — ; Pon(2x — 1>m’
1 T (—1)k+l
%(xx) =@~ Y Pu@x— D@n+1) [ZZ % - 5(2)} ’
n>1 k=1
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On the interplay between hypergeometric series. . . 639

while the generating function for Legendre polynomials gives

1 1+ /x\ 20,1
—1 = —1D)'"H,P,(2x — 1). 18
2ﬁ°g<4ﬁ) g)nn(x ) (18)
On the other hand we have
! H ¢(2) — Hy(2)
] log(l —x)dx = o “
/Ox og(x)log(l — x)dx (n+1)3+(n+1)2 -
1 H2 +H 2 1 1
/xnlogZ(l_x)dx:W—"“(), /x” 8% v = £(2) — Hy(),
0 n+1 0 1-

hence these identities, through the FL. machinery, allow an explicit evaluation of hyper-

2
geometric series whose main term depends on [ﬁ(z")] or [4%(2”)] and H,, H%, H,(2)

n n n?’
(hypergeometric series with a harmonic twist, according to the terminology introduced by
Campbell in [7]). For instance

! —logx b4 1 20\ 7
| x0T a =T Y e - e [;(ﬂ)]

n>0
4 (_1)k+1
:2{(2)+22n+1 2
n>1 k>n
_ 4[1 Lir(—x2) — Lip(—1) ix
0 1—x2
_ ' Lig(—x) — Lip(~1)
= 2/0 d—nx dx
1 5. dx
= 4/ [log(1 + x) —log(l — x)]log(l + x )7
0
=47 K —7¢(3)

by the functional identities for Li, and Liz. Remarkably, there is a standard hypergeometric
2
series which is closely related to ), - (£(2) — H,(2)) [4% (Qn")] :
16"
2
=0 2n + 13(*)

This identity can be proved through the same technique outlined in [9]: by the Maclaurin

=4F (3 1.1.1:3,3. 3 1) = -k + 1¢03).

—1
series of the arcsin function and the moments foﬂ/ 2 (sin 0)2”+1 do = 2n1+ i [4% (2:)] we
have:

16"

/2 0 ) .
— = / ¢ logtan = — Im Lir(—¢'®) 4+ Im Liy(e'”) d®
= Qn+1D3(3)T o 2

T _rk+1:03).

More simply,

1 2
Taylor T H, 1 [2n
— K(x)log(1 —x)dx = — E —
,/(; () log(l = x) dx 2 n+1 |:4" (n

n>0
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640 M. Cantarini, J. D’Aurizio

2
2+Z( n+1>(2n+1)2

n>1

= 8(1 —log(2)),
Taylor T Hoyppa [ 1 (2n ?
—fo K()log(l —Vxydx "7 5 ) T2 [47<n>}

n>0
FL 2 =" 2n +1
_3_;(2n+1)2 [2n(n+1)_n(n+1)]
=4+ 4K — 6log(2),
Z Hyy, |:1<n>:| FLS/ \/x(l—x <1+f>
(n+ (1 —2n) |4 log 4%
—/ <1+I>x/l—xdx

8(—1y" 161og(2)
FLof V1 —x, log(1+-L)| = —
X[ © . og ( +ﬁ)] r;)n'(l—4n2)(2n2+5n+3) 3

2
=3t3, (1 —log(2)).

Of course this approach can be combined with classical approaches based on integral trans-
forms. Three instances are provided by the series

2 2
Tt 2 [ CD] Dot 2 [#C)] and ey 2 [30)]

H, [ 1 <2n>] 5 1oz, -
E — | = =¢(2) —2log (2)—}—*/. log=(1 —sin“ 0)dO = 2¢(2),
n n T Jo

e 4n

171 2n\] -
Yol )| =sF 5, 52.2,2,200)
n>1

Tallor 2 /2 T dx
- ‘;/0 (K= 3 ) o) T2

e @+DRm+D =D 1 20\
=2 4+ 1 [?<n>}

n>0

1 (' a
Tdor 2 [0 @ pryy. (4logx + log® x) dx
T Jo dx
S 20n+ (1 =202 2n+1
LR I H,_
n+nz( ) |: n2(1 4 n)? nn+1)" " !

