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Abstract
In this work we continue the investigation, started in Campbell et al. (On the interplay
between hypergeometric functions, complete elliptic integrals and Fourier–Legendre series
expansions, arXiv:1710.03221, 2017), about the interplay between hypergeometric functions
and Fourier–Legendre (FL) series expansions. In the section “Hypergeometric series related
to π, π2 and the lemniscate constant”, through the FL-expansion of [x(1 − x)]μ (with
μ + 1 ∈ 1

4N) we prove that all the hypergeometric series
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return rational multiples of 1
π
, 1

π2 or the lemniscate constant, as soon as p(x) is a polynomial
fulfilling suitable symmetry constraints. Additionally, by computing the FL-expansions of
log x√

x
and related functions, we show that in many cases the hypergeometric p+1Fp(. . . , z)

function evaluated at z = ±1 can be converted into a combination of Euler sums. In particular
we perform an explicit evaluation of
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.

In the section “Twisted hypergeometric series” we show that the conversion of some
p+1Fp(. . . ,±1) values into combinations of Euler sums, driven by FL-expansions, applies
equally well to some twisted hypergeometric series, i.e. series of the form

∑
n≥0 anbn where

an is a Stirling number of the first kind and
∑

n≥0 bnz
n = p+1Fp(. . . ; z).
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List of symbols

K :=
∑

n≥0

(−1)n

(2n + 1)2
, Catalan’s constant

IBP Integration by parts
FL Fourier–Legendre expansion
PFD Partial fraction decomposition
CS Cauchy–Schwarz inequality,

〈 f , g〉2 ≤ ‖ f ‖2‖g‖2
Taylor Taylor series at the origin
[xn] f (x) Coefficient of xn in theMaclau-

rin series of f (x)
(a)k := Γ (a + k)/Γ (a), a ∈ R

+
0 , k ∈ N, Rising Pochhammer symbol

Hx := ∫ 10 1−t x
1−t dt, x ∈ R, Harmonic number

Hn (s) :=∑n
k=1

1
ks , s ∈ R, n ∈ N

+, Generalized Harmonic number,
with Hn := Hn(1)

Hn (s) :=∑n
k=0

1
(2k+1)s , Generalized Harmonic number

running over odd integers, with
Hn := Hn (1)

Hp/q (s) := ζ(s) − pm
∑

k≥0
1

(pk+q)s
, s > 1, p, q ∈ N

+ Generalized Harmonic number
with fractional argument

Pn(2x − 1) nth shifted Legendre polyno-
mial, 1

n! · dn
dxn
[
xn(1 − x)n

]

K (x) := ∫ π/2
0

du√
1−x sin2(u)

, x ∈ (0, 1), Complete elliptic integrals of

the first kind, with the param-
eter being the elliptic modulus

E(x) := ∫ π/2
0

√
1 − x sin2 (u)du, x ∈ (0, 1), Complete elliptic integrals of

the secondkind,with theparam-
eter being the elliptic modulus

J (x) := ∫ π/2
0

(
1 − x sin2 θ

)3/2
dθ, Generalized complete elliptic

integral

Additionally, we will employ the simplified notation for hypergeometric functions:

3F2

[ 2a+1
4 , 2a+3

4 , 2b+1
2

c, 2d+1
2

∣∣∣∣ 1
]

= 3F2
( 2a+1

4 , 2a+3
4 , 2b+1

2 ; c, 2d+1
2 ; 1) .

Unless differently stated, we will also assume that the variables involved in our series range
over the interval (0, 1).

1 Hypergeometric series related to �,�2 and the lemniscate constant

In our previous works ([7,8]) we stressed many consequences of the following principle:
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Remark Many hypergeometric functions have a Fourier–Legendre expansion whose coef-
ficients still have a hypergeometric structure. In particular, given a hypergeometric series

pFq(. . . ;±1) = ∑n≥0 an = ∫ 10 f (x) g(x) dx and assuming that both f an g have man-
ageable FL-expansions, the original series can be converted into an equivalent one. In many
practical cases, the transformed series can be directly computed from Euler sums [3] with
low (≤ 5) weight.

Such approach turned out to be pretty effective in computing hypergeometric series involv-

ing
[

1
4n
(2n
n

)]2
of
[

1
64n
(4n
2n

)(2n
n

)]
. Starting with the identity

K (x)
L2(0,1)=

∑

n≥0

2

(2n + 1)
Pn(2x − 1)

we proved that many series involving central binomial coefficients or their squares can be
computed in explicit terms, most of the times depending on π, K , log(2), log(1 + √

2) and
Γ
( 1
4

)
. By considering the moments

∫ 1

0
xηK (x) dx,

∫ 1

0
xηE(x) dx

and similar integrals associated to generalized elliptic integrals, we proved that the FL-
machinery is able to produce representations for π in terms of ratios of 3F2 functions. Such
representations have been usually proved through the contiguity relations for hypergeometric
functions [19]. The current section is about the application of the same idea to hypergeometric
functions of the [x(1−x)]n√

x(1−x)
kind, with n ∈ N. In particular, the starting point of our current

investigation is the identity

1√
x(1 − x)

L2(0,1)= π
∑

n≥0

(4n + 1)

[
1

4n

(
2n

n

)]2
P2n(2x − 1) (1)

which is a simple consequence ofRodrigues’ formula for Legendre polynomials. ByBonnet’s
recursion formula, if the FL-expansion of f (x) is given by

∑
n≥0 cn Pn(2x − 1), then the

FL-expansion of g(x) = x · f (x) is given by
∑

n≥0 dn Pn(2x − 1), where for any n ≥ 1

dn = n

2(2n − 1)
cn−1 + 1

2
cn + n + 1

2(2n + 3)
cn+1.

Additionally, the symmetry of Legendre polynomials ensures that the FL-expansion of
f (1 − x) is simply given by

∑
n≥0 cn(−1)n Pn(2x − 1). In particular it is straightforward

to exploit (1) to compute the FL-expansion of
√

x
1−x and of

√
1−x
x , producing the following

FL-expansion for
√
x(1 − x):

√
x(1 − x)

L2(0,1)= π

8

∑

n≥0

4n + 1

(n + 1)(1 − 2n)

[
1

4n

(
2n

n

)]2
P2n(2x − 1). (2)

Since 1
4n
(2n
n

) ∼ 1√
πn

as n → +∞, the series
∑

n≥0
4n+1

(n+1)(1−2n)

[
1
4n
(2n
n

)]2
is absolutely

convergent and the equality above holds as a pointwise equality for any x ∈ [0, 1], too. Since
P2n(0) = (−1)n

[
1
4n
(2n
n

)]
, the evaluation of (2) at x = 1

2 leads to
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1

π
=
∑

n≥0

(4n + 1)(−1)n

4(n + 1)(1 − 2n)

[
1

4n

(
2n

n

)]3
(3)

and the application of Parseval’s identity leads to

1

π2 =
∑

n≥0

3(4n + 1)

32(n + 1)2(1 − 2n)2

[
1

4n

(
2n

n

)]4
, (4)

while by computing the inner product between
√

x
1−x and

√
1−x
x we have

16

π2 =
∑

n≥0

8n2 + 8n + 1

(n + 1)2

[
1

4n

(
2n

n

)]4
, (5)

which are Ramanujan-like formulas for 1
π

and 1
π2 . The RHS of (5) depends on 4F3(

1
2 ,

1
2 ,

1
2 ,

1
2 ;

1, 1, 1
1, 1, 2
1, 2, 2

; 1
)
. The formula above can be seen as a consequence of the contigu-

ity relations for 4F3 functions; nevertheless, it does not seem to be recognized by computer
algebra systems. We may notice that for (moderately) large values of n the main term in the
RHS of (3) behaves like C

n5/2
and the main term of the RHS of (4) behaves like C

n5
. In terms

of the contiguity relations for hypergeometric functions, (3) is equivalent to

16

π
= 4 · 3F2

(− 1
2 ,

1
2 ,

1
2 ; 1, 2;−1

)+ 3F2
( 1
2 ,

3
2 ,

3
2 ; 2, 3;−1

)

and (4) is equivalent to

512

3π2 = 16 · 4F3
(− 1

2 ,− 1
2 ,

1
2 ,

1
2 ; 1, 2, 2; 1

)+ 4F3
( 1
2 ,

1
2 ,

3
2 ,

3
2 ; 2, 3, 3; 1

)
.

On the other hand, the procedure which allowed us to derive the FL-expansion of
√
x(1 − x)

from the FL-expansion of 1√
x(1−x)

can be applied again. It leads to the FL-expansions of

[x(1 − x)]3/2 and [x(1 − x)]5/2:

[x(1 − x)]3/2 = 9π

256

∑

n≥0

(4n + 1)

(n + 1)2
( 1
2 − n

)
2

[
1

4n

(
2n

n

)]2
P2n(2x − 1),

[x(1 − x)]5/2 = 225π

4096

∑

n≥0
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( 1
2 − n

)
3

[
1

4n

(
2n

n

)]2
P2n(2x − 1).

Except for the extra term
[

1
4n
(2n
n

)]2
, these expansions are essentially identical to the FL-

expansions for the generalized elliptic integrals we studied in our previous work. The
evaluation at x = 1

2 produces

1

π
=
∑

n≥0

9(4n + 1)(−1)n

8(n + 1)(n + 2)(1 − 2n)(3 − 2n)

[
1

4n

(
2n

n

)]3
, (6)

1

π
=
∑

n≥0

225(4n + 1)(−1)n
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[
1
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(
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n

)]3
, (7)
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where, for (moderately) large values of n, the main term of the RHS of (6) behaves like 1
n9/2

and the main term of the RHS of (7) behaves like 1
n13/2

. (6) and (7) are equivalent to the
contiguity relations

32

3π
= 2 · 3F2

(− 3
2 ,

1
2 ,

1
2 ; 1, 3;−1

)+ 3F2
(− 1

2 ,
3
2 ,

3
2 ; 2, 4;−1

)
,

256

5π
= 8 · 3F2

(
− 5

2 ,
1
2 ,

1
2 ; 1, 4;−1

)
+ 5 · 3F2

(− 3
2 ,

3
2 ,

3
2 ; 2, 5;−1

)

and Parseval’s identity ensures

1

π2 = 2835

16384

∑

n≥0

(4n + 1)

(n + 1)22
( 1
2 − n

)2
2

[
1
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(
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n
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, (8)

1
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∑
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( 1
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)2
3

[
1

4n

(
2n

n

)]4
, (9)

where, for (moderately) large values of n, the main term of the RHS of (8) behaves like
1
n9

and the main term of the RHS of (9) behaves like 1
n13

. (8) and (9) are equivalent to the
contiguity relations

16384

315π2 = 4 · 4F3
(− 3

2 ,− 3
2 ,

1
2 ,

1
2 ; 1, 3, 3; 1

)+ 4F3
(− 1

2 ,− 1
2 ,

3
2 ,

3
2 ; 2, 4, 4; 1

)
,

16777216

17325π2 = 64 · 4F3
(
− 5

2 ,− 5
2 ,

1
2 ,

1
2 ; 1, 4, 4; 1

)
+ 25 · 4F3

(− 3
2 ,− 3

2 ,
3
2 ,

3
2 ; 2, 5, 5; 1

)
.

