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Abstract
In this paper, we introduce a notion of dependency between subsets of an arbitrary fixed
non-empty set �. To be more detailed, we introduce a preorder ← on the power set P(�)

having the further property that B ← A if and only if {b} ← A for any b ∈ B. We shall
argue that this relation generalizes well-studied notions of dependence occurring in such
fields as linear algebra, topology, and combinatorics. Furthermore, we show that this relation
is characterized by two set operators whose fixed points have interesting geometric and order-
theoretic properties. After giving some some elementary results about such a dependency
relation, we provide some specific examples taken from graph theory. An interesting property
we will provide consists of the possibility to characterize partial orders on a finite lattice in
terms of a suitable dependency relation. Finally, we introduce and analyze some specific
classes of dependency relations, namely attractive and anti-attractive dependency relations.

Keywords Abstract dependency · Closure systems · Abstract simplicial complexes · Graphs

Mathematics Subject Classification Primary 08A02 · 08A05 · 06A06; Secondary 05C50 ·
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1 Introduction

The search for axioms characterizing the so-called dependency relations is a typical topic of
mathematical logic and related fields [2,3]. Moreover, in a non-logical scope, the search for
dependency axioms has been developed in different areas of mathematics [21,23,25,27] and
theoretical computer science [1], though in these works the corresponding axiomatizations
have been formulated in non-equivalent ways.
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On the other hand, in their classical work [7], Birkhoff and Frink represented the
partial order relation of any lattice by means of inclusions between appropriate subset
families. In this way, they implicitly connected subset families and abstract order rela-
tions.

The main purpose of the present paper consists of providing an axiomatization for depen-
dency sufficiently general to frame within it a broad gamut of mathematical structures which
are usually studied in contexts different from each other, such as graphs, digraphs, metric
spaces, posets, topological spaces, vector spaces endowedwith a bilinear form, group actions,
information systems [24] and relational data tables [28].

Currently, there are several studies (for some examples see [4–6,8,10,11,22,29,30,33]) in
which the mutual interrelation between topological, combinatorial and order properties make
sure that they could be framed in a broader theory of dependence.

Given an arbitrary set �, in our axiomatization of the notion of dependency we will
require that it is a binary relation← on the power setP(�) generalizing two basic properties
of the set theoretical inclusion, namely transitivity and the fact that if {b} ⊆ A for any
b ∈ B, then B ⊆ A. A fundamental example of these situations occurs when a topology
on � is given. In this case, a natural extension of set theoretical inclusion satisfying the
two aforementioned properties is provided by the relation B ← A : ⇐⇒ B ⊆ A, where
A denotes the topological closure of A. In view of the previous example (and of several
other examples we will give in Sect. 3), we propose the following notion of dependency: a
dependency relation ← on P(�) is an extension of the set theoretical inclusion on P(�)

which, in addition, is transitive and is such that if {b} ← A for any b ∈ B, then B ←
A.

In the present paper, we investigate the basic properties of any dependency relation← on
P(�) relatively to specific set operators and set systems that are naturally induced by it. In
particular, we will consider two canonical set operators on � naturally associated with such
a relation←.

The first of these operators, denoted by Dc←, is a closure operator (a generalized version
of the classical Kuratowski operator), whose fixed point family CLOS(←) is a convexity
on � [6]. Let us note that if we adjoin two further axioms, that is, x � ∅ for all x ∈ �

and C ← A ∪ B implies C ← A or C ← B for all A, B,C ∈ P(�), then the set operator
Dc← actually becomes a Kuratowski closure operator on�. Therefore,CLOS(←) uniquely
determines a topology on �.

The second set operator, denoted by I c←, is a particular type of intensive operator having
several interesting properties. The members of the fixed point family I N DP(←) of I c← are
exactly the subsets A of � such that {a} � A\{a} for any a ∈ A. Therefore, we can think of
them as the natural candidates for the role of←independent subsets of �.

Independent sets have been broadly studied in matroid theory. In this setting, the family
of dependent sets consists of non-independent subsets. In particular, taking the collection of
all minimal dependent sets, we get the circuits through which a definition of matroid may
be provided. This definition is cryptomorphic to that classically provided by means of the
independent sets [32]. For many other cryptomorphic definitions of a matroid on a finite set
�, we refer the reader to [31]. In this context, let us also remind that independent sets may be
also defined as certain subsets induced by closure operators satisfying an exchange property
(for details see [31]).

In the present work, we show that any closure operator on a finite � can be represented in
the form Dc←, for some dependency relation← on� (see Theorem 6.5). As a consequence,
we deduce that the independent subset family associated with any matroid on � assumes the
form I N DP(←).
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At this point, we observe that in topology and in matroid theory, both closed and inde-
pendent subsets do not arise from a specific binary relation on P(�), but they are given as
set systems satisfying specific axioms.

Notice that dependency relations are easy to produce through pairings on �. In fact,
in order to obtain a dependency relation on P(�), it is sufficient to associate with � two
sets U and � and a map F : U × � → �. We call such a triple P := (U , F,�) a
pairing on �, or equivalently, a function system on � (for recent studies on pairings, see
[14,16,18]). Let us note here that pairings arise frequently in many different mathemati-
cal contexts: graphs [20], partially ordered sets [19], matroids [31] (for further details see
[16]).

Now, given a pairingP := (U , F,�)on�, for any A ∈ P(�)weconsider the equivalence
relation ≡A on U defined by u ≡A u′ if F(u, a) = F(u′, a) for any a ∈ A, and also the
binary relation ←P on P(�) given by B ←P A if the set partition induced by ≡A is finer
than the set partition induced by≡B . Then it is immediate to verify that←P is a dependency
relation on P(�). Therefore, by means of pairings, we can obtain many different examples
of dependency relations.

We also recall here that, in theoretical computer science, when the set � is given as a
specific finite set of attributes (or also properties), a pairing P on � can be considered as
a relational data table [28], on the attribute set �. In such a context, the above described
dependency relation←P is known as attribute functional dependency, and it is a fundamental
notion in database theory and related fields [28] (for a recent work on connections between
algebra and functional dependency, see [17]).

We briefly describe the content of the sections of this paper. In Sect. 2, we give the basic
notions and notations we will use in the sequel. In Sect. 3, we study dependency relations and
the associated set operators and investigate their main properties. In Sect. 4, we introduce the
basic notions of essential subsets and dependency bases and characterize them in terms of
the set operator Dc←. In Sect. 5, we provide some classifications for dependency relations,
thanks to which we are able to define two specific classes of dependency relations, namely
the attractive and anti-attractive dependency relations. In Sect. 6, we define the notion of
pairing and, in particular, a natural dependency relation ←P on it is given by starting from
the A-symmetry relation ≡A. Next, as mentioned above, for any dependency relation ←
we find a pairing P whose dependency relation ←P coincides with ← (see Theorem 6.5).
Moreover, we show that the partial order of a finite lattice can be seen as a dependency rela-
tion (Theorem 6.6). Finally, in Sect. 7, we investigate some dependency relations induced by
some basic families of simple undirected graphs.

2 Background and notation

In this paper we denote by � a fixed non-empty set and by P(�) its power set. We also set
P(�)2 := P(�)× P(�). We denote by n̂ the set {1, . . . , n} and by (

�
k

)
the collection of all

subsets of � with k elements. An element F ∈ P(P(�)) is called a set system on � and an
element D ∈ P(P(�)2) is called a binary relation on P(�).

In what follows, if a binary relation on P(�) is denoted by← (or with a similar symbol)
we write A ← B instead of (A, B) ∈ ←. On the other hand, if the binary relation on P(�)

is denoted by D (or with a similar capital letter), we write (A, B) ∈ D.
If B,A ∈ P(P(�)) and ← is a binary relation on P(�), we write B ←ext A if B ← A

for all B ∈ B, A ∈ A.
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A set operator on � is a map σ : P(�) → P(�) and we denote by P(�)P(�) the
collection of all the set operators on �.

We will consider the maps:

• Fix : P(�)P(�) → P(P(�)), where Fix(σ ) := {A ∈ P(�) : σ(A) = A};
• I nt : P(P(�)) → P(�)P(�), where I ntF (C) := ⋂{A ∈ F : C ⊆ A};
• Dc : P(P(�)2 → P(�)P(�), where DcD(C) := ⋃{B ∈ P(�) : (B,C) ∈ D};
• I nc : P(�)P(�) → P(P(�)2, where I nc(σ ) := {(B, A) ∈ P(�)2 : B ⊆ σ(A)};

for any σ ∈ P(�)P(�), F ∈ P(P(�)), C ∈ P(�).
In the whole paper, whenever we consider basic notions and corresponding results con-

cering partially ordered sets (briefly posets), we refer the reader to [19]. A partially ordered
set (abbreviated poset) is a pair P = (�,≤), where � is a set and ≤ is a binary, reflexive,
antisymmetric and transitive relation on �. If P = (�,≤) is a partially ordered set and
x, y ∈ �, we also write x < y if x ≤ y and x 
= y. If x, y are two distinct elements of �, we
say that y covers x , denoted by x � y if x ≤ y and there exists no element z ∈ � such that
x < z < y. If L is a lattice with least element 0̂L and x ∈ L, we say that x is join-irreducible
if x 
= 0̂L and x = y ∨ z implies x = y or x = z for any y, z ∈ L. We denote by J (L) the
family of all join-irreducible elements of L.