1 2x2n+2 1
X / dx —
o 1 + x2 2n+1

—28+ 4% 4+ 3210g(2) — 1610g2(2) IRRIC)

T 7 Jo 14 x2
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where f(x) = 20x% 4+ (24 — 8x?)log(1 — x?) + 4(x*> + 1) Lix(x?) + 4(x*> — 1) log?(1 —

x2). In particular fol ]f —8()2 is given by a linear combination with rational coefficients of

1,7, log(2), K, log(2), w2, 1og?(2) and

1 2 2
log“(1 — x°) 57r L4 3m .,

which is associated to Euler sums with weight 3 and allows to state that 5F4(1 1, 1, 5, 2,

2,2,2,2; 1) has an explicit form in terms of the mentioned constants. The chain of equalities
above is an application of the transformation formula introduced in our previous work [8],
allowing to convert fol (Kx)—7%) @ dx into fol %E (x) - f(x)dx. The application of

such principle to the series ), . ; [Z" [4—,,( )] gives the following alternative derivation:

ZH,, 1 (2n _ZHn+] 1 2n\]2n+1
n |4 _n>0n+l 47\ n 2n +2

n>1

1

Taylor 1—«/1

= — 710 1 —x dx

fo i g( )

1

X —X 1-

L / ilog(x)dx
0o (I—x)x

2 [
2ty / ~ log(x) dx
0 1—x
1 _ log(x) _l)n+l
—4 / 8 dx =4 =2¢(2),
i Z

and the same procedure tackles
e
L = X
=2t LA\ 0 VTHx (V2+VTF3)

1 1 1 1
= — —1 — d
ﬁ/o ( ng)<F +x ﬁ—}—\/li —i—x) *

B 72 (—1)" |:i<2n>:| Lot logx)
_«ﬁn>0(n+1)2 4 */> \f‘f'\/l-‘rx
too, where the first term of the RHS is elementary and the second term depends on

Liy(3 — 2+/2) by the substitution x > 1 — 2 (1+12) . The series with alternating signs

ano(—l)"Hzn [47(2’1”)] equals \lflog(””[) by evaluating ano H,P,2x — 1) at

log(1—x)
X

X = % By directly exploiting the FL-expansion of we have:

H,[ 1 (2n 2Taylor 2 [7? b dx
Z?[In<n>] 22 (k=T )reat -0
FL 2 T 2(— 1)n+1 (- 1)k+1
B 4(2)<2_5)+n2>1 2n+1 (C(ZHZZ
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(_1)n+l n (_1)k+l

8
‘EZ 2n+1 ,; K2
/‘ L12(x2)
1+ x2
572 64

32
=-—— +_—ImLis () + —Klog(2) — 210g%(2).

2n

In the last case the series obtained by replacing [4%, ( M

)] by for any n > 2 equals:
Sy

1+Z i L 6106 + P02y~ - 2 104
! TR AP 18 o2y F 4 16
4 n>2””(”+£) 4 g —— 2 St 0w

Now we may tackle two similar sums, twisted by factors HZ, H, (2).

1
/ K (x)log(x)log(l —x)dx
0

Taylor 7 Z( Hyi Q) — n+1(2)> [ <2n>T
e n+1 47\ n

FL :
L4 —202) - ; 220+ 1200 + 1)

=48 — 87 — 321og(2),

_ Taylor T Hn+l + Hy11(2) |: (271 i|
/0 K (x)log*(1 — x) dx ZZ—n—I—l 4n n)

n>0
FL 2 1 1 1 1
=4 — (2| - 41 - H,_
+;(2n+1)2|:<n+n+1> + <n+n—|—1> "li|
47‘[2 Hn—l

=—-8+—+38 _—
3 -~ nn+1)R2n+1)

472 2
=48 — rale 641og(2) + 321og7(2),

T Hy 11 |:i 2n 2
Z(n+1)2 4<n>]

Taylor

_/ |:4iE(x) + 2K(x)] log(1 — x) dx
0 dx

FL 1 1 4 4 by?nt?
) - - s L 4
( ”)+Z<n+n+1>[(2n+1)2 w1t /0 +u2 ™

n>1

U + (1 + u?) log(1 — u?)
du
14+ u?