Theorem 1 By induction on k we get that for any odd k ∈ N the following identity holds
pointwise over [0, 1]:

[x(1 − x)]
k
2 = π(k!!)2

8k2
k+1
2

∑

n≥0

(4n + 1)
[

1
4n
(2n
n

)]2

(n + 1) k+1
2

· ( 12 − n
)
k+1
2

P2n(2x − 1).

Corollary 1 If p(x) ∈ Z(x) is a polynomial with even degree, with simple roots belonging to

the set
{
. . . ,−3,−2,−1, 1

2 ,
3
2 ,

5
2 , . . .

}
, and such that p(x) = p

(− 1
2 − x

)
, then

∑

n≥0

(−1)n
4n + 1

p(n)

[
1

4n

(
2n

n

)]3

is a rational multiple of 1
π
and

∑

n≥0

4n + 1

p(n)2

[
1

4n

(
2n

n

)]4
,
∑

n≥0

4n + 1

p(n)

[
1

4n

(
2n

n

)]4

are rational multiples of 1
π2 .

Proof If p(n) fulfills the mentioned constraints, 1
p(n)

can be written as a linear combina-

tion with rational coefficients of 4n+1
(n+1)(1−2n)

, 4n+1
(n+1)(n+2)(1−2n)(3−2n)

etcetera. The claim is

therefore a straightforward consequence of Theorem 1. �
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By considering the inner product between different FL-expansions provided by Theorem 1
we also get that

Corollary 2 If p(x) ∈ Z(x) is a monic polynomial with even degree, with simple or dou-

ble roots belonging to the set
{
. . . , −3,−2,−1, 1

2 ,
3
2 ,

5
2 , . . .

}
, and such that p(x) =

p
(− 1

2 − x
)
, then

∑

n≥0

4n + 1

p(n)

[
1

4n

(
2n

n

)]4

is a rational multiple of 1
π2 .

The evaluation of the identity of Theorem 1 at x = 1
2 leads to

∑

n≥0

(−1)n(4n + 1)
[

1
4n
(2n
n

)]3

(n + 1)k
( 1
2 − n

)
k

= 2

π
· 16

kk!2
(2k)!2 (10)

and if we apply Parseval’s identity to the statement of Theorem 1 we get

∑

n≥0

(4n + 1)
[

1
4n
(2n
n

)]4

(n + 1)2k
( 1
2 − n

)2
k

= 212k(k!)4
π2k(4k)!(2k)!2 . (11)

Another function of the [x(1 − x)]η kind has a simple FL-expansion which is related to
central binomial coefficients:

[x(1 − x)]−1/4 = 4π
√

π

Γ
( 1
4

)2
∑

n≥0

[
1

4n

(
2n

n

)]
P2n(2x − 1). (12)

The evaluation at x = 1
2 and Parseval’s identity lead to

2

π
K (−1) =

∑

n≥0

(−1)n
[
1

4n

(
2n

n

)]2
= Γ

( 1
4

)2

(2π)3/2
,

2

π

∫ 1

0
K (x4) dx =

∑

n≥0

1

4n + 1

[
1

4n

(
2n

n

)]2
= Γ

( 1
4

)4

16π2 ,

while by combining (1) and (12) we get

∑

n≥0

[
1

4n

(
2n

n

)]3
= Γ

( 1
4

)4

4π3 .

This provides a furher proof of K
( 1
2

) = 1
4
√

π
Γ
( 1
4

)2
, not directly relying on Clausen’s

formula, giving the equality between 2F1
(
a, b; a + b + 1

2 ; z
)2

and 3F2
(
2a, 2b, a+b; a+b

+ 1
2 , 2a + 2b; z

)
. Given the generating function for Legendre polynomials, the identity

1√
1−x

L2(0,1)= 2
∑

n≥0 Pn(2x − 1) is straightforward. If we combine the FL-expansions of
1√
1−x

and 1
4√x(1−x)

with Theorem 1we obtain the following extension of Bauer’s and Levrie’s

results ([2,14]):
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Theorem 2 For any k ∈ N
+ we have

∑

n≥0

[
1
4n
(2n
n

)]3

(n + 1)k
( 1
2 − n

)
k

= Γ
( 1
4

)2

2π
√
2

· Γ
(
k + 1

4

)

Γ
(
k + 1

2

)2
Γ
(
k + 3

4

) ,

∑

n≥0

[
1
4n
(2n
n

)]2

(n + 1)k
( 1
2 − n

)
k

= 28k−3Γ (k)2

π Γ (4k)
.

Additionally, if p(x) ∈ Z[x] is a monic polynomial with even degree, with simple roots

belonging to the set
{
. . . ,−3,−2,−1, 1

2 ,
3
2 ,

5
2 , . . .

}
, and such that p(x) = p

(− 1
2 − x

)
,

then

∑

n≥0

1

p(n)

[
1

4n

(
2n

n

)]3

is a rational multiple of
Γ
(
1
4

)4

8π3 and

∑

n≥0

1

p(n)

[
1

4n

(
2n

n

)]2

is a rational multiple of 1
π
.

We may also notice that by combining the FL-expansions of 1√
x(1−x)

and 1√
2−x

we have

∫ 1

0

dx√
x(1 − x)(2 − x)

x �→x2=
∫ 1

0

2 dx√
(1 − x2)(2 − x2)

= √
2 K
( 1
2

)

FL= 2π
∑

n≥0

(
√
2 − 1)4n+1

[
1

4n

(
2n

n

)]2

Taylor= 4(
√
2 − 1) K

(
(
√
2 − 1)4

)
,

which can be deduced from K (x) = π

2AGM
(
1,

√
1−x
) [4]. Such identity relates K (

√
k1),

K (
√
k4) and the lemniscate constant, where k j = λ∗( j) are the elliptic singular values,

algebraic numbers fulfilling K (
√
1−kr )

K (
√
kr )

= √
r .

If we combine Theorem 1 with the FL-expansion for the logarithm

log(x)
L2(0,1)= −1 +

∑

n≥1

(−1)n+1
(
1

n
+ 1

n + 1

)
Pn(2x − 1)

we get that for any odd k ∈ N

Γ
(
1 + k

2

)2

(k + 1)!
[
Hk/2 − Hk+1

] =
∫ 1

0
log(x) [x(1 − x)]k/2 dx

= − π(k!!)
8k
( k+1

2

)! − π(k!!)2
8k · 2 k+1

2

∑

n≥1

(
1
2n + 1

2n+1

) [
1
4n
(2n
n

)]2

(n + 1) k+1
2

( 1
2 − n

)
k+1
2
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holds, and by letting k = (2 j − 1) we have

(2 j)!
4 j

∑

n≥1

(
1
2n + 1

2n+1

) [
1
4n
(2n
n

)]2

(n + 1) j
( 1
2 − n

)
j

= 2 log(2) − 1 −
2 j∑

m=1

(−1)m+1

m
,

which is an acceleration formula relating 4F3
(
1, 1, 3

2 ,
3
2 − j; 2, 2, 2 + j; 1) and 3F2(

3
2 ,

3
2 ,

3
2 − j; 5

2 , j + 2; 1
)
. By Rodrigues’ formula the FL-expansion of 4

√
x(1 − x) is given

by

4
√
x(1 − x) = Γ

( 1
4

)2

4
√

π

∑

n≥0

4n + 1

(4n + 3)(1 − 4n)

[
1

4n

(
2n

n

)]
P2n(2x − 1)

and by considering the inner product between the FL-expansions of [x(1 − x)]±1/4 we imme-
diately get

1

π
=
∑

n≥0

1

(4n + 3)(1 − 4n)

[
1

4n

(
2n

n

)]2
,

which is equivalent to 3F2
(− 1

4 ,
1
2 ,

1
2 ; 1, 7

4 ; 1
) = 3

π
or to computing

∫ 1
0 x−1/4(1−x)K (x) dx .

A similar problem concerns the explicit evaluation of

∑

n≥0

1

(2n + 1)2

[
1

4n

(
2n

n

)]2
= 4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2 ; 1, 3

2 ,
3
2 ; 1
)

Taylor= − 2

π

∫ 1

0
K (x2) log(x) dx .

We may notice that K (x) =∑n≥0 Pn(2x − 1) 2
2n+1 and

− log x√
x

=
∑

n≥0

Pn(2x − 1)(−1)n
[
8

n∑

k=0

1

2k + 1
− 4

2n + 1

]
,

hence we may convert the original series into a combination of Euler sums:

∑

n≥0

1

(2n + 1)2

[
1

4n

(
2n

n

)]2
= 1

π

∑

n≥0

(−1)n
8
(
H2n+1 − 1

2H2n
)− 4

2n+1

(2n + 1)2

= π2

8
+ 8

π

∑

n≥1

H2n(−1)n

(2n + 1)2
− 4

π

∑

n≥1

Hn(−1)n

(2n + 1)2
,

then by invoking
∑

n≥1 Hnxn = − log(1−z)
1−z and

∫ 1
0 zk log(z) dz = − 1

(k+1)2
we immediately

have
∑

n≥1

(−1)nHn

(2n + 1)2
=
∫ 1

0

log(1 + z2) log(z)

1 + z2
dz

= 2 Im Li3
( 1+i

2

)− K log(2) − π3

64
− π

16
log2(2),

∑

n≥1

(−1)nH2n

(2n + 1)2
=
∫ 1

0

log(z)

2

(
log(1 − i z)

1 − i z
+ log(1 + i z)

1 + i z

)
dz
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= − Im Li3
( 1+i

2

)− 1

2
K log(2) + 3π3

128
+ π

32
log2(2),

through the functional identities for Li2 and Li3. The terms related to K log(2) and π log2(2)
simplify and this leads to the unexpected identity:

∑

n≥0

1

(2n + 1)2

[
1

4n

(
2n

n

)]2
= 4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2 ; 1, 3

2 ,
3
2 ; 1
)

= 3π2

8
+ log2(2)

2
− 16

π
Im Li3

( 1+i
2

)
. (13)

Since
∑

n≥0
1

(2n−1)2

[
1
4n
(2n
n

)]2 = 4
π
and
∑

n≥0
1

(2n−1)3

[
1
4n
(2n
n

)]2 = 4K−6
π

, by reindexing

we also get:

∑

n≥0

1

(2n − 1)4

[
1

4n

(
2n

n

)]2
= 4F3

(− 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ; 1, 1
2 ,

1
2 ; 1
)

= 3π2

8
+ log2(2)

2
− 16

π
Im Li3

( 1+i
2

)− 8

π
(K − 1).