A set system F ∈ P(P(�)) is called an abstract simplicial complex if F 
= ∅ and it is
closed under taking subsets, i.e. X ∈ F and Y ⊆ X imply Y ∈ F .

A set systemF ∈ P(P(�)) is called a topped intersection structure [19], or, equivalently,
a convexity [6], on �, if � ∈ F and whenever {Ai : i ∈ I } ⊆ F also

⋂
i∈I Ai ∈ F . We

denote by CONV (�) the set of all convexities on �.
A set operator σ ∈ P(�)P(�) is called a closure operator on � [19], or, equivalently, a

convex hull on � [6] if:

• A ⊆ σ(A);
• A ⊆ B implies σ(A) ⊆ σ(B);
• σ(σ (A)) = σ(A).

for any A, B ∈ P(�). We denote by CLOP(�) the set of all closure operators on �.

Theorem 2.1 [19] Let F ∈ CONV (�) and σ ∈ CLOP(�). Then IntF ∈ CLOP(�),
Fi x(σ ) ∈ CONV (�), Fi x(I ntF ) = F and IntFix(σ ) = σ . Moreover, (F,⊆) is a complete
lattice, usually called closure lattice induced by F .

Theorem 2.1 asserts that the notions of convexity and closure operator on the same set �
are mutually equivalent.

To conclude this section, we recall the basic notions of graph theory which we use
in this work. We refer to [20] for any general notion concerning graph theory. Let G =
(V (G), E(G)) be a finite simple (i.e. no loops and no multiple edges are allowed) undirected
graph, with vertex set V (G) = {v1, . . . , vn} and edge set E(G). In this case, we also use the
term n-graph. If v, v′ ∈ V (G), we will write v ∼ v′ if {v, v′} ∈ E(G) and v � v′ otherwise.
The open neighborhood of the vertex v is the subset NG(v) := {v′ ∈ V (G) : v ∼ v′}. If
v and w are two vertices of G, we call a sequence of vertices v0 . . . vk , where v0 = v and
v1 = w, a path between v and w. The number of edges of the path between v and w is called
the length of the path. We denote by d(v,w) the distance between v and w, i.e. the length of
any shortest path between v and w. A graph is said connected if there exists a path for any
pair of vertices v and w. We denote by Cn and Pn respectively the n-cycle and the n-path
on the vertex set {v1, . . . , vn}. In what follows, all index sums of Cn are implicitly taken
mod(n).
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3 Abstract dependency and related operators

In this section, we provide the notion of dependency relation with relative examples taken
from various mathematical contexts and, next, we associate with any dependency relation←
two set operators, namely Dc← and I c←, whose fixed point sets are respectively the closed
and the independent subsets.

Definition 3.1 A dependency relation on P(�) is a binary relation← on P(�) such that

(D1) B ⊆ A �⇒ B ← A;
(D2) C ← B, B ← A �⇒ C ← A;
(D3) {b} ← A ∀b ∈ B �⇒ B ← A.

If B ← A, we say that B depends on A. If B � A, we say that B that B does not depend
on A. We denote by DREL(�) the set of all dependency relations on P(�). We say that B
is←trivial if B ← ∅ and not←trivial otherwise. We say that← is pointwise non-trivial if
any b ∈ � is not ←trivial. We denote by DREL pnt (�) the set of all pointwise non-trivial
dependency relations on P(�). We use the notation B �∀ A whenever {b} � A for all
b ∈ B.

Remark 3.2 (i): If← is a dependency relation onP(�), then the condition (D3) is equivalent
to the following condition

{b} ← A ∀b ∈ B ⇐⇒ B ← A

(ii): Clearly, DREL(�) is a (proper) subset of P(P(�)2).

We now provide several examples of dependency relations← taken from various mathe-
matical contexts.

• Let τ be a topology on �. Then B ← A if B ⊆ A, where A is the topological closure of
A.

• Let (�, d) be a metric space, then we set B ← A if whenever u, u′ ∈ � and d(u, a) =
d(u′, a) for any a ∈ A, then we also have d(u, b) = d(u′, b) for all b ∈ B.

• Let (�, d) be a metric space and S1(u) := {x ∈ � : d(u, x) = 1}. Then, we set B ← A
if S1(u) ∩ A = S1(v′) ∩ A implies S1(v) ∩ B = S1(v′) ∩ B, for u, u′ ∈ �

• Let � := V (G) be the vertex subset of a graph G. We set B ← A if NG(v) ∩ A =
NG(v′) ∩ A implies NG(v) ∩ B = NG(v′) ∩ B, for v, v′ ∈ V (G).

• Let U and � be two arbitrary sets and R ⊆ U × � be any binary relation on U × �. If
A ∈ P(�) we set A↓ := {u ∈ U : (u, a) ∈ R ∀a ∈ A}. Moreover, if X ∈ P(U ), we
set X↑ := {b ∈ � : (x, b) ∈ R ∀x ∈ X}. We set B ← A if B ⊆ (A↓)↑.

• Let � := M be a left-module over any unitary ring R. We set B ← A if B ⊆ SpanR(A),
where SpanR(A) denotes the linear span of A.

• Let V be a vector space over a field K and ϕ : V × V → K a K-bilinear form on V .
Let � = V . If A ⊆ V , let A⊥ be the orthogonal subspace of A with respect to ϕ, i.e.
A⊥ := {v ∈ V : ϕ(v, a) = 0 ∀a ∈ A}. Then we consider the binary relation on P(V )

given by B ← A if v + A⊥ ⊆ v + B⊥ for any v ∈ V .
• Let G be a group acting on �. If A is a subset of �, the stabilizer of A is the subgroup

of G defined by StabG(A) = {g ∈ G : ga = a ∀a ∈ A}. Then, the binary relation
defined by B ← A if gStabG(A) ⊆ gStabG(B) for all g ∈ G is a dependency relation
on P(�). A particular case of such a dependency relation has been used in [8,9] in order
to investigate some properties of the group of the polynomial automorphisms of C

n .
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• As mentioned in the introductory section, another example of dependency relation arise
from pairings. We will deal with it in detail in Sect. 6.

Remark 3.3 When � is a non finite set, for some proofs concerning the existence of minimal
members of specific subset families it is necessary to assume the following further chain
intersection condition (that in the finite case is superfluous):

(C IC) if {Ci : i ∈ I } is a chain in (P(�),⊆) andC ← Ci for all i ∈ I , thenC ← ⋂
i∈I Ci .

If ← is a dependency relation which also satisfies the axiom (C IC), we say that ← a cic-
dependency relation on �. Clearly, if � is finite, any dependency relation on P(�) is also a
cic-dependency relation.

In the following result we establish an equivalent condition to the above condition (D3)
for a binary relation which satisfies the properties (D1) and (D2).

Proposition 3.4 Let← be a binary relation on P(�) which satisfies the properties (D1) and
(D2). Then,← satisfies (D3) if and only if the following condition holds:

(D3′) Bi ← A, ∀i ∈ I �⇒ ⋃
i∈I Bi ← A

Proof Let ← be a binary relation on P(�) which satisfies (D1), (D2) and (D3). Assume
that Bi ← A for any i ∈ I . In view of (D3), it results that {b} ← A for all b ∈ Bi and i ∈ I .
Therefore we get {b} ← A for any b ∈ ⋃

i∈I Bi .
Conversely, let ← be satisfying (D1), (D2) and (D3′). Hence, if b ∈ A for any b ∈ B,

then B = ⋃
b∈B{b} ← A in view of (D3′). ��

3.1 The closure operator associated with a dependency relation

Let ← be a fixed arbitrary dependency relation on P(�). We can equivalently express the
dependency relation ← in terms of the corresponding set operator Dc← in the following
way.

Proposition 3.5 Let A, B ∈ P(�). Then

B ← A ⇐⇒ B ⊆ Dc←(A), (1)

so that we have
Dc←(A) = {b ∈ � : b ← A}. (2)

Proof Let B ← A, then B ⊆ ⋃{C : C ← A} = Dc←(A).
On the other hand, let B ⊆ Dc←(A) = ⋃{C : C ← A}. Then, for any b ∈ B there exists

Cb ∈ P(�) such that b ∈ C{b} ← A. By both (D1) and (D2), it follows that {b} ← A for
any b ∈ B, so B ← A by (D3). ��

We consider now the equivalence relation � on P(�) defined by

A � B : ⇐⇒ A ← B and B ← A (3)

We call the relation � the ←dependency equivalence on P(�). If A � B, we say that
A and B are ←dependency equivalent, and we denote by [A]� the equivalence class of A
with respect to �, which we call ←equivalence dependency class of A. We set EDC(←
) := {[A]� : A ∈ P(�)}, that is the quotient set of P(�) with respect to the dependency
equivalence.
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In this paper, we also deal with a weaker version of �. In particular, we say that A and B
are←quasi equivalent, denoted by A �q B, if A ← B or B ← A.

In the following result we establish two basic properties concerning the ←dependency
equivalence.

Theorem 3.6 Let A, B ∈ P(�). Then the following hold.

(i) The set system [A]� is union closed and the maximum element of [A]� is Dc←(A).
(ii) A � B if and only if Dc←(A) = Dc←(B).