=16 —2m — 16log(2) — 8/
0
=24 —321og(2).
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By combining these integrals/series we immediately get

2 2
Z Hyy [i <2n>] 64 48 10w  128log(2) N 64log2(2),
n—+1 n T

4n 3 b4 T

Hyy1(2) 2n 48 2w
g =—16+—+ —.
n—+1 |:4”( )] + b4 + 3

n>0

Many other identities involving H, or .74, can be derived through the FL-method. For instance,
we may consider that by differentiating Euler’s Beta function we have

1 2 3

1 3

/ L(x)dx - + 47 log?(2),
0 J/x(1—x) 3

where the LHS is at the same time

2n+n2[ ( +21+1)2+4<21n+21+1>H2n 1} [41”<2n>]2

252 2, 1
32 D" n_o_ 1
r;)( ) [2n+1 (2n+1)2+ (2n+1)3]

and

log? (x) 1
e and =

> (% + 2n1+ 1) Han [41"<2nn>]2

n>1

due to the FL-expansions of log?(x)
In particular the series

is given by an algebraic combination of 1, log(2), 7, K and Im Lis (%)
Similarly,

1 _ 3
/ 28y 2 log(2) + B log’ (2) + 1274 3)
0 X(l _x)

holds by differentiation of a Beta function, and the FL-expansion of

3
w can be computed

through the same technique we used for the FL-expansion of IO%F(X) namely Rodrigues’

formula and recurrence relations. They lead to the equality in L2(0, 1) between — % and

652 6.5, 3
32N (=1)'P,2x — 1) |43 +2.97,3) — n "
’;( )" Pu(2x )[%ﬂn—i— 450 - G T B (2n+1)3]

= 1) jfn(’%)

hence the explicit value of ), can be computed from the previous integral and

the FL-expansion of log (x).

Now we have an important remark. According to the niceness criterion outlined in [8],
we may denote through .#” the class of (twisted) hypergeometric 1 F,(x) functions such
that the coefficients of their FL-expansions are the coefficients of the Maclaurin series of
a (twisted) 441 F, (x) function. If max(p, ¢) < 3, many interesting identities are produced
by interpreting the integral over (0, 1) of a Maclaurin series as a suitable inner product in
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644 M. Cantarini, J. D’Aurizio

L2(0,1). As already remarked, assuminga+3, b+3 € }TN andu € (—1, 1) all the following
functions belong to .4":

L -0k log). log(). log(l — vE), &)
V(1 +u)? — dux Vx
log?(x) d arcsin(/x)

\/} , K, E), Jk), EE(X)’ T

and ./ is closed with respect to f(x) — f(1 —x),x - f(1 — x), f f(x)dx by Bonnet’s
recursion formulas.

Theorem4 Li(x) € 4.
Proof 1t is straightforward to check that fol Lio(x)dx = ¢(2) — 1 and that

1
[ reom - nar= st

holds for any n € {1, 2, 3,4, 5}. This leads to the following conjectural form for the FL-
expansion of the dilogarithm [1,21]:
1

1
Liz(x) = (¢(2) — 1)+Z (nj BCESE

n>1

> Pn(zx - 1) (19)

which can be proved to be correct through the following approach: by applying the operator
X- % to both sides of (19) and exploiting Bonnet’s recursion formulas, one finds — log(1 —x)

inthe LHSand 1 + ) (l + L) P,(2x — 1) in the RHS. By Rodrigues’ formula we

n=1\n T ntl

know that the last series is indeed the FL-expansion of — log(1 — x). O

Corollary 3 Despite their appearance, all the following integrals are very simple to compute:
1 1 1 1
/ Li%(x) dx, / Li%(ﬁ) dx, / Lir(x) Lio (1 — x) dx, / Lir(x)K (x) dx,
0 0 0 0

/lLiZ(x) d /lLiZ(x) d ' Lis() log(x) log(1 — x)d
o x(l_x) X, A 4x(1_x) X, ) 12(X (X g X)dx.

Proof The integral [ LiZ(x) dx equals

1 = 25 H,_1(2) + 4H,_
Zmznz(m—i—n—i-l)_;s—i—l;az(s—a)z_Z $3(s+1)

m,n>1 §>2

and the RHS can be computed through standard Euler sums. As an alternative, the LHS can
be computed by integration by parts, since fol Lio(x)log(1 —x)dx =3 —¢(2) —2¢(3)
and fLiz(x) dx = C+x Lio(x) — (1 — x)log(1 — x) — x. FL-expansions provide a more
efficient derivation, since by Theorem 4 the LHS equals

2n+1 prD

C@—-17+y s N £(2)" - 4203).
n>1
Similarly the integral fol Li%(ﬁ) dx equals
2 2 1 4sHy_1(2) + 8H,
Z m2n2(m+n+2)_ZS—FZX_:aZ(s—a)Z_Z s3(s+2)
m,n>1 §>2 a=1 §>2
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On the interplay between hypergeometric series. . . 645

and by IBP or Euler sums both sides equal =L + 36 — 2¢(3). On the other hand
the computation of the FL-expansion of x L12 (x) pr0v1des an equivalent series in which
harmonic numbers do not appear.