The LHS of (13) is well-approximated by the more elementary

1 + 1

π

∑

n≥1

1

(2n + 1)2
(
n + 1

4

) = 3 − π

2
− 4

π
+ 4

π
log(2),

and similar approximated identities can be produced by replacing
[

1
4n
(2n
n

)]2
with 1

π
(
n+ 1

4

) in

the series representing ‖ f (x)‖2L2(0,1) for f (x) = [x(1 − x)]k/2 and k being an odd natural

number. As an alternative, using Theorem 2,

16

3π
=
∑

n≥0

[
1
4n
(2n
n

)]2

(n + 1)
( 1
2 − n

) ≈ 2 + 1

π

∑

n≥1

1

(n + 1)
( 1
2 − n

) (
n + 1

4

)

implies π ≈ 4 − 16
13 log(2), with the magnitude of the difference being < 6 · 10−3. Many

series involving squared central binomial coefficients, and eventually harmonic numbers, can
be managed in a similar fashion. The following series appear in [5–7], too:

∑

n≥0

Hn+1

n + 1

[
1

4n

(
2n

n

)]2
= − 2

π

∫ 1

0
K (x) log(1 − x) dx

= 2

π

⎡

⎣2 +
∑

n≥1

2

(2n + 1)2

(
1

n
+ 1

n + 1

)⎤

⎦

= 16

π
(1 − log(2))

≈ 17

9
+ π

6
− log 4 + 16

3π
(K + log(2)) − 2

π

(
2 + 3 log2(2)

)
,

∑

n≥0

1

(n + 1)2

[
1

4n

(
2n

n

)]2
= − 2

π

∫ 1

0
K (x) log(x) dx

123



632 M. Cantarini, J. D’Aurizio

= 2

π

⎡

⎣2 +
∑

n≥1

2(−1)n

(2n + 1)2

(
1

n
+ 1

n + 1

)⎤

⎦

= −4 + 16

π

≈ 17

9
− 4

π
− 2π

9
+ 16 log(2)

3π
.

The approximation error in the former case is< 5 ·10−3 and in the latter case it is< 2 ·10−3.

Theorem 3 The computation of the FL-expansions of log
k (x)
x and logk (x)√

x
allows to convert any

hypergeometric series of the
∑

n≥0
1

(2n+1)m

[
1
4n
(2n
n

)]2
or
∑

n≥0
1

(n+1)m

[
1
4n
(2n
n

)]2
kind into

a combination of Euler sums, since the derivatives of the initial functions are immediately
related to Stirling numbers of the first kind and central binomial coefficients.

For instance, the FL-expansion of log2(x)√
x

can be computed by noticing that

dn

dxn

(
log2 x√

x

)
= (−1)n

xn
√
x

[
An − Bn log(x) + Cn log

2(x)
]

where trivially Cn = (2n−1)!!
2n and Bn = 2n−1

2 Bn−1 + 2Cn−1. By letting Bn = (2n−1)!!
2n B̂n we

get B̂n = B̂n−1+ 4
2n−1 , hence Bn = (2n−1)!!

2n
∑n

k=1
4

2k−1 . Similarly An = 2n−1
2 An−1+ Bn−1

leads to

An = (2n − 1)!!
2n

· 8
∑

1≤k<m≤n

1

(2k − 1)(2m − 1)

= (2n − 1)!!
2n

· 4
⎡

⎣
(

n∑

k=1

1

2k − 1

)2
−

n∑

k=1

1

(2k − 1)2

⎤

⎦

hence by Rodrigues’ formula the FL expansion of log2 x√
x

is given by

∑

n≥0

(2n + 1)Pn(2x − 1)
∫ 1

0

(1 − x)n

n!√x

[
An − Bn log(x) + Cn log

2(x)
]
dx

=
∑

n≥0

(−1)n Pn(2x − 1)

⎡

⎣32
(

n∑

k=0

1

2k + 1

)2
− 32

2n + 1

n∑

k=0

1

2k + 1
+ 16

(2n + 1)2

⎤

⎦ .

This approach leads to the equality between
∑

n≥0
1

(2n+1)3

[
1
4n
(2n
n

)]2
and

1

π

∫ 1

0
K (x2) log2(x) dx = 1

8π

∫ 1

0
K (x)

log2(x)√
x

dx

= 8

π

∑

n≥0

(−1)n
(∑n

k=0
1

2k+1

)2

(2n + 1)2
− 8

π

∑

n≥0

(−1)n
∑n

k=0
1

2k+1

(2n + 1)3
+ 4

π

∑

n≥0

(−1)n

(2n + 1)4
.
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The evaluation of the original series is now shown to be equivalent to the evaluation of

standard and alternating Euler sums with weight 4. We trivially have 4
π

∑
n≥0

1
(2n+1)4

= π3

24

and since
∑

n≥1 Hnxn = − log(1−x)
1−x we also have

∑

n≥0

∑n
k=0

1
2k+1

(2n + 1)3
=
∑

n≥0

H2n+1

(2n + 1)3
− 1

2

∑

n≥0

Hn

(2n + 1)3

=
∑

n≥1

Hn

n3
−
∑

n≥1

H2n

(2n)3
− 1

2

∑

n≥0

Hn

(2n + 1)3

= π4

72
−
∑

n≥1

H2n

(2n)3
+ 1

4

∫ 1

0

log(1 − x2) log2(x)

1 − x2
dx

= 7π4

1152
+ 7

8
log(2)ζ(3) +

∫ 1

0

[
log(1 − x)

1 − x
+ log(1 + x)

1 + x

]
log2(x)

4x
dx

= − π4

1152
+ 7

8
log(2)ζ(3) +

∫ 1

0

log(1 + x) log2(x)

4x(1 + x)
dx

= 23π4

5760
+ 7

8
log(2)ζ(3) −

∫ 1

0

log(1 + x) log2(x)

4(1 + x)
dx

= 83π4

5760
+ π2

24
log2(2) − log4(2)

24
− Li4

( 1
2

)
,

in agreement with De Doelder [10] and Sitaramachandra Rao [18]. Recalling that Hn(s) =
∑n

k=0
1

(2k+1)s , in order to evaluate the series
∑

n≥0
H 2

n
(2n+1)2

it is enough to exhibit a slight gen-

eralization of Theorem 4.1 of Flajolet and Salvy [11]. Though the residues of
[
ψ(−s) + γ

]3

they prove the following reduction formula for quadratic Euler sums:

∑

n≥1

H2
n

nq
=
∑

n≥1

Hn(2)

nq
+ q
∑

n≥1

Hn

nq+1 − q(q + 1)

6
ζ(q + 2) + ζ(2)ζ(q)

which restricted to the case q = 2, by symmetry, simply leads to

∑

n≥1

H2
n

n2
= 2
∑

n≥1

Hn

n3
+ 13π4

360
.

In our case we may notice that, in the same spirit,
∑

n≥0
H 2

n
(2n+1)2

equals

∑

0≤ j,k≤n

1

(2n + 1)2(2k + 1)(2 j + 1)

=
∑

0≤ j≤n

1

(2n + 1)2(2 j + 1)2
+ 2

∑

0≤ j<k≤n

1

(2n + 1)2(2k + 1)(2 j + 1)

= 1

2
[H∞(2) · H∞(2) + H∞(4)] +

∑

0≤ j<k≤n

1
2 j+1 − 1

2k+1

(2n + 1)2(k − j)

= 5π4

384
+
∑

n≥0

1

(2n + 1)2

n∑

j=0

Hn− j − Hj

2 j + 1
:= 5π4

384
+ Z (1, 1, 2).
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For any n ∈ N we have

H 2
n = − Res

z=−(2n+1)

1

4

(
γ + 2 log(2) + ψ

( z
2

))2
(γ + ψ(s))

since for any n ∈ N the Laurent series of γ + ψ(z) centered at z = −n is given by
− 1

z+n + Hn + (Hn(2) + ζ(2)) (z + n) + O((z + n)2) and, similarly, for any even n ∈ N the

Laurent series of 1
2

(
γ + 2 log(2) + ψ

( z
2

))
centered at z = −n is given by

− 1

z + n
+ 1

2

(
Hn/2 + 2 log(2)

)+ 1

4

(
Hn/2(2) + ζ(2)

)
(z + n) + O((z + n)2).

Therefore the computation of
∑

n≥0
H 2

n
(2n+1)2

can be performed by considering the residues of
1
4z2
(
γ + 2 log(2) + ψ

( z
2

))2
(γ + ψ(z)), which boils down to computing the residue at the

origin (π2

4 − log2(2)) and the Euler sums
∑

n≥1
H2
n

n2
= 17π4

360 ,
∑

n≥1
Hn(2)
n2

= 7π4

360 , together

with the less elementary
∑

n≥1
HnH2n
n2

.
On the other hand, we may also consider that, by continuingHn to negative integers through
H−1 = 0 and H−(n+2) = Hn ,

∑

n∈Z

H 2
n

(2n + 1)2
= 2
∑

n≥0

H 2
n

(2n + 1)2
− 2
∑

n≥0

Hn

(2n + 1)3
+
∑

n≥0

1

(2n + 1)4

= 1

4

∑

n∈Z

(
ψ
(
n + 3

2

)− ψ
( 1
2

))2

(2n + 1)2

= −1

4

∑

m≥0

Res
z=−(2m+1)/2

π cot(π z)

(
ψ
(
z + 3

2

)− ψ
( 1
2

)

2z + 1

)2

= π2

4
log2(2) + π4

96
.

This identity has many direct consequences:

Z (1, 1, 2) = π4

720
+ π2

6
log2(2) − log4(2)

24
− Li4

( 1
2

)
,

μ1 = 1

2

∫ 1

0

log2(z) log(1 + z)

z(1 + z)
dz =

∑

n≥1

(−1)n+1Hn

n3

= 11π4

360
+ π2

12
log2(2) − log4(2)

12
− 7

4
log(2)ζ(3) − 2 Li4

( 1
2

)
,

∑

n≥0

H2
n+1 + Hn+1(2)

n + 1

[
1

4n

(
2n

n

)]2
= 2

π

∫ 1

0
K (x2) log2(1 − x) dx

= 96

π
− 8π

3
− 128

π
log(2) + 64

π
log2(2),

and it also allows the explicit evaluation of

∑

n≥1

HnH2n

n2
= 2

∑

a,b,n≥1

1

ab(a + n)(b + 2n)

= 2
∫∫

(0,1)2

w log(1 − w) log(1 − z)

1 − w2z
dw dz
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in terms of π, log(2), ζ(3) and Li4
( 1
2

)
, although such formula is pretty much involved and

not really relevant in the forthcoming manipulations.
We are now ready to tackle the alternating Euler sums with weight 4 involving the powers

of Hn . By mimicking the approach used to evaluate
∑

n≥0
H 2

n
(2n+1)2

we have that

∑

n∈Z

(−1)nH 2
n

(2n + 1)2
= 2
∑

n≥0

(−1)nHn

(2n + 1)3
−
∑

n≥0

(−1)n

(2n + 1)4

= −1

4

∑

m≥0

Res
z=−(2m+1)/2

π

sin(π z)

(
ψ
(
z + 3

2

)− ψ
( 1
2

)

2z + 1

)2

= π3

24
log(2) − 1

4

∑

m≥1

[
−π(−1)m

2m3 + π(−1)m

2m2 (Hm−1(2) + 2 log(2))

]

= π3

16
log(2) − 3π

32
ζ(3) − π

8

∫ 1

0

Li2(−x) log(x)

1 + x
dx

where the last integral depends on μ1: it equals 13π4

288 − log4(2)
6 + π2

6 log2(2) − 4 Li4
( 1
2

) −
7
2 log(2)ζ(3). Similarly

∑

n∈Z

(−1)nH 3
n

2n + 1

= 2
∑

n≥0

(−1)nH 3
n

2n + 1
− 3
∑

n≥0

(−1)nH 2
n

(2n + 1)2
+ 3
∑

n≥0

(−1)nHn

(2n + 1)3
−
∑

n≥0

(−1)n

(2n + 1)4

= −
∑

m≥0

Res
z=−(2m+1)/2

π

sin(π z)(2z + 1)