Proof (i): We first show that [A]� is union closed. To this regard, let {Bi : i ∈ I } ⊆ [A]�.
Then Bi ← A for all i ∈ I , therefore, by (D3′) we have that

⋃
i∈I Bi ← A. On the other

hand, for any index i ∈ I we have A ← Bi ← ⋃
i∈I Bi , therefore, by (D2), it follows that

A ← ⋃
i∈I Bi . Hence

⋃
i∈I Bi ∈ [A]�.

We now claim that Dc←(A) is the maximum element of the set system [A]�. As A ⊆
Dc←(A), then A ← Dc←(A). On the other hand, it results that {b} ← A if and only if b ∈
Dc←(A). Thus, Property (D3) implies that Dc←(A) ← A and, hence, Dc←(A) ∈ [A]�.
At this point, take B ∈ [A]�. As {b} ← B ← A for any b ∈ B, then we get {b} ← A by
(D2). This proves that b ∈ Dc←(A) and, so, B ⊆ Dc←(A).

(i i): If A � B, then [A]� = [B]�, therefore Dc←(A) = Dc←(B). Vice versa, if
Dc←(A) = Dc←(B), then B ⊆ Dc←(B) = Dc←(A), therefore, by (1), we deduce that
B ← A. Analogously, we also have A ← B. Hence A � B. ��

In reference to the existence of minimal elements in any←equivalence dependency class,
this condition is always verified when← satisfies the chain intersection condition.

Proposition 3.7 Let ← be a cic-dependency relation. Then min([A]�) 
= ∅ for any A ∈
P(�).

Proof Let A ∈ P(�) and {Ci : i ∈ I } be a chain in [A]�. Clearly,we have
⋂

i∈I Ci ← Ci ←
A. On the other hand, since A ← Ci for any i ∈ I , it must necessarily be A ← ⋂

i∈I Ci .
Hence, A �

⋂
i∈I Ci . This proves that each chain has a lower bound and, by Zorn’s Lemma,

there exists a minimal element in [A]�. ��
Wenow show that to give a dependency relation onP(�) is equivalent to provide a closure

operator on �.

Theorem 3.8 Let← be a dependency relation on P(�) and σ ∈ CLOP(�). Then Dc← is
a closure operator on �, I nc(σ ) is a dependency relation on P(�), and

Inc(Dc←) = ← and DcInc(σ ) = σ (4)

Hence the map Dc induces a bijection DREL(�) → CLOP(�), whose inverse
CLOP(�) → DREL(�) is the map induced by Inc.

Proof Let A, B ∈ P(�). Since A ∈ [A]� and Dc←(A) is the maximum element of [A]�,
we have A ⊆ Dc←(A). Let now B ⊆ A. For any c ∈ Dc←(B) we have {c} ← B ← A,
therefore {c} ← A by (D2), that is c ∈ Dc←(A). Hence Dc←(B) ⊆ Dc←(A). As a direct
consequence of the above two properties, we have that Dc←(A) ⊆ Dc2←(A). Vice versa, if
b ∈ Dc2←(A), then {b} ← Dc←(A) ← A, so that, by (D2), {b} ← A, that is b ∈ Dc←(A).
Therefore Dc2←(A) ⊆ Dc←(A). This shows that Dc2←(A) = Dc←(A). Hence Dc← is a
closure operator on �.
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We set now ←σ := I nc(σ ). Then, by the definition of I nc(σ ) we have that B ←σ A if
and only if B ⊆ σ(A). Then, if B ⊆ A, we have B ⊆ σ(B) ⊆ σ(A), therefore B ←σ A.
Moreover, if C ←σ B and B ←σ A, then C ⊆ σ(B) and B ⊆ σ(A). Therefore C ⊆
σ(B) ⊆ σ 2(A) = σ(A), that is C ←σ A. Finally, B ←σ A if and only if b ∈ B ⊆ σ(A),
that is equivalent to say that {b} ←σ A for all b ∈ B. Hence ←σ also satisfies (D3), and
therefore it is a dependency relation on P(�).

Let now τ := Dc← and←τ := I nc(τ ). Then, by (1), we have that

B ←τ A ⇐⇒ B ⊆ τ(A) = Dc←(A) ⇐⇒ B ← A,

and this shows that I nc(Dc←) =← .
Finally, we set again←σ := I nc(σ ). Then

Dc←σ (A) :=
⋃

B←σ A

B =
⋃

B⊆σ(A)

B = σ(A),

and this shows that DcInc(σ ) = σ . ��

Due to the relevance assumed by Dc←, we use the following terminology.

Definition 3.9 We call Dc←(A) the ←dependency closure of A and we say that A is a
←closed subset, or simply that A is closed, if A = Dc←(A). We denote by CLOS(←)

the set of all ←closed subsets, so that we have CLOS(←) = Fix(Dc←). Moreover, if
A ∈ P(�), we also set CLOS←(A) := {A ∩ B : B ∈ CLOS(←)}, so that, in particular,
we have CLOS(←) := CLOS←(�).

As an immediate consequence of the fact that Dc← is a closure operator, we have the
following result.

Corollary 3.10 The following conditions hold:

(i) B ← A ⇐⇒ Dc←(B) ⊆ Dc←(A) ⇐⇒ Dc←(B) ← Dc←(A) ⇐⇒ [B]� ←
[A]�;

(ii) If A, B ∈ CLOS(←), then B ← A if and only if B ⊆ A;
(iii) Dc←(A) is the smallest closed subset contaning A;
(iv) CLOS←(A) is a convexity on A whose closure operator is the restriction of Dc← on

A.

Remark 3.11 SinceCLOS(←) is a convexity on� and Dc← is its associated closed operator,
by (i) of Corollary it follows that (EDC(←),←ext ) is a complete lattice, which is order
isomorphic to the closure lattice (CLOS(←),⊆).

3.2 The independence set operator associated with a dependency relation

For any A ∈ P(�), we consider the subset of A so defined:

I c←(A) := {a ∈ A : {a} ← A\{a}}
We now find the main properties satisfied by the set operator I c← ∈ P(�)P(�) and,

moreover, we will prove that any set operator having the following properties (I1), (I2) and
(I3) coincides with the set operator I c←, for some dependency relation←.

123



Dependency relations 533

Theorem 3.12 The set operator I c← satisfies the following properties:

(I1) I c←(A) ⊆ A;
(I2) if A ⊆ B then I c←(A) ⊇ A ∩ I c←(B);
(I3) if b ∈ �\(A ∪ I c←(A ∪ {b})) and c ∈ I c←(A ∪ {c})\A, then c ∈ I c←(A ∪ {b, c}).
(I4) I c2←(A) = I c←(A).

Moreover, if σ ∈ P(�)P(�) satisfies the properties (I1), (I2) and (I3), there exists a
dependency relation← on � such that σ = I c←.

Proof (I1) is obvious. Let now A ⊆ B and a ∈ A∩ I c←(B). Thus, a ∈ A and {a} ← B\{a}.
Assume by contradiction that {a} ← A\{a}. By (D1), we have A\{a} ← B\{a} and, by
(D2), we would have {a} ← B\{a}, contradicting our assumptions. Thus a ∈ I c←(A). This
proves (I2).

Let us show (I3). To this regard, let b ∈ �\(A∪ I c←(A∪{b})) and c ∈ I c←(A∪{c})\A.
By our assumptions, we deduce that {c} � A and {b} ← A. By (1), it follows that c /∈
Dc←(A) and b ∈ Dc←(A). Since Dc← ∈ CLOP(�), we have Dc←(A) = Dc←(A∪{b}),
so c /∈ Dc←(A ∪ {b}). Again by (1), the last condition is equivalent to require that {c} �

A ∪ {b, c}, i.e. c ∈ I c←(A ∪ {b, c}). This shows (I3).
To prove (I4), we set D := I c←(A). Then, by (I1), it is sufficient to show that D ⊆

I c←(D). Let us assume, by contradiction, that a ∈ D and that a /∈ I c←(D), i.e. {a} ←
D\{a}. Since D\{a} ⊆ A\{a}, we deduce that {a} ← A\{a}, and this is in contrast with the
hypothesis that a ∈ I c←(A). This proves (I4).

Let now σ be a set operator satisfying (I1), (I2) and (I3). Let us consider the set operator
ϕσ : P(�) → P(�) defined as follows:

ϕσ (A) := A ∪ A∗, (5)

where

A∗ := {b ∈ � : b ∈ �\(A ∪ σ(A ∪ {b}))}
We will prove that ϕσ is a closure operator on �, i.e. we want to prove that

• A ⊆ ϕσ (A);
• A ⊆ B �⇒ ϕσ (A) ⊆ ϕσ (B);
• ϕ2

σ (A) = ϕσ (A)

for any A, B ∈ P(�). The inclusion A ⊆ ϕσ (A) is immediate for any A ∈ P(�). Let now
A ⊆ B. It suffices to show that A∗ ⊆ ϕσ (B). Let b ∈ A∗. Assume that b ∈ �\B. Then,
A∪{b} ⊆ B∪{b}, therefore, by (I2), we have that σ(A∪{b}) ⊇ σ(B∪{b})∩ (A∪{b}). But
since b ∈ �\σ(A ∪ {b}), it follows that b ∈ �\((A ∪ {b})∩ σ(B ∪ {b})). Clearly, it implies
that b ∈ �\σ(B ∪ {b}) and this proves that b ∈ �\(B ∪ σ(B ∪ {b})) = B∗, i.e. b ∈ ϕσ (B).
On the other hand, if b ∈ B, it is obvious that b ∈ ϕσ (B). This proves ϕσ (A) ⊆ ϕσ (B)

whenever A ⊆ B.
We now show that ϕσ is idempotent. Clearly, ϕσ (A) ⊆ ϕσ (ϕσ (A)). Moreover, if

(ϕσ (A))∗ = ∅, then ϕσ (ϕσ (A)) ⊆ ϕσ (A). Therefore, assume by contradiction that
(ϕσ (A))∗ 
= ∅ and let b ∈ (ϕσ (A))∗. Then, b ∈ �\(ϕσ (A) ∪ σ(ϕσ (A) ∪ {b})) =
�\((A ∪ A∗) ∪ σ(A ∪ A∗ ∪ {b})). Let us prove that the condition b ∈ �\A ∪ A∗ implies
b ∈ σ(A ∪ A∗ ∪ {b}).