Through Euler’s Beta function, the integral fol Lip(x) Lio (1 — x) dx can be written as:

m2n2(m +n + (") - = s3s+1) o a*(})

m,n>1

where the equality Y, _, (Z)_ = ;’n‘:]l S 2k involving “generalized”” harmonic numbers

follows from Euler’s Beta function too. The FL-expansion of Li, simply produces the equality

=D"2n+1) PFD6_ZL+L4

1
/Ole(x)Lu(l—x)dx:(;(Z) 1)+Z st T 0

The fourth integral can be written as

! . 7 ¢Q2)  Hep \[1 (20\T
[fsomon =35 (- ) [LCT

Given the FL-expansions of K (x) and Li»(x), both sides simply equal

2 1 1 72
20 -+ Y TR (;TZ - > D 244 321082) + ?
n>1

(n+1)?

The fifth integral can be represented as
/1 L),y < 26Q)  AHurip ) [L <2n)]
0 Vx(1—=x) —\2m+1 Qn+1)2) 4"\ n

and f(f/z Lix(sin?6) do = [f/z Lis(cos? 0) d can be proved to be equal to ’]’—; - log2 2)
through the dilogarithm reflection formulas. On the other hand, by the FL-expansions of
Liz(x) and \/ﬁ both sides equal

| 1 (2n\7?
n(§(2)—1)+”2<(2n)2 (2n+1)2>[47<">]

and the hypergeometric 11 F,(1) values mentioned by the last line have already been com-
puted through the FL. machinery. In particular we get

Hop1pp [ 1 (2n\| 7 5
2 ant 1y [4" (n)] —plE®
I 1L 2n\]_ 37 ,
’;(Zn—l—l)Q [47<n>] =@

The sixth integral equals
/1 L) F(g)zr(n+;)< (2)  Hupap )
0 Vx(I—x) V2 = on! n+3/4  (n+3/4)?
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732 > I (3) I (n+5) Hivsga
SRR ) D s L

3 w2 A (n+3/4)n!

1/4

and by the FL-expansions of Li>(x) and [x(l — x)]” /" the LHS can be written as

473/? 4ot | .
() @b r) 22(2}1)2(2n+1)2 [4n( )]

only involving elementary hypergeometric functions. By PFD the final outcome is

1 . 3/2
/ i Lip) . _ 2@ (5” + (1 —4) (2 + log(2)) — log (2))
0 x(l —X) F(4) 12

leading to a closed form for 4 F3 (1, 1,1, Z, 2, 2, 35 1). The seventh integral is related to an
Euler sum with weight four:

( Hyo () — H,E?l)

1
/0 Liz(x) log(x) log(l — x)dx = Z T - o

n>1

Of course the similarity between the FL expansions of Lis(x) and log(x) log(1 — x) (the
latter only involving Legendre polynomials with even degree, by symmetry) is not accidental
at all, but induced by the dilogarithm reflection formula. In particular we may remove H,|
and H,1(2) from the RHS of the previous line either by noticing that

1
2/ Lip(x) log(x) log(1 — x) dx
0

1
= / (¢ (2) —log(x)log(1 — x))log(x)log(l — x)dx
0

92 <F(a+1)F(b+1))_ 94 <F(a+1)F(b+1)>
da b Ta+b+2) 24 92b Ta+b+1)

=42

(a,b)=(0,0)
or by noticing that

1
/ Liz(x) log(x) log(1 — x) dx
0

FL 1 1 1
=@ -h@-c@) -3, 2n2(2n + 1)2 ((2}1)2 T @n+ 1)2>
n>1

PED 57.[2 4
LD SV
+ 6 T4L6) - 120°

[}

Corollary 4 Since fo Lip(x)x" dx = nfi - (nHiiJI;Z

function can be efficiently used in the computation of many twisted hypergeometric series
involving Hy,.

the FL-expansion of the dilogarithm

2
Proof Since fo Kx)dx = 53,9 (n+1) [ ! (2")] = 2, the computation of fol K (x)

n
Lip (x) dx performed in the previous corollary immediately leads to

3 Hypr [ 1 (2n\7? 48— 64log(2)
n>0(n+1)2 47\ n - T '
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Analogously, the FL machinery provides an alternative proof for some instances of Euler’s

classical result about an | %, which is Theorem 2.2 in [11]. For instance

1 ) 1 ntl
Lix)“dx = / — = Lix(x) dx
/(; ,; 0o (m+1)?