(
ψ
(
z + 3

2

)− ψ
( 1
2

)

2

)3

= π

2
log3(2) − π

8

∑

m≥1

(−1)m
[
− 6

m

(
Hm−1

2
+ log(2)

)2
+ 3

m

(
Hm−1(2)

2
+ π2

12

)]

−π

8

∑

m≥1

(−1)m
[

3

m2

(
Hm−1

2
+ log(2)

)
− 1

2m3 − π2

4m

]

= π

8
log3(2) + π3

32
log(2) − 15π

128
ζ(3) + 3π

16

∑

m≥1

(−1)m

m

(
H2
m − Hm(2)

)

= π

8
log3(2) + π3

32
log(2) − 15π

128
ζ(3) + 3π

16

∫ 1

0

log2(1 + x)

x(1 + x)
dx

= π

16
log3(2) + π3

32
log(2) − 9π

128
ζ(3),

such that

∑

n≥0

1

(2n + 1)3

[
1

4n

(
2n

n

)]2
= 5F4

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ; 1, 3

2 ,
3
2 ,

3
2 ; 1
)

= 16

3π

∑

n≥0

(−1)nH 3
n

2n + 1
− log3(2)

6
− π2

12
log(2) + 3

16
ζ(3) + 4

3π
β(4).
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The previous equation gives an explicit relation between a cubic, alternating Euler sum with
weight four and a quadratic, alternating sum with the same weight. These series are further
generalizations of the quadratic, alternating Euler sums with weight four computed by Xu,

Yang and Zhang in [20]. The combination 2
∑

n∈Z
(−1)nH 3

n
2n+1 − 3

∑
n∈Z

(−1)nH 2
n

(2n+1)2
has been

computed by Zheng in [23] ((4.5a), (4.5b)), by exploiting the Dougall-Dixon theorem and
by comparing the coefficients of suitable infinite products. In the FL-setting we may notice
that

2 K (x) − log(1 − x)√
1 − x

L2(0,1)= 8
∑

n≥0

Hn Pn(2x − 1) (14)

immediately leads to

64
∑

n≥0

(−1)nH 2
n

2n + 1
= π3

3
+ 4π log2(2) − 4

∫ 1

0
K (x)

log x√
x

dx

= π3

3
+ 4π log2(2) + 8π

∑

n≥0

1

(2n + 1)2

[
1

4n

(
2n

n

)]2

= 10π3

3
+ 8π log2(2) − 128 Im Li3

( 1+i
2

)
.

By exploiting the expansion of log(x)√
1−x

it is possible to compute
∑

n≥0
(−1)nH 2

n
(2n+1)3

in a similar
way. Proving the following identities is a simpler task:

∑

n≥0

1

(n + 1)3

[
1

4n

(
2n

n

)]2
= 4F3

( 1
2 ,

1
2 , 1, 1; 2, 2, 2; 1

)

= 16

π

[
3 − 2K − π + π log(2)

]
,

∑

n≥0

1

(n + 1)4

[
1

4n

(
2n

n

)]2
= 5F4

( 1
2 ,

1
2 , 1, 1, 1; 2, 2, 2, 2; 1

)

= 2

π

[
64 − 64K − 24π + 3π3 − 128 Im Li3

( 1+i
2

)+ 32π log(2) − 12π log2(2)
]
.

They can be deduced in a straightforward way from the FL-expansions of d
dx E(x) (computed

in our previous work [8]), log(x) and log2(x). They also lead to

∑

n≥0

1

(2n − 1)2

[
1

4n

(
2n

n

)]2
= 2F1

(− 1
2 ,− 1

2 ; 1; 1
) = 4

π
,

∑

n≥0

1

(2n − 1)2(2n − 3)2

[
1

4n

(
2n

n

)]2
= 1

9 · 2F1
(− 3

2 ,− 3
2 ; 1; 1

) = 32

27π
,

which are consistent with the representations of 1
π
obtained in [8] by computing the moments

of generalized elliptic integrals. Similar manipulations might be useful in improving the
state of the art about the irrationality measure of π , since it is much simpler to estimate
the irrationality measure of log(2) through Beukers-like integrals and Viola’s method, as
done by Viola himself and Marcovecchio in [15]. Hypergeometric functions extending the
“usual” kernels xa(1 − x)b and Pn(x) have been crucial in the work of Zudilin [22] about
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the irrationality measure of π2, too. An application of the Cauchy-Schwarz inequality leads
to

2 − 16

3π
=
∑

n≥1

[
1
4n
(2n
n

)]2

(n + 1)
(
n − 1

2

)

CS≤

√√√√√∑

n≥1

1

(n + 1)
(
n − 1

2

) (
n + 1

4

)
∑

n≥1

(
n + 1

4

) [ 1
4n
(2n
n

)]4

(n + 1)
(
n − 1

2

)

=
√
8

9
(7 − π − 4 log(2))

(
1

2
− 4

π2

)

where the series involving
[

1
4n
(2n
n

)]4
has been computed by considering the FL-expansions

of
√
x(1 − x) and 1√

x(1−x)
. This already leads to π ≈ 3.141609 and it can be generalized

by replacing the (n + 1)
( 1
2 − n

)
term with (n + 1)k

( 1
2 − n

)
k for k > 1. Approximations of

zero through linear combinations with rational coefficients of 1, π, π3, log(2) and ζ(3) can

be produced by considering the more accurate estimation
[

1
4n
(2n
n

)]2 ≈ 1

π
(
n+ 1

4

) − 1

32π
(
n+ 1

4

)3

as n � 1.
Wemay also consider that by creative telescoping, the following identity holds for any n ∈ N:

∑

m≥1

Γ
(
m − 1

4

)2

Γ
(− 1

4

)2
(n + 1)m

( 1
2 − n

)
m

= − 1

(4n + 1)2
+ (−1)n

4n
√

π

(4n + 1)2 Γ
( 3
4

)2 (2n
n

) . (15)

If we multiply both sides by (−1)n(4n + 1)
[

1
4n
(2n
n

)]3
and sum over n ≥ 0 we get

∑

m≥1

Γ
(
m − 1

4

)2

Γ
(− 1

4

)2
∑

n≥0

(−1)n(4n + 1)
[

1
4n
(2n
n

)]3

(n + 1)m
( 1
2 − n

)
m

= Γ
( 1
4

)6

32π7/2 − 4F3
(
1
4 ,

1
2 ,

1
2 ,

1
2 ; 1, 1, 5

4 ;−1
)

(16)

and by exploiting the consequence of Parseval’s identity provided by (10) we get

2

π

∑

m≥1

Γ
(
m − 1

4

)2
16mm!2

Γ
(− 1

4

)2
(2m)!2

= 1

2π
3F2
( 3
4 ,

3
4 , 1; 3

2 ,
3
2 ; 1
)

= Γ
( 1
4

)6

32π7/2 − 4F3
(
1
4 ,

1
2 ,

1
2 ,

1
2 ; 1, 1, 5

4 ;−1
)

(17)

reducing the problem of evaluating a 4F3 (. . . ,−1) with quarter-integer parameters to the
problem of evaluating a 3F2(. . . , 1) with quarter-integer parameters. On its turn the last
problem is equivalent to finding the L2 norm over S1 for 2F1

( 3
4 , 1; 3

2 ; z
) = ∫ 10 dt

(1−z+zt2)3/4
.

In the opposite direction the identity above can be seen as an acceleration formula, since the
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main term of the series defining 4F3(. . . ,−1) has an alternating sign and a faster decay to
zero with respect to the main term of the series defining 3F2(. . . , 1).

If we multiply both sides of (15) by
[

1
4n
(2n
n

)]2
and sum over n ≥ 0, by Theorem 2 we get

∑

m≥1

Γ
(
m − 1

4

)2

Γ
(− 1

4

)2
∑

n≥0

[
1
4n
(2n
n

)]2

(n + 1)m
( 1
2 − n

)
m

= 1

3π
4F3
(
3
4 ,

3
4 , 1, 1; 5

4 ,
3
2 ,

7
4 ; 1
)

= 1

8π

∫ 1

0
K (x)x−3/4 log(x) dx −

√
π

4Γ
( 3
4

)2

∫ 1

0

log(x) dx√
x(1 + x2)

=
√

π

Γ
( 3
4

)2 3F2
(
1
4 ,

1
4 ,

1
2 ; 5

4 ,
5
4 ;−1

)
− 4F3

(
1
4 ,

1
4 ,

1
2 ,

1
2 ; 1, 5

4 ,
5
4 ; 1
)

.

Similarly, if we multiply both sides of (15) by
[

1
4n
(2n
n

)]3
and sum over n ≥ 0, by Theorem

2 we get

∑

m≥1

Γ
(
m − 1

4

)2

Γ
(− 1

4

)2
∑

n≥0

[
1
4n
(2n
n

)]3

(n + 1)m
( 1
2 − n

)
m

= Γ
( 1
4

)4

48π3 4F3
(
3
4 ,

3
4 , 1,

5
4 ; 3

2 ,
3
2 ,

7
4 ; 1
)

= 1

Γ
( 3
4

)2 4F3
(
1
4 ,

1
4 ,

1
2 ,

1
2 ; 1, 5

4 ,
5
4 ;−1

)
− 5F4

(
1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ; 1, 1, 5

4 ,
5
4 ; 1
)

.

2 Twisted hypergeometric series

When manipulating hypergeometric series through the binomial or Euler’s transforms,
generalized harmonic numbers Hn(s) may appear among the factors of the new main

term. For instance, some solutions to the Basel problem ζ(2) = π2

6 exploit the identity

ζ(2) = 2
∑

n≥1
Hn
n2n . In this context it is pretty natural to wonder if a technique for the

explicit evaluation of some pFq(. . . ;±1) allows the evaluation of twisted series too, i.e.
series of the form

∑
n≥0 Hn(s)an where

∑
n≥0 an = pFq(. . . ;±1). Some cases involving

central binomial coefficients and Hn or H2n have already been investigated by Campbell
through integral transforms (see [6]); this section is devoted to showing how to deal with
such twisted series through the FL machinery.
Rodrigues’ and Bonnet’s formulas lead to the FL-expansions

log2(1 − x) = 2 +
∑

n≥1

Pn(2x − 1)

[
2

(
1

n
+ 1

n + 1

)2
+ 4

(
1

n
+ 1

n + 1

)
Hn−1

]
,

log(x) log(1 − x) = (2 − ζ(2)) −
∑

n≥1

P2n(2x − 1)
4n + 1

2n2(2n + 1)2
,

− log(x)

1 − x
= ζ(2) −

∑

n≥1

Pn(2x − 1)(2n + 1)

[
2

n∑

k=1

(−1)k+1

k2
− ζ(2)

]
,
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while the generating function for Legendre polynomials gives

1

2
√
x
log

(
1 + √

x

4
√
x

)
L2(0,1)=

∑

n≥0

(−1)nHn Pn(2x − 1). (18)

On the other hand we have
∫ 1

0
xn log(x) log(1 − x) dx = 2

(n + 1)3
+ Hn

(n + 1)2
− ζ(2) − Hn(2)

n + 1
,

∫ 1

0
xn log2(1 − x) dx = H2

n+1 + Hn+1(2)

n + 1
,

∫ 1

0
xn

− log x

1 − x
dx = ζ(2) − Hn(2),

hence these identities, through the FL machinery, allow an explicit evaluation of hyper-

geometric series whose main term depends on
[

1
4n
(2n
n

)]
or
[

1
4n
(2n
n

)]2
and Hn, H2

n , Hn(2)

(hypergeometric series with a harmonic twist, according to the terminology introduced by
Campbell in [7]). For instance

∫ 1

0
K (x)

− log x

1 − x
dx = π

2

∑

n≥0

(ζ(2) − Hn(2))

[
1

4n

(
2n

n

)]2

= 2 ζ(2) +
∑

n≥1

4

2n + 1

∑

k>n

(−1)k+1

k2

= 4
∫ 1

0

Li2(−x2) − Li2(−1)

1 − x2
dx

= 2
∫ 1

0

Li2(−x) − Li2(−1)

(1 − x)
√
x

dx

= 4
∫ 1

0

[
log(1 + x) − log(1 − x)

]
log(1 + x2)

dx

x
= 4πK − 7ζ(3)

by the functional identities for Li2 and Li3. Remarkably, there is a standard hypergeometric

series which is closely related to
∑

n≥0 (ζ(2) − Hn(2))
[

1
4n
(2n
n

)]2
:

∑

n≥0

16n

(2n + 1)3
(2n
n

)2 = 4F3
( 1
2 , 1, 1, 1; 3

2 ,
3
2 ,

3
2 ; 1
) = −πK + 7

2 ζ(3).