Let us observe that since b ∈ �\ϕσ (A), then b ∈ σ(A ∪ {b}). Therefore, let us fix an
integerm and assume that b ∈ σ(A∪B∪{b}) for any B ⊆ A∗ such that |B| = m−1. Let now
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B ⊆ A∗ such that |B| = m and fix c ∈ B. We will prove that c ∈ �\σ((A∪ (B\{c}))∪ {c})
and that b ∈ σ((A ∪ B\{c}) ∪ {b}).

Let us note that c ∈ �\σ((A ∪ (B\{c}))∪ {c}). As a matter of fact, we have that c ∈ A∗,
so c ∈ �\(A ∪ {c}). Furthermore, to say that c ∈ B means that A ∪ {c} ⊆ A ∪ B so,
by (I2), σ(A ∪ {c}) ⊇ σ(A ∪ B) ∩ (A ∪ {c}). In other terms, c ∈ �\σ(A ∪ B), i.e.
c ∈ �\σ((A ∪ (B\{c})) ∪ {c}). On the other hand, since |B\{c}| = m − 1, by the inductive
hypothesis on B\{c} ⊆ A∗, we have that b ∈ σ((A∪B\{c})∪{b}). Hence, we can apply (I3)
that, in this case, yields c ∈ σ((A∪ B\{c})∪{b, c}) = σ(A∪ B∪{b}), showing the claim for
B. In particular, the claim holds for B = A∗. Then, b ∈ σ(A ∪ A∗ ∪ {b}), contradicting our
choice of b. Necessarily, it must be (ϕσ (A))∗ = ∅. This proves that ϕσ (ϕσ (A)) = ϕσ (A).

By Theorem 3.8, there exists a dependency relation ← on � such that ϕσ = Dc←. Let
us prove that σ = I c←. To this regard, let a ∈ I c←(A), then {a} ← A\{a} that, by (1), is
equivalent to require that a /∈ Dc←(A\{a}) = (A\{a})∪ (A\{a})∗. Thus, a /∈ (A\{a})∗, i.e.
a ∈ (A\{a}) ∪ σ((A\{a}) ∪ {a}). In particular, it follows that a ∈ σ(A).

On the other hand, let a ∈ σ(A) and assume by contradiction that {a} ← A\{a}. Then,
a ∈ Dc←(A\{a}) = ϕσ (A\{a}) = (A\{a}) ∪ (A\{a})∗ by (1). It must necessarily be
a ∈ (A\{a})∗, i.e. a ∈ �\((A \ {a}) ∪ σ((A\{a}) ∪ {a})) = �\((A \ {a}) ∪ σ(A)). This
entails a /∈ σ(A), contradicting our assumption. This proves that σ = I c← and concludes
the proof. ��

In analogy with what we have done for the set operator Dc←, also for I c←, we provide
a suitable terminology.

Definition 3.13 We call I c←(A) the ←independency core of A. We say that A is an
←independent subset, or simply that A is independent, if {a} � A\{a} for all a ∈ A,
in other terms, if A = I c←(A). We denote by I N DP(←) the set of all←independent sub-
sets, that is I N DP(←) = Fix(I c←). Moreover, if A ∈ P(�), we set I N DP←(A) := {B ∈
I N DP(←) : B ⊆ A}. In particular, when A = �, we have I N DP(←) := I N DP←(�).

We now two further basic properties of the set operator I c←.

Proposition 3.14 We have that:

(i) I c←(A) is a←independent subset.
(ii) I c←(Dc←(A)) ⊆ A.

Proof (i): It follows immediately by (I4).
(i i): Let a ∈ I c←(Dc←(A)) and suppose by contradiction that a ∈ Dc←(A)\A.

This means that A ⊆ Dc←(A)\{a}, so we have {a} ← A ← Dc←(A)\{a}, i.e.
{a} ← Dc←(A)\{a} by (D2), but this contradicts the fact that a ∈ I c←(Dc←(A)). ��

In the next result we will prove that I N DP(←) is an abstract simplicial complex on �

and provide an alternative form to express it.

Theorem 3.15 I N DP(←) is an abstract simplicial complex on � and we have that

I N DP(←) =
⋃

{min([A]�) : A ∈ P(�)} (6)

Proof Clearly, ∅ ∈ I N DP(←). Let now A ∈ I N DP(←) and B ⊆ A. Clearly, I c←(B) ⊆
B. Let b ∈ B. Assume by contradiction that {b} ← B\{b}. Moreover, since B\{b} ← A\{b},
by (D2) it follows that {b} ← A\{b}, i.e. b /∈ I c←(A). This is a contradiction. Hence
{b} � B\{b}, i.e. I c←(B) = B. This shows that I N DP(←) is an abstract simplicial
complex.
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Let B ∈ min([A]�) for some A ∈ P(�). Clearly, I c←(B) ⊆ B. Let b ∈ B. Then
B\{b} ← B but B � B\{b}, i.e. there exists b′ ∈ B such that {b′} � B\{b}. Now, since by
(D1)we have B\{b} ← B\{b} or, equivalently by (D3), {b′′} ← B\{b} for any b′′ ∈ B\{b}.
This forces that b′ = b. Thus, I c←(B) = B.

On the other hand, let let B ∈ I N DP(←). Let us prove that A ∈ min([A]�). For,
assume by contradiction that B � A such that B ∈ min([A]�). Then A ← B and B ← A.
In particular, there exists a ∈ A such that B ⊆ A\{a}. Moreover, we have A\{a} ← B and
B ← A\{a}. Thus A � B � A\{a}. Hence, A\{a} ← A and A ← A\{a}. By (D3), this
implies that a′ ← A\{a} for any a′ ∈ A and, in particular, {a} ← A\{a}. This contradicts
the fact that I c←(A) = A. ��

An immediate consequence of Theorem 3.15 is the following.

Corollary 3.16 I N DP←(A) is an abstract simplicial complex on A.

We call the elements of min([A]�) the←co-minimal independents of A.

4 Essential subsets and dependency bases

We now introduce the basic notion of dependency base for a subset of�. This notion assumes
a fundamental role within our dependency context because it generalizes to a more general
abstract case the corresponding notion of minimal spanning subset for vector spaces. For
recent studies and results on dependency bases induced by simple undirected graphs see
[13].

Definition 4.1 Let A, B ∈ P(�). We say that B is a ←dependency base of A, denoted by
B ←db A, if:

(B1) B ⊆ A;
(B2) C ← A �⇒ C ← B;
(B3) B is minimal with respect to (B2). That is, for any B ′

� B, there exists C ′ ∈ P(�)

such that C ′ ← A and C ′
� B ′.

We set BAS←(A) := {B ∈ P(A) : B ←db A}. When � is a finite set, we also consider
the following subfamily MBAS←(A) := {B ∈ BAS←(A) : |B| ≤ |C | ∀C ∈ BAS←(A)}
of BAS←(A). In particular, we set MBAS(←) when A = �. Moreover, we set ρ←(A) :=
min{|B| : B ∈ BAS←(A)}.
Remark 4.2 The previous notion of←dependency base generalizes to a purely mathematical
abstract context the notion of reduct for information tables [24], or, equivalently, of key for
relational databases [28].

In the next result, we relate the set systems BAS← and I N DP← and we will give a basic
property for the closed sets in terms of interrelation between I c← and Dc←.

Theorem 4.3 For any A, B ∈ P(�), we have that:

(i) BAS←(A) ⊆ max(I N DP←(A)) for any A ∈ P(�).
(ii) if A � B and B ⊆ A, then BAS←(B) ⊆ BAS←(A);
(iii) If A ∈ CLOS(←), then, a ∈ A\I c←(A) if and only if there exists B ∈ P(�) such that

a /∈ B and a ∈ Dc←(B) ⊆ A.
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Proof (i): Let B ∈ BAS←(A), then B ⊆ A. Let us note that B � A. In fact, B ⊆ A implies
by (D1) that B ← A; on the other hand, A ← A so, by (B2), we have that A ← B. This
shows that B � A. Now, let us show that B ∈ min([A]�). To this regard, let B ′

� B be
such that B ′min([A]�). Let also C ∈ P(�) be such that C ← A. But A ← B ′ so, by
(B2), we have that C ← B ′. This means that B ′ satisfies (B2), contradicting minimality of
B. This shows that B ∈ min([A]�). Finally, we prove that B ∈ max(I N DP←(A)). For,
we observe that there is no B ′′

� B such that B ′′ ∈ I N DP←(A), otherwise we would have
B ′′ ∈ min([A]�), that is impossible.