_ 1 ¢(2) Hyq o _ ﬁ
=2 (n+1)? <n+l B (n+1)2) =@ =) nt’

n>0 n>1
O
Theorem 5 Liz(x) € /.
Proof We start by computing the moments of Li3(x) over (0, 1):
! 1
"Li dx = S P ——
/0 x" Lis(x)dx Zm3(m+n+l)
m>1
3 2 H,
pED £(3) 7(2) n+l 20)

T+l D2 e+ DY

4 (n)(n—l—k)(—l)k_o . (n><n+k) GRS
—\k k Jk+1 7 = \k k J(k+1D2  nm+1)

Since

for any n > 1 we have

1
; PRIV S {C
/()Llfi(x)Pn(Zx_l)dx—( D |:un l’l(l’l+1):|
and
Lis(x) = (1 —-¢2)+¢3)) + Z(—l)"(Zn + 1) |:u — ﬂ} P,2x —1)
" a4+ "

n>1
2

—(1-z2 3y T B e P,(2x — 1
= (=L@ +¢B)+ =5 PQx - >+n§2an (2x — 1).

On the other hand x - Liz(x) — fLi3(x) dx = x -Lip(x) —x — (1 — x) log(1 — x) and the
FL-expansion of the RHS is known. In particular we may find the unknown coefficients u,,

associated to the sums
i n\ (n+k\ (=" Hp
= k k (k4 1)3

by solving a recurrence relation induced by Bonnet’s formulas.
Indeed, if f(x) =Y ayP,(2x — D andx - f(x) — [ f(x)dx =Y b, P,(2x — 1),
we have

n—1 1 n—+2

by— a4 _nre
n 2(2n_1)an 1+2an+2(2n_3)an+1
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648 M. Cantarini, J. D’Aurizio

for any n > 2. By computing the FL-expansion of x - Lip(x) — (I — x)log(1 — x) — x we
get
n—1 +1 N n+2 22n + D2 +n+1)
——dy— —da — =
22n— D) T 2 T e ) T T )22+ )2+ 2)

whose solution a, can be computed through the WZ-method [25]:

k2 3

Q4D +n’+3n2 480 +4)  Qn+ DD [ E D 2?2 on
n3(n+ 1)3(n + 2)2 2n(n+ 1) pa B :

The last line provides an explicit expression for the FL-expansion of Liz in terms of an
alternating quadratic sum (a tail for the classical series defining 7(2)) and proves the following
identity for any n > 2:

2": (n) (n + k) (=¥ Hiqr

)\ k) w1y
(Dt 0P 430 4 8n - 4) 2 M2 Lkt
B n}(n+1)3(n +2)? nn+1) & K

(22)

Corollary 5

U Liz(x) 4 s
fo l_xdx:§4F3<l L1 22,2,1)
_Z<§(3) L@ n Hyti )[i(znﬂ
- n+1 m+1D2 m+13)[4\n
1

n>0
2n
( + 1)3 [7(n ):|

= 2¢(3) — 4¢(2) +4£(2) log(2) + Z
3 2.4n

= @+ ()
=16 — 272 + 272 log(2) — 7¢(3).

Proof By the FL-expansion of Liz the given integral equals

B (3)+2/ o8 21— ) log(l - 1)) d
- == X — X —x)log(l — x)) dx
8 2% X1 £

since

n+2 k+1 1 2
R

In particular the FL. method allows a conversion into an elementary integral, only involving
log(x), log(1 — x), x and 1 &£ x. It also proves that

Hyt1 1 (2n _ 472
,;) (n+1)3 [47<n >] =16 — ——(1 - log(2)) — 9%¢(3).
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Corollary 6

b o (3 @ Hyp \[1 (2n\7?
Jj Lk eoas = 2§(n+1 “arr o) [+ ()]
3 4 2 A 1 /2 2
—20(3) + = — L + G ++11)% [@(Z)]

4 2
— 64— % —9610g(2) +2£(3) — 373 + 64K log(2)

— 47 log?(2) + 128 Im Liz (7).

Proof By the FL-expansion of Lisz the given integral equals

451 22, 352

i T1og(2) +22(3)
1
+/ 4);1074%(1)6) (3x — 4+/x arctanh (0 v/x) — (x + 1) log(l — x)) dx
0

which after some elementary manipulations becomes

472 ! 1 —xY log(x)
64 — — —96log(2) +2¢(3) + 32 1 d
3 0g(2) +2£(3) + /0 0g<1+x>1+x2 *

The functional identities for Lis allow to turn the last line into

4 33 _ 2 (L
64— - = 9610g(2) +2¢(3) — 37 + 64K log(2) — 4 log?(2) + 128 Im Lis (5)

proving the claim and the equality

Hy11 2n 2
*Z (n+ 1)3 [4( )]

10 .
=64 — T’T + 128 Im Liz () — 9610g(2) + 64K log(2) — 47 log*(2).