This identity can be proved through the same technique outlined in [9]: by the Maclaurin

series of the arcsin function and the moments
∫ π/2
0 (sin θ)2n+1 dθ = 1

2n+1

[
1
4n
(2n
n

)]−1
we

have:

∑

n≥0

16n

(2n + 1)3
(2n
n

)2 =
∫ π/2

0
θ log tan

θ

2
− Im Li2(−eiθ ) + Im Li2(e

iθ ) dθ

IBP= −πK + 7
2 ζ(3).

More simply,

−
∫ 1

0
K (x) log(1 − x) dx

Taylor= π

2

∑

n≥0

Hn+1

n + 1

[
1

4n

(
2n

n

)]2
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FL= 2 +
∑

n≥1

(
1

n
+ 1

n + 1

)
2

(2n + 1)2

= 8(1 − log(2)),

−
∫ 1

0
K (x) log(1 − √

x) dx
Taylor= π

2

∑

n≥0

H2n+2

n + 1

[
1

4n

(
2n

n

)]2

FL= 3 −
∑

n≥1

2

(2n + 1)2

[
(−1)n

2n(n + 1)
− 2n + 1

n(n + 1)

]

= 4 + 4K − 6 log(2),
∑

n≥0

H2n

(n + 1)(1 − 2n)

[
1

4n

(
2n

n

)]2
FL= 8

π

∫ 1

0

√
x(1 − x)

2
√
x

log

(
1 + √

x

4
√
x

)
dx

= 4

π

∫ 1

0
log

(
1 + √

x

4
√
x

)√
1 − x dx

×
[
FL of

√
1 − x, log

(
1 + 1√

x

)]
=
∑

n≥0

8(−1)n

π(1 − 4n2)(2n2 + 5n + 3)
− 16 log(2)

3π

= 2

3
+ 8

3π
(1 − log(2)) .

Of course this approach can be combined with classical approaches based on integral trans-
forms. Three instances are provided by the series
∑

n≥1
Hn
n

[
1
4n
(2n
n

)]
,
∑

n≥1
Hn
n

[
1
4n
(2n
n

)]2
and
∑

n≥1
1
n2

[
1
4n
(2n
n

)]2
:

∑

n≥1

Hn

n

[
1

4n

(
2n

n

)]
= ζ(2) − 2 log2(2) + 1

π

∫ π/2

0
log2(1 − sin2 θ) dθ = 2 ζ(2),

∑

n≥1

1

n2

[
1

4n

(
2n

n

)]2
= 5F4

(
1, 1, 1, 3

2 ,
3
2 ; 2, 2, 2, 2; 1

)

Taylor= − 2

π

∫ π/2

0

(
K (x) − π

2

)
log(x)

dx

x

=
∑

n≥0

(2n + 1)(2(n + 1) − 1)

4(n + 1)4

[
1

4n

(
2n

n

)]2

Taylor= 1

π

∫ 1

0

d

dx
E(x) · (4 log x + log2 x

)
dx

FL= 1 − 2

π
+ 1

π

∑

n≥1

(−1)n
[
2(2n + 1)(1 − 2n2)

n2(1 + n)2
+ 4

2n + 1

n(n + 1)
Hn−1

]

×
[∫ 1

0

2x2n+2

1 + x2
dx − 1

2n + 1

]

= 1 + −28 + 4π2

3 + 32 log(2) − 16 log2(2)

π
+ 1

π

∫ 1

0

f (x)

1 + x2
dx,
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where f (x) = 20x2 + (24 − 8x2) log(1 − x2) + 4(x2 + 1)Li2(x2) + 4(x2 − 1) log2(1 −
x2). In particular

∫ 1
0

f (x)
1+x2

is given by a linear combination with rational coefficients of

1, π, log(2), K , π log(2), π2, log2(2) and
∫ 1

0

log2(1 − x2)

1 + x2
dx = 5π3

32
− 4 Im Li3

( 1+i
2

)− 4K log(2) + 3π

8
log2(2),

which is associated to Euler sums with weight 3 and allows to state that 5F4
(
1, 1, 1, 3

2 ,
3
2 ;

2, 2, 2, 2; 1
)
has an explicit form in terms of the mentioned constants. The chain of equalities

above is an application of the transformation formula introduced in our previous work [8],
allowing to convert

∫ 1
0

(
K (x) − π

2

) f (x)
x dx into

∫ 1
0

d
dx E(x) · f̃ (x) dx . The application of

such principle to the series
∑

n≥1
Hn
n

[
1
4n
(2n
n

)]
gives the following alternative derivation:

∑

n≥1

Hn

n

[
1

4n

(
2n

n

)]
=
∑

n≥0

Hn+1

n + 1

[
1

4n

(
2n

n

)]
2n + 1

2n + 2

Taylor= −
∫ 1

0

1 − √
1 − x

x
√
1 − x

log(1 − x) dx

x �→1−x= −
∫ 1

0

1 − √
x

(1 − x)
√
x
log(x) dx

x �→x2= −4
∫ 1

0

1 − x

1 − x2
log(x) dx

= 4
∫ 1

0

− log(x)

1 + x
dx = 4

∑

n≥1

(−1)n+1

n2
= 2 ζ(2),

and the same procedure tackles

∑

n≥1

Hn

n2n

[
1

4n

(
2n

n

)]
FL=
∫ 1

0

− log(x)
√
1 + x

(√
2 + √

1 + x
) dx

= 1√
2

∫ 1

0
(− log x)

(
1√
1 + x

− 1√
2 + √

1 + x

)
dx

= 1√
2

∑

n≥0

(−1)n

(n + 1)2

[
1

4n

(
2n

n

)]
+ 1√

2

∫ 1

0

log(x)√
2 + √

1 + x
dx

too, where the first term of the RHS is elementary and the second term depends on

Li2(3 − 2
√
2) by the substitution x �→ 1 − 2

(
2t

1+t2

)2
. The series with alternating signs

∑
n≥0(−1)nH2n

[
1
4n
(2n
n

)]
equals 1√

2
log
(
1+√

2
4

)
by evaluating

∑
n≥0 Hn Pn(2x − 1) at

x = 1
2 . By directly exploiting the FL-expansion of log(1−x)

x we have:

∑

n≥1

Hn

n

[
1

4n

(
2n

n

)]2
Taylor= − 2

π

∫ π/2

0

(
K (x) − π

2

)
log(1 − x)

dx

x

FL= 2

π

⎡

⎣ζ(2)
(
2 − π

2

)
+
∑

n≥1

2(−1)n+1

2n + 1

(
−ζ(2) + 2

n∑

k=1

(−1)k+1

k2

)⎤

⎦
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= 8

π

∑

n≥1

(−1)n+1

2n + 1

n∑

k=1

(−1)k+1

k2

= 8

π

∫ 1

0

Li2(x2)

1 + x2
dx

= −5π2

3
+ 64

π
Im Li3

( 1+i
2

)+ 32

π
K log(2) − 2 log2(2).

In the last case the series obtained by replacing
[

1
4n
(2n
n

)]2
by 1

π
(
n+ 1

4

) for any n ≥ 2 equals:

1

4
+
∑

n≥2

Hn

πn
(
n + 1

4

) = 1

4
+ 6 log(2) + 18

π
log2(2) − π

2
− 4

5π
− 16

π
K .

Now we may tackle two similar sums, twisted by factors H2
n , Hn(2).

∫ 1

0
K (x) log(x) log(1 − x) dx

Taylor= π

2

∑

n≥0

(
Hn+1

(n + 1)2
− ζ(2) − Hn+1(2)

n + 1

)[
1

4n

(
2n

n

)]2

FL= (4 − 2 ζ(2)) −
∑

n≥1

1

n2(2n + 1)2(4n + 1)

= 48 − 8π − 32 log(2),
∫ 1

0
K (x) log2(1 − x) dx

Taylor= π

2

∑

n≥0

H2
n+1 + Hn+1(2)

n + 1

[
1

4n

(
2n

n

)]2

FL= 4 +
∑

n≥1

2

(2n + 1)2

[
2

(
1

n
+ 1

n + 1

)2
+ 4

(
1

n
+ 1

n + 1

)
Hn−1

]

= −8 + 4π2

3
+ 8
∑

n≥1

Hn−1

n(n + 1)(2n + 1)

= 48 − 4π2

3
− 64 log(2) + 32 log2(2),

π

2

∑

n≥0

Hn+1

(n + 1)2

[
1

4n

(
2n

n

)]2

Taylor= −
∫ 1

0

[
4
d

dx
E(x) + 2 K (x)

]
log(1 − x) dx

FL= (8 − 2π) +
∑

n≥1

(
1

n
+ 1

n + 1

)[
4

(2n + 1)2
− 4

2n + 1
+ 8
∫ 1

0

u2n+2

1 + u2
du

]

= 16 − 2π − 16 log(2) − 8
∫ 1

0

u2 + (1 + u2) log(1 − u2)

1 + u2
du

= 24 − 32 log(2).
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By combining these integrals/series we immediately get

∑

n≥0

H2
n+1

n + 1

[
1

4n

(
2n

n

)]2
= 16 + 48

π
− 10π

3
− 128 log(2)

π
+ 64 log2(2)

π
,

∑

n≥0

Hn+1(2)

n + 1

[
1

4n

(
2n

n

)]2
= −16 + 48

π
+ 2π

3
.

Manyother identities involvingHn orHn canbederived through theFL-method. For instance,
we may consider that by differentiating Euler’s Beta function we have

∫ 1

0

log2(x)√
x(1 − x)

dx = π3

3
+ 4π log2(2),

where the LHS is at the same time

2π + π
∑

n≥1

[
2

(
1

2n
+ 1

2n + 1

)2
+ 4

(
1

2n
+ 1

2n + 1

)
H2n−1

]
·
[
1

4n

(
2n

n

)]2

and

32
∑

n≥0

(−1)n
[
2H 2

n

2n + 1
− 2Hn

(2n + 1)2
+ 1

(2n + 1)3

]

due to the FL-expansions of log2(x), 1√
x(1−x)

,
log2(x)√

x
and 1√

1−x
.