(ii): Let C ∈ BAS←(B). Then C ⊆ A. Now, we will prove that C satisfies (B2) with
respect to A. For, let D ← A. By (D2), it follows that D ← B, so, again by (D2), D ← C .
This shows that C satisfies (B2) with respect to A. In particular, we have that C � A. We
now prove minimality. To this regard, let C ′

� C be such that C ′ ∈ BAS←(A). By using
(D2), it is straightforward to see that C ′ ∈ BAS←(B), and this contradicts the fact that
C ∈ BAS←(B). This entails that C ←db A.

(iii): Let A ∈ CLOS(←) and a ∈ A\I c←(A). Then, just consider B ∈ BAS←(A) such
that a /∈ B. Nevertheless, we have a ∈ Dc←(B) = Dc←(A).

Conversely, assume that A ∈ CLOS(←). Let moreover a ∈ A and suppose that there
exists B ∈ P(�) such that a /∈ B and a ∈ Dc←(B) ⊆ A. Finally, assume by contradiction
that {a} ← A\{a}. By (1), this means that a /∈ Dc←(A\{a}). But, let us note that for any
C ⊆ A\{a}, we have that Dc←(C) ⊆ Dc←(A\{a}) and, hence a /∈ Dc←(C). So, a subset
B as in the hypothesis cannot exist, that is absurd. This proves that a ∈ A\I c←(A). ��

In the next result, we relate the set operator I c← with the set system BAS←. In partic-
ular, we will see that I c←(A) ⊆ ⋂

BAS←(A) and, that equality holds for cic-dependency
relations and, hence, also in the finite case.

Theorem 4.4 Let A ∈ P(�). Then:

(i) I c←(A) ⊆ ⋂
BAS←(A).

(ii) If← is a cic-dependency relation, I c←(A) = ⋂
BAS←(A).

(iii) If � is a finite set, then I c←(A) = ⋂
BAS←(A).

Proof (i): Let a ∈ I c←(A) and assume, by contradiction, that there exists some B ∈
BAS←(A) such that a /∈ B, so that B\{a} = B. Since {a} ← A, by (B2) we deduce
that {a} ← B = B\{a} ⊆ A\{a}, therefore {a} ← A\{a}. That is in contrast with the
hypothesis that a ∈ I c←(A). This shows that I c←(A) ⊆ ⋂

BAS←(A).
(ii): On the other hand, let a ∈ ⋂

BAS←(A) and let us assume, by contradiction, that
a /∈ I c←(A), so that {a} ← A\{a}. Then A\{a} satisfies the property (B2). In fact, let
C ∈ P(�) such that C ← A, then C ← (A\{a}) ∪ {a} ← A\{a}, so that C ← A\{a}.
Let us consider now the set system F of all subsets of A\{a} satisfying (B2). Then F is
non-empty because A\{a} ∈ F . Let now {Ci : i ∈ I } ⊆ F be a chain and C ← A. By
(B2), C ← Ci for any i ∈ I . By condition (C IC), we have that C ← ⋂

i∈I Ci , i.e.
⋂

i∈I Ci

satisfies (B2). Zorn’s Lemma ensures the existence of a minimal element B in F . Therefore,
a /∈ B and B ∈ BAS←(A), but this is in contrast with the hypothesis that a ∈ ⋂

BAS←(A).
(iii): It is an immediate consequence of part (i i). ��
In the next theorem, we give two characterizations for a subset to be a ←-dependency

base of A.

Theorem 4.5 Let B ⊆ A. Then the following conditions are equivalent:

(i) B ∈ BAS←(A).
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(ii) Dc←(B) = Dc←(A) and Dc←(B ′) � Dc←(A) for all B ′
� B.

(iii) Dc←(B) = Dc←(A) and I c←(B) = B.

Proof (i) �⇒ (ii): The claim is immediate by the proof of (i) of Theorem 4.3.
(ii) �⇒ (iii): Let us assume that Dc←(B) = Dc←(A) and Dc←(B ′) � Dc←(A) for

all B ′
� B. We now prove that I c←(B) = B. For, take B ′ = B\{b}, for some b ∈ B.

Assume by contradiction that {b} ← B\{b}. By (1), it follows that b ∈ Dc←(B ′), that is
Dc←(B ′) = Dc←(B) = Dc←(A), contradicting our hypothesis. Then, {b} � B ′, that is
b ∈ I c←(B). In view of the arbitrariness of b, we deduce that I c←(B) = B.

(iii) �⇒ (i): Let B ⊆ A be such that Dc←(B) = Dc←(A) and I c←(B) = B. Clearly,
(B1) is satisfied. We must prove that B satisfies (B2). To this regard, let C ← A. By (i i)
of Theorem 3.6 and by (D2), it is immediate to see that C ← B. Finally, let us show (B3).
Let B ′

� B satisfying (B2). Clearly, there exists b ∈ B such that B ′ ⊆ B\{b}. Moreover,
we have that A ← B ′ and, in particular, by (D3), that {b} ← B ′. This is absurd, since
I c←(B) = B, i.e. {b} � B ′. This proves that B satisfies (B3), i.e. B ∈ BAS←(A). ��

The condition that an element a ∈ A satisfies the condition {a} ← A\{a} can be consid-
ered also relatively to a subset B of A in the following way.

Definition 4.6 Let A, B ∈ P(�). We say that B is ← A-essential, or, equivalently, an
←essential subset of A, denoted by B ←ess A, if:

(E1) B ⊆ A;
(E2) B � A\B;
(E3) B is minimal with respect to the property (E2), that is, B ′

� B �⇒ B ′ ← A\B ′.

We set ESS←(A) := {B ∈ P(A) : B ←ess A}.
Remark 4.7 Let us notice that I c←(A) coincides with the subset of all←essential elements
of A.

For specific computations of essential subset families relative to dependency relations
induced by graphs see [13].

In the next result, we provide two characterizations for a subset to be a ← A-essential
subset.

Theorem 4.8 Let B ⊆ A. Then the following conditions are equivalent:

(i) B ∈ ESS←(A).
(ii) Dc←(A\B) � Dc←(A) and Dc←(A\B ′) = Dc←(A) for all B ′

� B.
(iii) A\B covers A in the lattice (CLOS←(A),⊆).

Proof (i) �⇒ (ii): Clearly, for any B ⊆ A, we have that A\B ⊆ A, whence Dc←(A\B) ⊆
Dc←(A). On the other hand, let B ∈ ESS←(A). Property (E2) ensures that B � A\B and,
in view of (1), we conclude that B � Dc←(A\B). Nevertheless, as B ⊆ Dc←(A), it must
necessarily be Dc←(A\B) � Dc←(A).

Finally, by (E3), we have that if B ′
� B, then B ′ ← A\B ′. Therefore, by (1), it follows

that B ′ ⊆ Dc←(A\B ′), so A\B ′ ∪ B ′ = A ⊆ Dc←(A\B ′). This means that Dc←(A) =
Dc←(A\B ′) and this shows the claim.

(ii) �⇒ (i): Let B ∈ P(�) be such that Dc←(A\B) � Dc←(A) and Dc←(A\B ′) =
Dc←(A) for all B ′

� B. Clearly, (E1) is verified. Now, let us prove (E2). To this regard,
assume by contradiction that B ← A\B. Then, by (1), it follows that B ⊆ Dc←(A\B),
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that means that Dc←(A) = Dc←(A\B), contradicting our assumption. Hence, B � A\B.
Finally, let B ′

� B be such that B ′
� A\B ′. Then B ′

� Dc←(A\B ′), so Dc←(A) 
=
Dc←(A\B ′), again contradicting our assumption. This proves (E3) and, in particular, that
B ←ess A.

(ii) �⇒ (iii): Let B ⊆ A such that Dc←(A\B) � Dc←(A) and Dc←(A\B ′) =
Dc←(A) for all B ′

� B. Let us show that A\B = Dc←(A\B) ∩ A. Clearly, A\B ⊆
Dc←(A\B) ∩ A. Vice versa, let a ∈ Dc←(A\B) ∩ A and assume that a /∈ A\B. Hence
a ∈ B.

Set now B ′ := B\A. It is straightforward to show that Dc←(A\B) = Dc←(A\B ′).
Nevertheless, we would have Dc←(A\B) = Dc←(A\B ′) = Dc←(A), contradicting our
assumption. This means that A\B = Dc←(A\B) ∩ A, i.e. A\B ∈ CLOS←(A). We must
show that A\B covers A in the latticeCLOS←(A). To this regard, suppose by contradiction it
were false. Then, there exists A\B � C � A such thatC covers A in the latticeCLOS←(A).
But, this ensures that C = A\B ′ for some non-empty B ′

� B. Let us prove that Dc←(C) �

Dc←(A). Assume by contradiction that equality holds, that is Dc←(C) = Dc←(A). Since
C = A ∩ M for some M ∈ CLOS(←), we would have Dc←(C) = Dc←(A) ⊆ M , i.e.
A ⊆ M . But, this implies that A ∩ M = C ⊇ A and this is impossible. So, Dc←(C) �

Dc←(A). However, the existence of such a subset C contradicts our hypothesis on B. This
proves that A\B covers A in the lattice CLOS←(A).