3 Further remarks

In the previous section we have seen that FL-expansions reduce the problem of evaluating

1 1 (2n\7]?
11 . . _E
,U-+3F,U.+2(§7§a1717"'7252725~'-5l)_ 0(]1-‘,—])““’[4”(}1)] ) MEN
nz

to the problem of evaluating

w/4 1 1 /2n
log" (cos @) db = _ | —
[, et cosen 2 3G [4(11)]

— 11 .
= M+2FM+1 (Z’ PERERE]

=
~

3 .
LR ICRRE

[S][9%}
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650 M. Cantarini, J. D’Aurizio

We have to stress that the LHS of the last line is related to twisted hypergeometric series by
a classical approach, which is to consider some combinatorial/hypergeometric identities like
the Chu-Vandermonde or the Dougall-Dixon ones, then differentiate them with respect to
one/some of their parameters. This approach allowed Wang and Jia in [24] to prove a large
number of identies involving generalized harmonic numbers and binomial transforms. In our
case we may consider that the formula

/4 r 3 1
f cosoyt ao = T ar2F (5 )
0 2r(5+1) <a +12°7
mI(%+3 1 2 2
( ) (a+1)2* orer 8\ n 2n+a+1
follows from the substitution 6 — % and the equality cos (%) = w, whereas

/4 D" I'(n+5+1)
_ 4 i i = : 2
/0 (cos0) db = Fy (2 >i3i-1) g 2n + DHn! r+1) ey

follows from the substitution § +— arctan u. By differentiating the right-hand sides of (23)
and (24) multiple times with respect to a, then performing an evaluation at a = 0, we get

that the values of u+2Fu+l (% %, .. % %, o %) or fér/4 log*(cos 0) dO provide explicit

2
forms both for 3°, . +1)/L+2 [ (

(_1)11 ( 1)}1 ”
';7(2“1)1%, Z(Zn—i—l) (H? — Hy(2)),

2
)] and for the twisted sums

(=D" 3
H; —3H,H,(2)+2H,(3 25
Z(2n+])( (2) +2H,(3)). (25)
n a3
the latter being clearly related to ), (_2131 j{” which has been crucial for the evaluation

2
2 .. . .
of 3,20 (Znim [4,,( ")] =sF (3. 4. 5.5 41,3, 3, 3: 1) By exploiting the identity
log (2sin §) = log(1 — e™*) + £ (7 — x), Shalev has shown in [17] that

3

TS _ . 257 3 N
log”(sinf) d6 = 3 Im Lig(1 — i) — log(2) + flog(2) Im Lis (T)
0

256
3K
Y Q) — —log*(2) - 7{(3)+ ﬂ(4)

and by differentiating the Euler Beta function three times it follows that

/4 T 3 157
/0 log (cosB)db = —ﬁlog(Z) - 6—41 g (2) + log 2) — —5(3)

—7,3(4) — §log(2) Im Lis ( ) —3ImLig(1—-17) (26)
which provides closed forms for
Swrrle ()] Srarm(e()]
= (n+1) [41\ n ’ = 21Q2n+1)* |4\ n )|’
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"
Z (2(}1 +) D ( —-3H,H,(2) +2H, (3))

On the other hand the class of hypergeometric functions of the ;41 F), (% % R % , % R x)
kind is very peculiar, since all these functions have a closed form in terms of polylogarithms.

As shown by Shalev and Reshetnikov in [16] we have
93
- 6sin 6 + 2sin 6

Im Lis (2 sin% § + 2i sin @ cos 9)
(27)