In particular the series

∑

n≥1

(
1

2n
+ 1

2n + 1

)
H2n

[
1

4n

(
2n

n

)]2

is given by an algebraic combination of 1, log(2), π, K and Im Li3
( 1+i

2

)
.

Similarly,
∫ 1

0

− log3(x)√
x(1 − x)

dx = 2π3 log(2) + 8π log3(2) + 12πζ(3)

holds by differentiation of a Beta function, and the FL-expansion of − log3(x)√
x

can be computed

through the same technique we used for the FL-expansion of log2(x)√
x

, namely Rodrigues’

formula and recurrence relations. They lead to the equality in L2(0, 1) between− log3(x)√
x

and

32
∑

n≥0

(−1)n Pn(2x − 1)

[
4H 3

n + 2Hn(3) − 6H 2
n

(2n + 1)
+ 6Hn

(2n + 1)2
− 3

(2n + 1)3

]
,

hence the explicit value of
∑

n≥0
(−1)nH n(3)

2n+1 can be computed from the previous integral and
the FL-expansion of log3(x).

Now we have an important remark. According to the niceness criterion outlined in [8],
we may denote through N the class of (twisted) hypergeometric p+1Fp(x) functions such
that the coefficients of their FL-expansions are the coefficients of the Maclaurin series of
a (twisted) q+1Fq(x) function. If max(p, q) ≤ 3, many interesting identities are produced
by interpreting the integral over (0, 1) of a Maclaurin series as a suitable inner product in
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L2(0, 1). As already remarked, assuming a+3, b+3 ∈ 1
4N and u ∈ (−1, 1) all the following

functions belong to N :

1√
(1 + u)2 − 4ux

, xa(1 − x)b, log(x), log2(x), log(1 − √
x),

log(x)√
x

,

log2(x)√
x

, K (x), E(x), J (x),
d

dx
E(x),

arcsin(
√
x)√

x

and N is closed with respect to f (x) �→ f (1 − x), x · f (1 − x),
∫

f (x) dx by Bonnet’s
recursion formulas.

Theorem 4 Li2(x) ∈ N .

Proof It is straightforward to check that
∫ 1
0 Li2(x) dx = ζ(2) − 1 and that

∫ 1

0
Li2(x)Pn(2x − 1) dx = 1

n2(n + 1)2

holds for any n ∈ {1, 2, 3, 4, 5}. This leads to the following conjectural form for the FL-
expansion of the dilogarithm [1,21]:

Li2(x) = (ζ(2) − 1) +
∑

n≥1

(
1

n2
− 1

(n + 1)2

)
Pn(2x − 1) (19)

which can be proved to be correct through the following approach: by applying the operator
x · d

dx to both sides of (19) and exploiting Bonnet’s recursion formulas, one finds− log(1−x)

in the LHS and 1 +∑n≥1

(
1
n + 1

n+1

)
Pn(2x − 1) in the RHS. By Rodrigues’ formula we

know that the last series is indeed the FL-expansion of − log(1 − x). �
Corollary 3 Despite their appearance, all the following integrals are very simple to compute:
∫ 1

0
Li22(x) dx,

∫ 1

0
Li22(

√
x) dx,

∫ 1

0
Li2(x)Li2(1 − x) dx,

∫ 1

0
Li2(x)K (x) dx,

∫ 1

0

Li2(x)√
x(1 − x)

dx,
∫ 1

0

Li2(x)
4
√
x(1 − x)

dx,
∫ 1

0
Li2(x) log(x) log(1 − x) dx .

Proof The integral
∫ 1
0 Li22(x) dx equals

∑

m,n≥1

1

m2n2(m + n + 1)
=
∑

s≥2

1

s + 1

s−1∑

a=1

1

a2(s − a)2
=
∑

s≥2

2sHs−1(2) + 4Hs−1

s3(s + 1)

and the RHS can be computed through standard Euler sums. As an alternative, the LHS can
be computed by integration by parts, since

∫ 1
0 Li2(x) log(1 − x) dx = 3 − ζ(2) − 2ζ(3)

and
∫
Li2(x) dx = C + x Li2(x) − (1 − x) log(1 − x) − x . FL-expansions provide a more

efficient derivation, since by Theorem 4 the LHS equals

(ζ(2) − 1)2 +
∑

n≥1

2n + 1

n4(n + 1)4
PFD= 6 − 2ζ(2) + ζ(2)2 − 4ζ(3).

Similarly the integral
∫ 1
0 Li22(

√
x) dx equals

∑

m,n≥1

2

m2n2(m + n + 2)
=
∑

s≥2

2

s + 2

s−1∑

a=1

1

a2(s − a)2
=
∑

s≥2

4sHs−1(2) + 8Hs−1

s3(s + 2)
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and by IBP or Euler sums both sides equal 25
8 − π2

4 + π4

36 − 2 ζ(3). On the other hand
the computation of the FL-expansion of x Li2(x) provides an equivalent series in which
harmonic numbers do not appear.
Through Euler’s Beta function, the integral

∫ 1
0 Li2(x)Li2(1 − x) dx can be written as:

∑

m,n≥1

1

m2n2(m + n + 1)
(m+n

n

) =
∑

s≥2

1

s3(s + 1)

s−1∑

a=1

s + 2a

a2
(s
a

)

where the equality
∑n

a=0

(n
a

)−1 = n+1
2n+1

∑n+1
k=1

2k
k involving “generalized” harmonic numbers

follows fromEuler’sBeta function too. TheFL-expansion ofLi2 simply produces the equality
∫ 1

0
Li2(x)Li2(1 − x) dx = (ζ(2) − 1)2 +

∑

n≥1

(−1)n(2n + 1)

n4(n + 1)4
PFD= 6 − 2π2

3
+ π4

120
.

The fourth integral can be written as

∫ 1

0
K (x)Li2(x) dx = π

2

∑

n≥0

(
ζ(2)

n + 1
− Hn+1

(n + 1)2

)[
1

4n

(
2n

n

)]2
.

Given the FL-expansions of K (x) and Li2(x), both sides simply equal

2 (ζ(2) − 1) +
∑

n≥1

2

(2n + 1)2

(
1

n2
− 1

(n + 1)2

)
PFD= −24 + 32 log(2) + π2

3
.

The fifth integral can be represented as
∫ 1

0

Li2(x)√
x(1 − x)

dx =
∑

n≥0

(
2ζ(2)

2n + 1
− 4Hn+1/2

(2n + 1)2

)[
1

4n

(
2n

n

)]

and
∫ π/2
0 Li2(sin2 θ) dθ = ∫ π/2

0 Li2(cos2 θ) dθ can be proved to be equal to π3

12 − π log2(2)
through the dilogarithm reflection formulas. On the other hand, by the FL-expansions of
Li2(x) and 1√

x(1−x)
both sides equal

π(ζ(2) − 1) + π
∑

n≥1

(
1

(2n)2
− 1

(2n + 1)2

)[
1

4n

(
2n

n

)]2

and the hypergeometric p+1Fp(1) values mentioned by the last line have already been com-
puted through the FL machinery. In particular we get

∑

n≥0

Hn+1/2

(2n + 1)2

[
1

4n

(
2n

n

)]
= π

2
log2(2),

∑

n≥0

Hn

(2n + 1)2

[
1

4n

(
2n

n

)]
= 3π

4
log2(2).

The sixth integral equals

∫ 1

0

Li2(x)
4
√
x(1 − x)

dx = Γ
( 3
4

)

π
√
2

∑

n≥0

Γ
(
n + 1

4

)

n!
(

ζ(2)

n + 3/4
− Hn+3/4

(n + 3/4)2

)
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= π3/2

3
Γ
( 3
4

)2 − Γ
( 3
4

)

π
√
2

∑

n≥0

Γ
(
n + 1

4

)
Hn+3/4

(n + 3/4)2n!

and by the FL-expansions of Li2(x) and [x(1 − x)]−1/4 the LHS can be written as

4π3/2

Γ
( 1
4

)2 (ζ(2) − 1) + 4π3/2

Γ
( 1
4

)2
∑

n≥1

1

(2n)2(2n + 1)2

[
1

4n

(
2n

n

)]

only involving elementary hypergeometric functions. By PFD the final outcome is
∫ 1

0

Li2(x)
4
√
x(1 − x)

dx = 2π3/2

Γ
( 1
4

)2

(
5π2

12
+ (π − 4) (2 + log(2)) − log2(2)

)

leading to a closed form for 4F3
(
1, 1, 1, 7

4 ; 2, 2, 5
2 ; 1
)
. The seventh integral is related to an

Euler sum with weight four:
∫ 1

0
Li2(x) log(x) log(1 − x) dx =

∑

n≥1

(
Hn+1

n2(n + 1)2
− ζ(2) − H (2)

n+1

n2(n + 1)

)
.

Of course the similarity between the FL expansions of Li2(x) and log(x) log(1 − x) (the
latter only involving Legendre polynomials with even degree, by symmetry) is not accidental
at all, but induced by the dilogarithm reflection formula. In particular we may remove Hn+1

and Hn+1(2) from the RHS of the previous line either by noticing that

2
∫ 1

0
Li2(x) log(x) log(1 − x) dx

=
∫ 1

0
(ζ(2) − log(x) log(1 − x)) log(x) log(1 − x) dx

= ζ(2)
∂2

∂a ∂b

(
Γ (a + 1)Γ (b + 1)

Γ (a + b + 2)

)
− ∂4

∂2a ∂2b

(
Γ (a + 1)Γ (b + 1)

Γ (a + b + 1)

)∣∣∣∣
(a,b)=(0,0)

or by noticing that
∫ 1

0
Li2(x) log(x) log(1 − x) dx

FL= (ζ(2) − 1)(2 − ζ(2)) −
∑

n≥1

1

2n2(2n + 1)2

(
1

(2n)2
− 1

(2n + 1)2

)

PFD= −12 + 5π2

6
+ 4 ζ(3) − π4

120
.

�
Corollary 4 Since

∫ 1
0 Li2(x)xn dx = ζ(2)

n+1 − Hn+1
(n+1)2

, the FL-expansion of the dilogarithm
function can be efficiently used in the computation of many twisted hypergeometric series
involving Hn.

Proof Since
∫ 1
0 K (x) dx = π

2

∑
n≥0

1
(n+1)

[
1
4n
(2n
n

)]2 = 2, the computation of
∫ 1
0 K (x)

Li2(x) dx performed in the previous corollary immediately leads to

∑

n≥0

Hn+1

(n + 1)2

[
1

4n

(
2n

n

)]2
= 48 − 64 log(2)

π
.
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Analogously, the FL machinery provides an alternative proof for some instances of Euler’s
classical result about

∑
n≥1

Hn
ns , which is Theorem 2.2 in [11]. For instance

∫ 1

0
Li(x)2 dx =

∑

n≥0

∫ 1

0

xn+1

(n + 1)2
Li2(x) dx

=
∑

n≥0

1

(n + 1)2

(
ζ(2)

n + 1
− Hn+1

(n + 1)2

)
= ζ(2)ζ(3) −

∑

n≥1

Hn

n4
.

�

Theorem 5 Li3(x) ∈ N .