(iii) �⇒ (ii): Let B be a non-empty subset of A such that A \ B covers A in the lattice
CLOS←(A). Assume by contradiction that Dc←(A\B) = Dc←(A). Since A\B = A ∩ C
for some C ∈ CLOS(←), we have that

Dc←(A ∩ C) = Dc←(A\B) = Dc←(A) ⊆ Dc←(A) ∩ Dc←(C) = Dc←(A) ∩ C,

i.e. Dc←(A) ⊆ C . In other terms, we showed that A = A ∩ Dc←(A) ⊆ A ∩ C = A\B or,
equivalently A = A\B, that is a contradiction. Hence Dc←(A\B) � Dc←(A). Furthermore,
let B ′

� B and assume by contradiction that Dc←(A\B ′) � Dc←(A). Then, A\B �

A\B ′ ⊆ Dc←(A\B ′)∩ A. In particular, we also have that Dc←(A\B ′)∩ A � A, otherwise
A ⊆ Dc←(A\B ′), i.e. Dc←(A) = Dc←(A\B ′), contradicting our assumption. In this way,
we showed that A\B does not cover A in the lattice CLOS←(A), that is absurd. This proves
the claim. ��

5 Some basic classifications of dependency relations

In this section, we establish some basic classifications for dependency relations and provide
some results concerning equivalent formulations of such classifications. Next, in graph con-
text we provide examples of dependency relations which fall in the classifications described
in this section.

Theorem 5.1 Let ← be a dependency relation on P(�). Then the following conditions are
equivalent:

(i) for any A ∈ P(�) and any b, c ∈ � we have that

{b, c} �∀ A and A ∪ {b} �q A ∪ {c} �⇒ A ∪ {b} � A ∪ {c}
(ii) for any A ∈ P(�), b ∈ �, a ∈ A, we have that

{b} � A and {a} ← A\{a} �⇒ {a} ← (A\{a}) ∪ {b}
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Proof (i) �⇒ (i i): Let← satisfying (i) and let A ∈ P(�), a ∈ A and b ∈ � be such that
{b} � A and {a} ← A\{a}. Assume by contradiction that {a} ← (A\{a}) ∪ {b}. Clearly,
a 
= b, otherwise we would have {a} ← (A\{a}) ∪ {b}, contradicting by our assumption.
Notice now that {b} � A\{a} otherwise {b} ← A\{a} ← Awould imply {b} ← A by (D2),
that is a contradiction. Set B := A\{a}. It may be easily shown using our assumptions and
the properties of the dependency relations that {a, b} �∀ B and that B∪{a} = A ← B∪{b}.
Moreover, it follows that A � B ∪ {b} = (A\{a}) ∪ {b}, whence {b} ← A, contradicting
our hypothesis. Therefore← satisfies (i i).

(i i) �⇒ (i): Assume that← satisfies (i i). Let us consider A ∈ P(�) and b, c ∈ � such
that {b, c} �∀ A and A∪{b} �q A∪{c}. Let us assume, in particular, that A∪{b} ← A∪{c}
(the other case is similar). Let us assume by contradiction that A ∪ {b} 
� A ∪ {c}, i.e.
A ∪ {c} � A ∪ {b}.

Set B := A∪{b}. The last condition implies that {c} � B. Moreover, by our assumptions,
we have {b} � (A∪{b})\{b}. Since← satisfies (i i), we deduce that {b} � (B\{b})∪{c} =
A ∪ {c}, i.e. {b} � A ∪ {c}, that is a contradiction. Thus A ∪ {b} � A ∪ {c}, i.e.← satisfies
(i). ��

We call a dependency relation ← an attractive dependency relation if it satisfies (i) or
(i i) of Theorem 5.1. We denote by DRELa(�) the set of all attractive dependency relations
on P(�).

In the finite case, we can establish the following equivalences for the condition obtained
negating the thesis of (i) of Theorem 5.1.

Theorem 5.2 Let � be a finite set and let ← be a dependency relation on P(�) . Then the
following conditions are equivalent:

(i) For any A ∈ P(�) and any b 
= c ∈ � we have that

{b, c} �∀ A and A ∪ {b} �q A ∪ {c} �⇒ A ∪ {b} 
� A ∪ {c}
(ii) |min([A]�)| = 1 for any A ∈ P(�);
(iii) min([A]�) = {I c←(Dc←(A))} for any A ∈ P(�);
(iv) Dc←(I c←(A)) = Dc←(A) for any A ∈ P(�).

Proof (i) �⇒ (ii): Assume by contradiction that |min([A]�)| ≥ 2 for some A ∈ P(�);
let B, B ′ two distinct subsets in min([A]�) and b ∈ B. Clearly, B\{b} 
� A. Let us take
B ′′ ⊆ B ′ minimal with respect to the property that B\{b} ∪ B ′′ � A. It is obvious that
B ′′ 
= ∅. So, let c ∈ B ′′. Then (B\{b}) ∪ (B ′′\{c}) 
� A. In particular, it follows that
both the relations {b} � (B\{b}) ∪ (B ′′\{c}) and {c} � (B\{b}) ∪ (B ′′\{c}) hold. Set
C := (B\{b}) ∪ (B ′′\{c}). This means that {b, c} �∀ C . Furthermore, it is straightforward
to verify thatC∪{b} � C∪{c}. By the fact that←∈ DRELaa(�), we conclude that b = c,
i.e. B ⊆ B ′. In a similar way, we prove that B ′ ⊆ B, so B = B ′, that is a contradiction. This
shows that |min([A]�)| = |BAS←(Dc←(A))| = 1 for any A ∈ P(�).

(ii) �⇒ (iii): Assume that |min([A]�)| = 1 for any A ∈ P(�). Just observe that
BAS←(B) = BAS←(Dc←(A)) for any B ∈ [A]�. Hence, by (i i i) of Theorem 4.4,
we conclude that I c←(Dc←(A)) = I c←(B) for any B ∈ [A]� and, in particular, that
I c←(Dc←(A)) ∈ min([Dc←(A)]�). So, the thesis has been proved.

(iii) �⇒ (iv): Assume that min([A]�) = {I c←(Dc←(A))} for any A ∈ P(�). By (i i i)
of Theorem 4.4, we have that BAS←(A) = {I c←(A)}, therefore by (i i) of Theorem 3.6, it
follows that Dc←(I c←(A)) = Dc←(A). This shows the claim.

(iv) �⇒ (i): Suppose that Dc←(A) = Dc←(I c←(A)) for any A ∈ P(�) and let us
consider b 
= c such that {b, c} �∀ A and assume that {b} ← A ∪ {c}. Let us prove that
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{c} � A∪ {b}. For, assume by contradiction that {c} ← A∪ {b}. In particular, by Definition
of I c←, we deduce that {b, c}∩ I c←(A∪{b, c}) = ∅. This proves that I c←(A∪{b, c}) ⊆ A.
Now, we show that

I c←(A ∪ {b, c}) ⊆ I c←(A). (7)

In fact, let a ∈ I c←(A∪{b, c}). Then, {a} ← A\{a}∪{b, c}. In particular, it must necessarily
be {a} ← A\{a} otherwise, by (D2), we would have {a} ← A\{a} ← A\{a} ∪ {b, c}, i.e.
A ← A\{a} ∪ {b, c}, that is a contradiction. This shows (7). Thus, by our assumption and
by (7), it follows that Dc←(A ∪ {b, c}) = Dc←(I c←(A ∪ {b, c})) ⊆ Dc←(I c←(A)) =
Dc←(A) ⊆ Dc←(A ∪ {b, c}), i.e. Dc←(A) = Dc←(A ∪ {b, c}) or, equivalently, {b, c} ⊆
Dc←(A). This means that {b, c} ← A, that is a contradiction. This shows that ← satisfies
(i). ��

We say that← is an anti-attractive dependency relation if← satisfies the condition (i) of
Theorem 5.2. We denote by DRELaa(�) the set of all anti-attractive dependency relations
on P(�).

When� is finite and the dependency relation is also pointwise non-trivial, we can provide
a further equivalence with the property of local anti-attractiveness. In order to establish this
equivalence, we set

A � B : ⇐⇒ ((A ⊆ B) and (b ∈ B and {b} � B �⇒ b ∈ A)),

for any A, B ∈ P(�).
We have then the following result.

Theorem 5.3 Let � be a finite set and← be a pointwise non-trivial relation on P(�). Then
the following conditions are equivalent:

(i) ← is anti-attractive;
(ii) for any A, B ∈ P(�) such that A � B, we have that a ∈ A and {a} ← A\{a} �⇒

{a} ← B\{a}.
Proof (i) �⇒ (i i): Let ←∈ DRELaa(�) ∩ DREL pnt (�). For, let us assume that
A � B, that is clearly equivalent to require that I c←(B) ⊆ A ⊆ B. Let b ∈ I c←(B). Then
{b} � B\{b} so, a fortiori, {b} � A\{b}. This means that b ∈ I c←(A) and, in particular,
I c←(B) ⊆ I c←(A). By (iv) of Theorem 5.2, we have

Dc←(I c←(B)) = Dc←(B) ⊆ Dc←(I c←(A)) = Dc←(A) ⊆ Dc←(B),

that is Dc←(A) = Dc←(B). Moreover, by (i i i) of Theorem 5.2 and by (i i i) of Theorem
4.4, it follows that min([A]�) = {I c←(A)} and, in particular, I c←(A) = I c←(B). By the
definition of I c←, we conclude that← satisfies (i i).