1 1 20\ 7
1 1 1 1 1. 3 3 3. —
5F4(§,§,§,§,§,1,§,§,§,1)—Z(2n+1)3 |:47<n>]
n>0

_2 1
= / — Im Lis (25sin® @ + 2i sinf cos§) dé
T Jo 6siné 2s1 0

K 4 1
=— ——p@& + — Im/ L13 251n 0+ 2i sm90059)
2 b4 b4 sin
K 4ﬂ(4)+ 1 I /+OOL' 2 dt dt
=— —— — Im 3| ——
2 b4 b4 0 N1 2 +1
_T1k 4 1 2 Liz(2)
— — —B4 + Re / —dz
2 7 1 2z —1
K 4 2 [T 4 272
wrh —B@&) + — / Li3(cos2 o)+ - logS(cos 0) — o log(cos ) do
2 T 0 3 3
and the evaluation of ) CLA o > CD" 7 e duces to the computation of
n20 D) n=0 "(2n +1)2 p
/‘/2 Lis(1 —z) 7 or /1 Lip (x) arcsin(y/x) "
0o z(1—2) 12 X
By using Shalev’s form of (27) we have
1 log?2 8 93 .
08 - [— — Im Lis (1 - 22’9)] (28)
0 vx(1— xsin®8) sin¢ | 3

hence by Fubini’s theorem

1 1 (2n\]* 7K 2 Li3(1 —z%)
Zgwb()] =T pws D [ S

7K 4 2 " Liz(1 — 22
———,3(4)—!——Im/3(72)
g b4 v 1—z

d 29
5 z (29
where y is the positive-oriented curve {(cos 0,sinf), 0 € (0, %)} and zo is any point €
(—1, 1). By the generating function for Legendre polynomials and the previously computed

2
fol 10%/;") P,(2x — 1) dx we also have

163 . ; 2n+1
Vo€ (0.3), 4[3—ImL13<1—e2’9)]=;)(tan ) IR G VA
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2 3 ! - 4it 2n+1
Vie 1,  Zarctan’() - o Im Lis (m) = ;r (=",

27 20, 1
T 241 Qu+D?2 0 @2n+ DI

n

By the FL-expansion of Li3, the computation of ), m [ 1 (Zn

47 \n

n>1 n(n+1) 4n<n> '

2
)] is equivalent to the
computation of

and by solving, through the inverse Laplace transform, the moment problem

n

1 _1/{
[ =y S

k2
k=1

we get that the computation of the previous series is equivalent to the computation of the

integral
! logx e 1 1 (2n\7?
-——— | = d
Lz G (]

n>0

or the computation of the integrals fol K(x)log(1+x)dx and fol K (x)log(x)log(l+x)dx.
About other classical approaches, especially related to (weighted) sums of squares, an inter-
esting consequence of the Lagrange identity

n n n 2
(Z)@%) (Z y%) - <Zxk)’k> = Z (xj & —xkyj)2
k=1 k=1 k=1

1<j<k=<n

is the following one ( [13], Chapter 8, Section 35, Applications of the tranformation of series
to numerical evaluations):

Lemma (Knopp). If {a,},>0 € 2(R) is an eventually monotonic sequence, the following
series are convergent

o0 o0 o0
s=Y (=D"ay, &= aang, A=)y (=D
n=0 n=0 k=1

and we have:

Zaﬁ =52 42A.

n>0

Knopp’s lemma is tipically used for proving ¢(2) = %2 through elementary manipulations,
1

once ay has been defined as ;—=. On the other hand, it has interesting consequences for
different hypergeometric sequences, too. Let us define a,, as

ap : ! [ ! <2n>} = [x"1V1 — x.

:1—2n 4\ n
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For any k € N™ we have

1 2 i : )
8k = Zanan+k = E mme—klg d@
0

n>0

1 2w 4
—/ |sin § | cos(kf) d) = —————
T Jo (1l — 4k2)

and s = +/2. By partial fraction decomposition we have A = % — 1, hence Knopp’s lemma
immediately leads to an alternative proof of

! LT 1 1. 4
Zm[Tn(n)] =2Fi (-3~ L) =_. (30)

n>0
In a similar fashion, if we define a,, as nlﬁ [%(2””)] = [x”]ﬁ, we have
4 1 2k 16
or = = —_— e — -
€= Dtk = 7 4k<k> 7 @k2 - 1)

n>0

ands =2(v/2— 1), A=—8+4v2+ %, from which

1 1 2n\* 16
ST
s (n+ 1) 4"\ n b4
The last identity can also be derived from (30) by reindexing, but of course the interesting
part of this approach does not rely on the mere computations, but on the fact that it provides
an alternative way for simplifying the structure of a hypergeometric series. On the other hand
the class of hypergeometric terms a, such that §; has a reasonably concise form appears to
be pretty narrow: we plan to perform a thorough analysis of the full potential of Knopp’s
lemma in future works.