Proof We start by computing the moments of Li3(x) over (0, 1):

∫ 1

0
xn Li3(x) dx =

∑

m≥1

1

m3(m + n + 1)

PFD= ζ(3)

n + 1
− ζ(2)

(n + 1)2
+ Hn+1

(n + 1)3
. (20)

Since

n∑

k=0

(
n

k

)(
n + k

k

)
(−1)k

k + 1
= 0,

n∑

k=0

(
n

k

)(
n + k

k

)
(−1)k

(k + 1)2
= 1

n(n + 1)

for any n ≥ 1 we have

∫ 1

0
Li3(x)Pn(2x − 1) dx = (−1)n

[
un − ζ(2)

n(n + 1)

]

and

Li3(x) = (1 − ζ(2) + ζ(3)) +
∑

n≥1

(−1)n(2n + 1)

[
un − ζ(2)

n(n + 1)

]
Pn(2x − 1)

= (1 − ζ(2) + ζ(3)) + 2π2 − 15

8
P1(2x − 1) +

∑

n≥2

an Pn(2x − 1).

On the other hand x · Li3(x) − ∫ Li3(x) dx = x · Li2(x) − x − (1 − x) log(1 − x) and the
FL-expansion of the RHS is known. In particular we may find the unknown coefficients un ,
associated to the sums

n∑

k=0

(
n

k

)(
n + k

k

)
(−1)k Hk+1

(k + 1)3

by solving a recurrence relation induced by Bonnet’s formulas.
Indeed, if f (x) =∑ an Pn(2x − 1) and x · f (x) − ∫ f (x) dx =∑ bn Pn(2x − 1),
we have

bn = n − 1

2(2n − 1)
an−1 + 1

2
an + n + 2

2(2n − 3)
an+1
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648 M. Cantarini, J. D’Aurizio

for any n ≥ 2. By computing the FL-expansion of x · Li2(x) − (1 − x) log(1 − x) − x we
get

n − 1

2(2n − 1)
an−1 + 1

2
an + n + 2

2(2n + 3)
an+1 = 2(2n + 1)(n2 + n + 1)

(n − 1)2n2(n + 1)2(n + 2)

whose solution an can be computed through the WZ-method [25]:

(2n + 1)
(
n4 + n3 + 3n2 + 8n + 4

)

n3(n + 1)3(n + 2)2
+ (2n + 1)(−1)n

2n(n + 1)

[
4
n+2∑

k=1

(−1)k+1

k2
− π2

3

]
. (21)

The last line provides an explicit expression for the FL-expansion of Li3 in terms of an
alternating quadratic sum (a tail for the classical series definingη(2)) and proves the following
identity for any n ≥ 2:

n∑

k=0

(
n

k

)(
n + k

k

)
(−1)k Hk+1

(k + 1)3

= (−1)n(n4 + n3 + 3n2 + 8n + 4)

n3(n + 1)3(n + 2)2
+ 2

n(n + 1)

n+2∑

k=1

(−1)k+1

k2
. (22)

�
Corollary 5

∫ 1

0

Li3(x)√
1 − x

dx = 4

3
4F3
(
1, 1, 1, 1; 2, 2, 5

2 ; 1
)

=
∑

n≥0

(
ζ(3)

n + 1
− ζ(2)

(n + 1)2
+ Hn+1

(n + 1)3

)[
1

4n

(
2n

n

)]

= 2ζ(3) − 4ζ(2) + 4ζ(2) log(2) +
∑

n≥0

Hn+1

(n + 1)3

[
1

4n

(
2n

n

)]

=
∑

n≥1

2 · 4n
(2n + 1)n3

(2n
n

)

= 16 − 2π2 + 2π2 log(2) − 7ζ(3).

Proof By the FL-expansion of Li3 the given integral equals

−13

18
− π2

2
+ 6ζ(3) + 2

∫ 1

0

x log x

x + 1

(
2x − x2 + 2(1 − x) log(1 − x)

)
dx

since

(−1)n
[
−π2

3
+ 4

n+2∑

k=1

(−1)k+1

k2

]
=
∫ 1

0
xn · 4x

2 log(x)

x + 1
dx .

In particular the FL method allows a conversion into an elementary integral, only involving
log(x), log(1 − x), x and 1 ± x . It also proves that

∑

n≥0

Hn+1

(n + 1)3

[
1

4n

(
2n

n

)]
= 16 − 4π2

3
(1 − log(2)) − 9ζ(3).

�
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Corollary 6
∫ 1

0
Li3(x)K (x) dx = π

2

∑

n≥0

(
ζ(3)

n + 1
− ζ(2)

(n + 1)2
+ Hn+1

(n + 1)3

)[
1

4n

(
2n

n

)]2

= 2ζ(3) + π3

3
− 4π2

3
+ π

2

∑

n≥0

Hn+1

(n + 1)3

[
1

4n

(
2n

n

)]2

= 64 − 4π2

3
− 96 log(2) + 2ζ(3) − 3π3 + 64K log(2)

− 4π log2(2) + 128 Im Li3
( 1+i

2

)
.

Proof By the FL-expansion of Li3 the given integral equals

451

9
− 22

9
π2 − 352

9
log(2) + 2ζ(3)

+
∫ 1

0

4x log(x)

x + 1

(
3x − 4

√
x arctanh (()

√
x) − (x + 1) log(1 − x)

)
dx

which after some elementary manipulations becomes

64 − 4π2

3
− 96 log(2) + 2ζ(3) + 32

∫ 1

0
log

(
1 − x

1 + x

)
log(x)

1 + x2
dx .

The functional identities for Li3 allow to turn the last line into

64 − 4π2

3
− 96 log(2) + 2ζ(3) − 3π3 + 64K log(2) − 4π log2(2) + 128 Im Li3

( 1+i
2

)

proving the claim and the equality

π

2

∑

n≥0

Hn+1

(n + 1)3

[
1

4n

(
2n

n

)]2

= 64 − 10π3

3
+ 128 Im Li3

( 1+i
2

)− 96 log(2) + 64K log(2) − 4π log2(2).

�

3 Further remarks

In the previous section we have seen that FL-expansions reduce the problem of evaluating

μ+3Fμ+2
( 1
2 ,

1
2 , 1, 1, . . . ; 2, 2, 2, . . . ; 1

) =
∑

n≥0

1

(n + 1)μ+2

[
1

4n

(
2n

n

)]2
, μ ∈ N

to the problem of evaluating
∫ π/4

0
logμ(cos θ) dθ =

∑

n≥0

1

2n(2n + 1)μ+1

[
1

4n

(
2n

n

)]

= μ+2Fμ+1
( 1
2 ,

1
2 , . . . ; 3

2 ,
3
2 , . . . ; 1

2

)
.
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We have to stress that the LHS of the last line is related to twisted hypergeometric series by
a classical approach, which is to consider some combinatorial/hypergeometric identities like
the Chu-Vandermonde or the Dougall-Dixon ones, then differentiate them with respect to
one/some of their parameters. This approach allowed Wang and Jia in [24] to prove a large
number of identies involving generalized harmonic numbers and binomial transforms. In our
case we may consider that the formula

∫ π/4

0
(cos θ)a dθ =

√
π Γ
( a
2 + 1

2

)

2Γ
( a
2 + 1

) − 1

(a + 1)2
a+1
2

2F1
( 1
2 ,

a+1
2 ; a+3

2 ; 1
2

)

=
√

π Γ
( a
2 + 1

2

)

2Γ
( a
2 + 1

) − 1

(a + 1)2
a+1
2

∑

n≥0

1

8n

(
2n

n

)[
1 − 2n

2n + a + 1

]
(23)

follows from the substitution θ �→ ϕ
2 and the equality cos

(
ϕ
2

) = 1+cos(ϕ)
2 , whereas

∫ π/4

0
(cos θ)a dθ = 2F1

( 1
2 ,

a+2
2 ; 3

2 ;−1
) =
∑

n≥0

(−1)n

(2n + 1)n! · Γ
(
n + a

2 + 1
)

Γ
( a
2 + 1

) (24)

follows from the substitution θ �→ arctan u. By differentiating the right-hand sides of (23)
and (24) multiple times with respect to a, then performing an evaluation at a = 0, we get
that the values of μ+2Fμ+1

( 1
2 ,

1
2 , . . . ; 3

2 ,
3
2 , . . . ; 1

2

)
or
∫ π/4
0 logμ(cos θ) dθ provide explicit

forms both for
∑

n≥0
1

(n+1)μ+2

[
1
4n
(2n
n

)]2
and for the twisted sums

∑

n≥0

(−1)n

(2n + 1)
Hn,

∑

n≥0

(−1)n

(2n + 1)

(
H2
n − Hn(2)

)
,

∑

n≥0

(−1)n

(2n + 1)

(
H3
n − 3HnHn(2) + 2Hn(3)

)
, (25)

the latter being clearly related to
∑

n≥0
(−1)nH 3

n
2n+1 , which has been crucial for the evaluation

of
∑

n≥0
1

(2n+1)3

[
1
4n
(2n
n

)]2 = 5F4
( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ; 1, 3

2 ,
3
2 ,

3
2 ; 1
)
. By exploiting the identity

log
(
2 sin x

2

) = log(1 − eix ) + i
2 (π − x), Shalev has shown in [17] that

∫ π/4

0
log3(sin θ) dθ = 3 Im Li4(1 − i) − 25π3

256
log(2) + 3

2
log(2) Im Li3

( 1+i
2

)

−3K

8
log2(2) − 17π

64
log3(2) − 3π

8
ζ(3) + 3

4
β(4)

and by differentiating the Euler Beta function three times it follows that
∫ π/4

0
log3(cos θ) dθ = −7π3

256
log(2) − 15π

64
log3(2) + 3K

8
log2(2) − 3π

8
ζ(3)

−3

4
β(4) − 3

2
log(2) Im Li3

( 1+i
2

)− 3 Im Li4(1 − i) (26)

which provides closed forms for

∑

n≥0

1

(n + 1)5

[
1

4n

(
2n

n

)]2
,
∑

n≥0

1

2n(2n + 1)4

[
1

4n

(
2n

n

)]
,
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∑

n≥0

(−1)n

(2n + 1)

(
H3
n − 3HnHn(2) + 2Hn(3)

)
.

On the other hand the class of hypergeometric functions of the p+1Fp
( 1
2 ,

1
2 , . . . ; 3

2 ,
3
2 , . . . ; x

)

kind is very peculiar, since all these functions have a closed form in terms of polylogarithms.
As shown by Shalev and Reshetnikov in [16] we have

4F3
( 1
2 ,

1
2 ,

1
2 ,

1
2 ; 3

2 ,
3
2 ,

3
2 ; sin2 θ

) = θ3

6 sin θ
+ 1

2 sin θ
Im Li3

(
2 sin2 θ + 2i sin θ cos θ

)

(27)

for any θ ∈ (0, π
2

)
, hence

5F4
( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ; 1, 3

2 ,
3
2 ,

3
2 ; 1
) =
∑

n≥0

1

(2n + 1)3

[
1

4n

(
2n

n

)]2

= 2

π

∫ π/2

0

θ3

6 sin θ
+ 1

2 sin θ
Im Li3

(
2 sin2 θ + 2i sin θ cos θ

)
dθ

= πK

2
− 4

π
β(4) + 1

π
Im
∫ π/2

0
Li3
(
2 sin2 θ + 2i sin θ cos θ

) dθ

sin θ

= πK

2
− 4

π
β(4) + 1

π
Im
∫ +∞

0
Li3

(
2

1 − i t

)
dt√
t2 + 1

dt

= πK

2
− 4

π
β(4) + 1

π
Re
∫ 2

1

Li3(z)

z
√
z − 1

dz

Li3= πK

2
− 4

π
β(4) + 2

π

∫ π/4

0
Li3(cos

2 θ) + 4

3
log3(cos θ) − 2π2

3
log(cos θ) dθ

and the evaluation of
∑

n≥0
(−1)nH 3

n
(2n+1) or

∑
n≥0

(−1)nH 2
n

(2n+1)2
reduces to the computation of

∫ 1/2

0

Li3(1 − z)√
z(1 − z)

dz or
∫ 1

1/2

Li2(x) arcsin(
√
x)

x
dx .