(i i) �⇒ (i): Assume that← satisfies (i i). We must prove that←∈ DRELaa(�). For,
let b 
= c be such that {b, c} �∀ A and assume that {b} ← A∪{c} (the other case is similar).
To say that {b, c} �∀ A means that b ∈ I c←(A ∪ {b}) and c ∈ I c←(A ∪ {c}).

Assume now by contradiction that {c} ← A ∪ {b}. By our assumptions, it easily follows
that Dc←(A∪{b}) = Dc←(A∪{c}) = Dc←(A∪{b, c}), i.e. {b, c}∩ I c←(A∪{b, c}) = ∅.
This entails I c←(A ∪ {b, c}) ⊆ A.

Thus, A ∪ {b} � A ∪ {b, c}. By our assumptions on←, it must necessarily be I c←(A ∪
{b}) ⊆ I c←(A ∪ {b, c}). But this means that b ∈ I c←(A ∪ {b}) ⊆ I c←(A ∪ {b, c}) ⊆ A,
that leads to a contradiction, namely {b} ← A. Then←∈ DRELaa(�) and this concludes
the proof. ��
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6 Dependency relations induced by pairings

We now introduce a structure on � with which we are able to provide a dependency relation
on P(�). Next, we show that when � is a finite set, by means of such a structure we can
obtain any possible dependency relation on P(�).

Definition 6.1 We call a triple P = 〈U , F,�〉, where U , � are non-empty sets and F is a
map U × � → �, a pairing on �. We denote by PAI R(�) the set of all pairings on �.

In a purely combinatorial context, in the finite case we can identify the pairingPwith the
rectangular table whose rows and columns are labeled respectively by the elements u ∈ U
and a ∈ � and whose entries are the values F(u, a).

For any A ∈ P(�), we denote by ≡A be the equivalence relation on U defined by

u ≡A u′ : ⇐⇒ F(u, a) = F(u′, a), (8)

for any a ∈ A, for all u, u′ ∈ U . In view of the interpretation of ≡A given in graph context
(see [13]), we say that ≡A is the A-symmetry relation on U . We can consider ≡A as a type
of local symmetry relation induced by the pairing structure (for more detailed studies on
this relation see [18]). If u ∈ U , let [u]A the equivalence class of u with respect to ≡A, that
we call A-symmetry class of u, and let πP(A) := {[u]A : u ∈ U } be the set partition on
U induced by ≡A, that we call A-symmetry partition of U . Based on (8), we will define a
dependency relation arising from the pairing context. If A, B ∈ P(�), we can consider the
situation in which the local symmetry induced by A can be transmitted in the local symmetry
induced by B. We set therefore

B ←P A : ⇐⇒ (∀u, u′ ∈ U , u ≡A u′ �⇒ u ≡B u′) (9)

Then it is immediate to verify that←P is a dependency relation on P(�).
Let us note that the right part of (9) is equivalent to the condition πP(A) � πP(B), where

� is the usual refining partial order between set partitions of U . In what follows, we write
πP(A) ≺ πP(B) when πP(A) � πP(B) and πP(A) 
= πP(B).

Definition 6.2 By referring to the pairing P, we use the following terminology.

• We call ←P the P-dependency relation on �, or simply the P-dependency on � and,
if B ←P A, we say that B is P-dependent on A;

• Wedenote by�P the corresponding equivalence relation associatedwith←P and given
in (3) and we call �P the P-dependency equivalence on P(�);

• if A �P B, we say that A and B areP-dependency equivalent and we denote by [A]P
the equivalence class with respect to �P, that we callP-equivalence dependency class
of A.

Remark 6.3 Whenwe deal with pairings, we will useP instead of←P. For example, we will
write DcP instead of Dc←P , CLOSP(A) instead of CLOS←P(A), CLOS(P) instead
of CLOS(←P) and, similarly, for the other set operators and set systems introduced in the
previous sections. Moreover, we use the terminology P instead of ←. For example, DcP
will be called the P-dependency closure and so on.

Remark 6.4 Let us note that A �P B if and only if πP(A) = πP(B).

In the next result we show that in the finite case any dependency relation on P(�) is a
P-dependency relation, for some pairing P ∈ PAI R(�).
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Theorem 6.5 Let � be a finite set and let← be a dependency relation on P(�). Then there
exists a pairing P ∈ PAI R(�) such that←P coincides with←.

Proof Let H := CLOS(←). Since H is a convexity, it is also a lattice with respect the set
theoretical inclusion whose top element is � (see [19]). On the other hand, in Theorem 4.1
of [18] it has been proved that for any finite convexity there exists a pairing on the same
ground set whose closed subset family coincides with the given convexity. Therefore, in
our case there exists a pairing P ∈ PAI R(�) such that H = CLOS(P). This entails that
DcP = Dc← and so, by (1), we deduce that the dependency relations← and←P coincide.
��

We set
	P(A, B) := {u ∈ U : [u]A ⊆ [u]B}, (10)

for any A, B ∈ P(�).
Moreover,whenU is a finite set,we can also consider themapγP : P(�)×P(�) → [0, 1]

defined by

γP(A, B) := |	P(A, B)|
|U |

Then we have that

B ←P A ⇐⇒ πP(A) � πP(B)

⇐⇒ 	P(A, B) = U ⇐⇒ (when U is finite) γP(A, B) = 1

In the next result, we show that the dependency relation induced by pairings generalizes
the partial order relations on finite lattices.

Theorem 6.6 Let L = (L,≤L) be a finite lattice. Then there exist a finite set �, a pairing
P ∈ PAI R(�) and a bijective map η : L → CLOS(P) such that

y ≤L x ⇐⇒ γP(η(x), η(y)) = 1 (11)

for any x, y ∈ L.

Proof LetL = (L,≤L) be a finite lattice. In view of a classical result of order theory [19], any
finite lattice can be represented as a convexity SL on �L := J (L), whose closure operator
φ : P(�) → P(�) assumes the form

φ(A) :=
{
x ∈ � : x ≤

∨
A
}

and such that L is order isomorphic to (SL,⊆). Let us denote by η such an isomorphism.
Now, by means of the same construction exhibited in the proof of Theorem 6.5, we can find a
pairingP ∈ PAI R(�L) such thatSL = CLOS(P). Then, since η is an order isomorphism,
by part (i i i) of Corollary 3.10 we have that

y ≤L x ⇐⇒ η(y) ⊆ η(x) ⇐⇒ η(y) ←P η(x),

for any x, y ∈ L . The thesis follows then by (11). ��
Corollary 6.7 In the same hypotheses and notations of Theorem 6.6, the lattice L is order
isomorphic to the lattice (EDC(←P),←ext

P ).

Proof It is a consequence of Remark 3.11, (11) and (11)
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In view of Theorem 6.6, we observe that the function γP allows us to refine the partial
order≤L, since it provides a numerical information also between two non-comparable nodes
of the lattice L. In fact, for any two elements x, y ∈ L, we have that x ≤L y if and only if
γP(ηP(x), ηP(y)) = 1 but, however, we can always compute the value γP(ηP(x), ηP(y))
even if x and y are non-comparable each other. To this regard, let us note that the complete
knowledge of the table of all possible values γP(A, B) = 1, for A, B ∈ P(�), provides a
more detailed information with respect to the partial order ≤L. To this regard, we recall that
several recent results concerning the determination of such tables and relates averages, for
pairings induced by graphs, digraphs and some types of discrete dynamical systems have
been obtained in [12,15,26].

7 Dependency relations induced by graphs

In this final section we investigate two types of dependency relations induced by simple
undirected graphs. In the first case we induce the dependency relation on the vertex set
of a connected n-graph by means of the distance between vertices. In the second case we
use adjacency. We provide classification results for paths, cycles and complete multipartite
graphs.

7.1 Distance pairing from connected n-graphs

Let G be a connected n-graph. Then, we can associate with it the pairing P[G, d] :=
(V (G), d, N), where d denotes the usual distance between two vertices ofG.We callP[G, d]
the distance pairing of G. In what follows, when we denote the quantity ρ←(A) given in
Definition 4.1, we will omit the symbol←.

Remark 7.1 It is immediate to see that πP(∅) = V (G) and πP(V (G)) = v1| . . . |vn .
In the next result, we firstly provide a general form for CLOS(P[Cn, d]) and, next,

we prove a type of replaceability and a type of decomposability for the dependency relation
associatedwithP[Cn, d]. Finally, we show thatP[Cn, d] is an attractive pairing and compute
both BAS(P[Cn, d]) and ρ(P[Cn, d]).
Theorem 7.2 Let n ≥ 3 and P := P[Cn, d]. Then
(i) we have that:

CLOS(P) =
{ {∅} ∪ {vi , i = 1, . . . , n} ∪ V (G) if n = 2k + 1

{∅} ∪
{
{vi , vi+ n

2
}, i = 1, . . . , n

2

}
∪ V (G) if n = 2k

(ii) for any A ∈ P(�) and any {b} ←P A there exists a ∈ A such that for any {x} ←P A
it follows that {x} ←P {b} ∪ (A\{a});

(iii) P[Cn, d] is attractive;
(iv) for any pair (A, b) ∈ CLOS(P) × � it results that

{c} ← A ∪ {b} ⇐⇒ ∃ a ∈ A : {c} ← {a, b}. (12)

(v) we have that

BAS(P[Cn, d]) =
{(V (Cn)

2

)
if n = 2k + 1

(V (Cn)
2

)∖ {
{vi , vi+ n

2
}, i = 1, . . . , n

2

}
if n = 2k
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In particular, ρ(P[Cn, d]) = 2.