A third remark is about a symmetry trick. Campbell recently showed (in [6]) how to
compute Y, - | [%(2””
different route proves that such series is clearly given by a combination of 7w and values of the
logarithm and the complete elliptic integral of the first kind. Indeed, by directly exploiting
the Maclaurin series of K (x) we have:

120\ H, 2 1K(u/2)—K(1/2)d
Sla(D)] 5= [ A

n>1

2
)] % (and similar series) from an integral transform, but a slightly

du

Fubini 2/7[/2/] 1 1
mdoJo \ J1—ysine (1 Lsine J U]

do

and the evaluation of the RHS boils down to the evaluation of fon %d(p or

+o00 log(t)
0 Jerpei+n

nomial, attaining positive values over R™, then f0+

dt. On the other hand, if p(x) is a real, quadratic and palindromic poly-

oo log(x)

px)
of the substitution x % By the very same reason, if g (x) is a real, biquadratic and palin-
oo log(x)

Vq(x)

dx equals zero as a consequence

dromic polynomial, attaining positive values over R, then fo+

dx = 0. In particular
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2
the rapidly convergent twisted hypergeometric series D - [4%, (2,1")] % has a closed form

in terms of 7, log(2) and K (1) = ﬁl‘ (%)2 only. Given the relation between K (v/k1)

and K (v/ks), this principle allows us to state that
>[6()] st
el RN A

has a closed form in terms of /2, 7, log(2), log(1+ +/2) and the lemniscate constant without
actually performing any computation. The same applies to

>[w=0)] s
4\ n (n+ D2n’

which depends on 7, log(2), I (%) and its reciprocal, since K (%) and E (%) are related via
Legendre’s identity. Analogously, a closed form of

20 e
4 \n /] 4+ HE2+ D

n>1

only depends on 7, log(2), log(~/2 + 1), I" (%) and its reciprocal. This leaves us with an
interesting topic for future investigations, partially covered by the first section and the last
paragraph:

Is it possible to foresee, through symmetry tricks and/or

reflection/transformation formulas for hypergeometric functions

and polylogarithms, the constants involved in the closed form for a (twisted) hyperge-
ometric series?

The last remark is about the operator
1 1
€D f(x)> —- L7 <(2n + 1)/ FX)P,(2x — 1)dx> (—log x)
X 0

defined on the space of functions in L2(0, 1), such that the FL-expansion has an inverse
Laplace transform. This operator is self-adjoint by construction, and the complexity of €7 ( f)
measures the effectiveness of the FL-method in providing a closed form to fol fx)gx)dx.
Of course if f € L2(0, 1) is such that f(x) = f(1 — x), all the coefficients of the FL-
expansion of f(x) with odd index are zero, hence it is practical to introduce the similar
operator

1
€% : f(x) —~ % ot ((4n + 1)/ fx) Py (2x — 1)dx> (—logx)
0

only acting on the coefficients of the FL-expansion with an even index. We introduce a
compendium of some functions we have dealt with through this article, together with their
€% or €%y-transforms:
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S (€2 f)(x) or (€% f)(x)

J1—x % (ﬁf x\l/;

K (x) ﬁ

E@ -+ 1 -v)
4\ T X

—log(l —x) 1+ %

10g2(1 + \/IITX 1

log(x) log(1 — x) log (x) 172;/;

Lis (x) (1 - }) log(x)

4 Conclusions

Continuing from our previous work, we performed a deeper investigation about the relations
between (twisted) hypergeometric sums and Euler sums/polylogarithms. The geometry of
hypergeometric series with half-integer or quarter-integer parameters, from the contiguity
relations to the Gauss-Kummer transformations, turns out to be heavily related to the geom-
etry of Euler sums and the arrangements of hyperplanes (the shuffle relations mentioned by
Flajolet and Salvy in [11] are just birational maps of hypercubes into themselves). The accu-
mulated evidence brings us to state that in many practical cases the FL. machinery is extremely
effective in simplifying the structure of a (twisted) hypergeometric series, especially if com-
bined with the computation of residues for suitable kernels involving ¥ (z) = d% log I'(z), or
with differentiation of combinatorial/hypergeometric identities (Gauss, Chu-Vandermonde,
Dougall-Dixon). We reduced a large number of ;1 F),(...; 1) (and twisted) values to
standard mathematical constants, out-performing the capabilities of many computer algebra
systems. In a forthcoming future, it might be the case to devise a fully automated conver-
sion procedure for 1 F)(...; 1) values, driven by FL-expansions and Euler sums, to be
coupled with the classical Wilf-Zeilberger method ([12,25]). That would largely increase the
potential of computer algebra systems in the symbolic evaluation of hypergeometric series
and twisted hypergeometric series.
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