By using Shalev’s form of (27) we have
∫ 1

0

log2(x)√
x(1 − x sin2 θ)

dx = 8

sin θ

[
θ3

3
− Im Li3

(
1 − e2iθ

)]
(28)

hence by Fubini’s theorem

∑

n≥0

1

(2n + 1)3

[
1

4n

(
2n

n

)]2
= πK

2
− 4

π
β(4) + 2

π
Im
∫

γ

Li3(1 − z2)

1 − z2
dz

= πK

2
− 4

π
β(4) + 2

π
Im
∫ i

z0

Li3(1 − z2)

1 − z2
dz (29)

where γ is the positive-oriented curve
{
(cos θ, sin θ), θ ∈ (0, π

2

)}
and z0 is any point ∈

(−1, 1). By the generating function for Legendre polynomials and the previously computed∫ 1
0

log2(x)√
x

Pn(2x − 1) dx we also have

∀θ ∈ (0, π
2

)
,

1

4

[
θ3

3
− Im Li3(1 − e2iθ )

]
=
∑

n≥0

(
tan θ

2

)2n+1
(−1)n Jn,
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∀t ∈ (0, 1),
2

3
arctan3(t) − 1

4
Im Li3

(
4i t

(i + t)2

)
=
∑

n≥0

t2n+1(−1)n Jn,

Jn = 2H 2
n

2n + 1
− 2Hn

(2n + 1)2
+ 1

(2n + 1)3
.

By the FL-expansion of Li3, the computation of
∑

n≥0
1

(2n+1)3

[
1
4n
(2n
n

)]2
is equivalent to the

computation of

∑

n≥1

(−1)n
∑n

k=1
(−1)k

k2

n(n + 1)

[
1

4n

(
2n

n

)]2
,

and by solving, through the inverse Laplace transform, the moment problem

∫ 1

0
xn f (x) dx = (−1)n

n∑

k=1

(−1)k

k2

we get that the computation of the previous series is equivalent to the computation of the
integral

∫ 1

0

log x

1 + x

∑

n≥0

xn
(
1

n
− 1

n + 1

)[
1

4n

(
2n

n

)]2
dx

or the computation of the integrals
∫ 1
0 K (x) log(1+ x) dx and

∫ 1
0 K (x) log(x) log(1+ x) dx .

About other classical approaches, especially related to (weighted) sums of squares, an inter-
esting consequence of the Lagrange identity

(
n∑

k=1

x2k

)(
n∑

k=1

y2k

)
−
(

n∑

k=1

xk yk

)2
=

∑

1≤ j<k≤n

(x j yk − xk y j )
2

is the following one ( [13], Chapter 8, Section 35, Applications of the tranformation of series
to numerical evaluations):

Lemma (Knopp). If {an}n≥0 ∈ 2(R) is an eventually monotonic sequence, the following
series are convergent

s :=
∞∑

n=0

(−1)nan, δk :=
∞∑

n=0

anan+k, Δ :=
∞∑

k=1

(−1)k−1δk

and we have:
∑

n≥0

a2n = s2 + 2Δ.

Knopp’s lemma is tipically used for proving ζ(2) = π2

6 through elementary manipulations,
once an has been defined as 1

n+1 . On the other hand, it has interesting consequences for
different hypergeometric sequences, too. Let us define an as

an := 1

1 − 2n

[
1

4n

(
2n

n

)]
= [xn]√1 − x .
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For any k ∈ N
+ we have

δk =
∑

n≥0

anan+k = 1

2π

∫ 2π

0

√
1 − eiθ

√
1 − e−iθe−kiθ dθ

= 1

π

∫ 2π

0

∣∣sin θ
2

∣∣ cos(kθ) dθ = 4

π(1 − 4k2)

and s = √
2. By partial fraction decomposition we have Δ = 2

π
− 1, hence Knopp’s lemma

immediately leads to an alternative proof of

∑

n≥0

1

(2n − 1)2

[
1

4n

(
2n

n

)]2
= 2F1

(− 1
2 ,− 1

2 ; 1; 1
) = 4

π
. (30)

In a similar fashion, if we define an as 1
n+1

[
1
4n
(2n
n

)] = [xn] 2
1+√

1−x
, we have

δk =
∑

n≥0

anan+k = 4

2k − 1
· 1

4k

(
2k

k

)
− 16

π(4k2 − 1)

and s = 2(
√
2 − 1), Δ = −8 + 4

√
2 + 8

π
, from which

∑

n≥0

1

(n + 1)2

[
1

4n

(
2n

n

)]2
= 16

π
− 4.

The last identity can also be derived from (30) by reindexing, but of course the interesting
part of this approach does not rely on the mere computations, but on the fact that it provides
an alternative way for simplifying the structure of a hypergeometric series. On the other hand
the class of hypergeometric terms an such that δk has a reasonably concise form appears to
be pretty narrow: we plan to perform a thorough analysis of the full potential of Knopp’s
lemma in future works.

A third remark is about a symmetry trick. Campbell recently showed (in [6]) how to

compute
∑

n≥1

[
1
4n
(2n
n

)]2 Hn
2n (and similar series) from an integral transform, but a slightly

different route proves that such series is clearly given by a combination of π and values of the
logarithm and the complete elliptic integral of the first kind. Indeed, by directly exploiting
the Maclaurin series of K (x) we have:

∑

n≥1

[
1

4n

(
2n

n

)]2 Hn

2n
= 2

π

∫ 1

0

K (u/2) − K (1/2)

u − 1
du

Fubini= 2

π

∫ π/2

0

∫ 1

0

⎛

⎝ 1√
1 − u

2 sin
2 θ

− 1√
1 − 1

2 sin
2 θ

⎞

⎠ du

u − 1
dθ

and the evaluation of the RHS boils down to the evaluation of
∫ π

0
log(3−cosϕ)√

3−cosϕ
dϕ or

∫ +∞
0

log(t)√
(t2+1)(2t2+1)

dt . On the other hand, if p(x) is a real, quadratic and palindromic poly-

nomial, attaining positive values over R+, then
∫ +∞
0

log(x)
p(x) dx equals zero as a consequence

of the substitution x �→ 1
x . By the very same reason, if q(x) is a real, biquadratic and palin-

dromic polynomial, attaining positive values overR+, then
∫ +∞
0

log(x)√
q(x)

dx = 0. In particular
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the rapidly convergent twisted hypergeometric series
∑

n≥1

[
1
4n
(2n
n

)]2 Hn
2n has a closed form

in terms of π, log(2) and K
( 1
2

) = 1
4
√

π
Γ
( 1
4

)2
only. Given the relation between K (

√
k1)

and K (
√
k4), this principle allows us to state that

∑

n≥1

[
1

4n

(
2n

n

)]2 Hn

(
√
2 + 1)4n

has a closed form in terms of
√
2, π, log(2), log(1+√

2) and the lemniscate constantwithout
actually performing any computation. The same applies to

∑

n≥1

[
1

4n

(
2n

n

)]2 Hn

(n + 1)2n
,

which depends on π, log(2), Γ
( 1
4

)
and its reciprocal, since K

( 1
2

)
and E

( 1
2

)
are related via

Legendre’s identity. Analogously, a closed form of

∑

n≥1

[
1

4n

(
2n

n

)]2 Hn

(n + 1)(
√
2 + 1)4n

only depends on π, log(2), log(
√
2 + 1), Γ

( 1
4

)
and its reciprocal. This leaves us with an

interesting topic for future investigations, partially covered by the first section and the last
paragraph:

Is it possible to foresee, through symmetry tricks and/or
reflection/transformation formulas for hypergeometric functions
and polylogarithms, the constants involved in the closed form for a (twisted) hyperge-
ometric series?

The last remark is about the operator

CD : f (x) �→ 1

x
· L−1

(
(2n + 1)

∫ 1

0
f (x)Pn(2x − 1) dx

)
(− log x)

defined on the space of functions in L2(0, 1), such that the FL-expansion has an inverse
Laplace transform.This operator is self-adjoint by construction, and the complexity ofCD( f )
measures the effectiveness of the FL-method in providing a closed form to

∫ 1
0 f (x)g(x) dx .

Of course if f ∈ L2(0, 1) is such that f (x) = f (1 − x), all the coefficients of the FL-
expansion of f (x) with odd index are zero, hence it is practical to introduce the similar
operator

CD0 : f (x) �→ 1

x
· L−1

(
(4n + 1)

∫ 1

0
f (x)P2n(2x − 1) dx

)
(− log x)

only acting on the coefficients of the FL-expansion with an even index. We introduce a
compendium of some functions we have dealt with through this article, together with their
CD or CD0-transforms:
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f (x) (CD f )(x) or (CD0 f )(x)√
1 − x 1

4

(√
x − 1

x
√
x

)

K (x) 1√
x

E(x) 1
4

(
− 1

x
√
x

+ 2√
x

− √
x
)

− log(1 − x) 1 + 1
x

log2(1 + 1√
1−x

) 1

log(x) log(1 − x) log (x) 1−√
x

2x
Li2(x)

(
1 − 1

x

)
log(x)

4 Conclusions

Continuing from our previous work, we performed a deeper investigation about the relations
between (twisted) hypergeometric sums and Euler sums/polylogarithms. The geometry of
hypergeometric series with half-integer or quarter-integer parameters, from the contiguity
relations to the Gauss-Kummer transformations, turns out to be heavily related to the geom-
etry of Euler sums and the arrangements of hyperplanes (the shuffle relations mentioned by
Flajolet and Salvy in [11] are just birational maps of hypercubes into themselves). The accu-
mulated evidence brings us to state that inmany practical cases the FLmachinery is extremely
effective in simplifying the structure of a (twisted) hypergeometric series, especially if com-
bined with the computation of residues for suitable kernels involvingψ(z) = d

dz logΓ (z), or
with differentiation of combinatorial/hypergeometric identities (Gauss, Chu-Vandermonde,
Dougall-Dixon). We reduced a large number of p+1Fp(. . . ;±1) (and twisted) values to
standard mathematical constants, out-performing the capabilities of many computer algebra
systems. In a forthcoming future, it might be the case to devise a fully automated conver-
sion procedure for p+1Fp(. . . ;±1) values, driven by FL-expansions and Euler sums, to be
coupled with the classical Wilf-Zeilberger method ([12,25]). That would largely increase the
potential of computer algebra systems in the symbolic evaluation of hypergeometric series
and twisted hypergeometric series.
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