Proof (i): Let us compute πP(A) when A runs over P(V (Cn)). Clearly, if A = ∅, we have
πP(A) = v1 . . . vn . If A = vi for some i = 1, . . . , n, we have that vi constitutes a single
block since it is the only vertexwhose distance from vi is 0. This shows thatπP(A) 
= πP(∅),
so DcP(∅) = ∅. Furthermore, when n is odd, each symmetry block distinct from that of vi
contains exactly two vertices, while, when n is even, the symmetry block of vi+ n

2
contains

only vi+ n
2
, that is the only vertex whose distance from vi is i + n

2 , whereas the other blocks
contain two elements. Clearly πP({vi }) = πP({vi+ n

2
}).

Now, let A = {vi } 
= {v j } = A′. Assume that A �P A′. Then, for any two vertices
vk, vk′ ∈ V (Cn) we must have d(vk, vi ) = d(vk′ , vi ) if and only if d(vk, v j ) = d(vk′ , v j ).
In particular, d(vi , v j ) = d(vk, vi ) + d(vk, v j ) = d(vk′ , vi ) + d(vk′ , v j ). This means that
the line joining vi and v j divides the regular polygon Cn in two symmetric parts, but this
happens if and only if n is even and j = i + n

2 . This shows that πP(vi ) = πP({v j }) if and
only if n is even and j = i + n

2 .
Let us consider A = {vi , v j }. Then, when n is odd, there are no two vertices symmetric

to both vi and v j , so πP(A) = πP(V (Cn)) = v1| . . . |vn ; on the contrary, when n is even,
this happens if only if A = {vi , vi+ n

2
}. This shows that DcP({vi }) = {vi }, for i = 1, . . . , n,

when n is odd and that DcP(vi ) = {vi , vi+ n
2
}, for i = 1, . . . , n

2 , when n is even. Finally,
since any other vertex subset A having cardinality greater than 2 contains two vertices whose
distance is not n

2 , then A �P V (Cn).
(ii):By (1), the condition for any A ∈ P(�) and any {b} ←P A there existsa ∈ A such that

for any {x} ←P A it follows that {x} ←P {b}∪(A\{a}) is equivalent to say that⋃a∈A({b}∪
DcP(A\{a})) = DcP(A). Hence, we will prove

⋃
a∈A({b} ∪ DcP(A\{a})) = DcP(A).

To this regard, let us observe that it is immediate to prove that
⋃

a∈A({b} ∪ DcP(A\{a})) ⊆
DcP(A) whenever {b} ←P A. On the other hand, If A = ∅, the reverse inclusion is
obvious. Moreover, the claim is obvious if DcP(A) = A, since b ∈ A. W now prove
the reverse inclusion in the other non-trivial cases. Let now n ≥ 3 be an odd integer. If
A = {a}, then we can only take a = b. Let us consider a vertex subset A ⊆ V (Cn) such that
|A| ≥ 2 and fix {b} ←P A such that b /∈ A. Since |(A\{a}) ∪ {b}| = |A|, we conclude that
DcP(A) = DcP((A\{a}) ∪ {b}) = V (Cn) and the thesis follows.

On the contrary, let n ≥ 4 be an even integer and {b} ←P A such that b /∈ A. If
A = {vi } and b = vi+ n

2
, the claim follows by the fact that DcP(vi ) = DcP(vi+ n

2
). Finally,

if A �P V (Cn), there always exists a vertex a ∈ A whose distance from b is different
from i + n

2 , thus just replace with another vertex in A, say a′. In this way, we have that
DcP(A\{a}′ ∪ {b}) = V (Cn). This proves that DcP(A) ⊆ ⋃

a∈A({b} ∪ DcP(A\{a})) and
claim follows.

(iii): In view of Theorem 5.1, we must show that for any A ∈ P(�) and any b, c ∈ � we
have that

{b, c} �∀ A and A ∪ {b} �q A ∪ {c} �⇒ A ∪ {b} � A ∪ {c}
To this aim, let A ∈ P(V (Cn)) and b, c ∈ V (Cn)\DcP(A) such that b ∈ DcP(A ∪ {c})
(the case c ∈ DcP(A ∪ {b}) is similar). We have to show that c ∈ DcP(A ∪ {b}), so that
A ∪ {b} �P A ∪ {c}. To this regard, we study the odd and the even case separatedly.

Let n ≥ 3 be an odd integer. In view of part (i), we have only to investigate the cases
A = ∅ and A = vi , for i = 1, . . . , n. Let A = ∅, then to say that b ∈ DcP(c) means that
b = c by part (i), hence c ∈ DcP(A ∪ {b}). Moreover, let now A = {vi } for some i ∈ n̂.
Then DcP(A) = A, thus, for any b, c ∈ V (Cn)\A, we have |A ∪ {b}| = |A ∪ {c}| = 2, so
DcP(A ∪ {b}) = DcP(A ∪ {c}) = V (Cn). This proves the claim when n is odd.

123



Dependency relations 545

On the other hand, let n ≥ 4 be an even integer. In view of part (i), we have only to
investigate the cases A = ∅, A = {vi }, for i = 1, . . . , n, and A = {vi , vi+ n

2
}. If A = ∅,

then let c := vi . The condition b ∈ DcP(A ∪ {c}) implies that b = vi or b = vi+ n
2
. In both

cases, it follows immediately by part (i), that c ∈ DcP(A ∪ {b}). Let now A = {vi } for
some i ∈ n̂. Then, to take b, c ∈ V (Cn)\DcP(A) means that {b, c} ∩ {vi , vi+ n

2
} = ∅.

Hence DcP(A ∪ {b}) = DcP(A ∪ {c}) = V (Cn), i.e. c ∈ DcP(A ∪ {b}) whenever
b ∈ DcP(A ∪ {c}). The case A = {vi , vi+ n

2
} is similar. This shows that P is attractive.

(iv): Let n ≥ 3 be an odd integer. In view of part (i), we have that CLOS(P) =
{∅, {v1}, . . . , {vn}, V (Cn)}. Clearly, if if A = ∅ or A = V (Cn), then (A, b) satisfies (12)
for any b ∈ V (Cn). On the other hand, let A = vi for some i = 1, . . . , n. The pair (vi , vi )

obviously satisfies (12). Moreover, if b = v j for j 
= i , then DcP(A ∪ {b}) = V (Cn) =⋃
a∈A DcP({a, b}), that is clearly equivalent to (12).
Assume now that n ≥ 4 is an even integer. In view of part (i), we have that CLOS(P) =

{∅, {vi , vi+ n
2
}, V (Cn)}, where i = 1, . . . , n

2 . The claim is obvious when A = ∅ or A =
V (Cn). Hence, assume A = {vi , vi+ n

2
} and let b := vi . Then DcP(A ∪ {vi }) = DcP(A) =

DcP({vi })∪DcP(A), so the pair (A, b) satisfies (12). The case b = vi+ n
2
may be investigated

similarly to b = vi . Finally, let c := v j , where j 
= i, i + n
2 . Hence, by part (i), DcP(A ∪

{c}) = V (Cn) = DcP({vi , v j }) ∪ DcP({vi+ n
2
, v j }), i.e. (12) holds.

(v): It is an immediate consequence of the definition of BAS(P[Cn, d]) and of part (i).
��

In the next result, we express the general form of CLOS(P[Pn, d]) and compute
BAS(P[Pn, d]).
Theorem 7.3 Let n ≥ 3 and set P := P[Pn, d]. Then:
(i) we have that

CLOS(P[Pn, d]) = {∅} ∪ {vi , i = 2, . . . , n − 1} ∪ V (Pn);
(ii) we have that

BAS(P[Pn, d]) = {{v1}, {vn}} ∪
{
A ∈

(
V (Pn)

2

)
: {v1, vn} ∩ A = ∅

}
.

In particular, ρ(P[Pn, d]) = 1. On the other hand, if G is a connected n-graph such
that ρ(P[G, d]) = 1, then G = Pn.

Proof (i): Let us compute πP(A) when A runs over P(V (Pn)). Clearly, πP(∅) = v1 . . . vn .
On the other hand, if A = vi for some i = 1, . . . , n, we have that vi constitutes a single
block since it is the only vertex whose distance from vi is 0. This shows that πP(A) 
=
πP(∅), so DcP(∅) = ∅. Let us also observe that when A = {v1} or A = {vn} there are
no two vertices having equal distance from A, so πP({v1}) = πP({vn}) = v1| . . . |vn ,
i.e. {v1} �P {vn} �P V (Pn). Contrariwise, if A = vi , for some i = 2, . . . , n − 1,
just observe that vi−1 ≡A vi+1 but, if B := {v j }, where j ∈ {2, . . . , n − 1}\{i}, then
d(vi−1, v j ) 
= d(vi+1, v j ), therefore vi−1 /≡B vi+1. This proves that πP({vi }) 
= πP({v j })
for any i, j = 2, . . . , n−1 and, also, that v1| . . . |vn ≺ πP(vi ). Finally, let us show that for any
2-subset A, we have A �P V (Pn). It suffices to show the claim for a 2-subset A ∈ P(V (Pn))
such that A∩ {v1, vn} = ∅. To this regard, let A = {vi , v j } and vk ≡A vk′ . Then d(vi , vk) =
d(vi , vk′) = l and d(v j , vk) = d(v j , vk′) = s. Thus {vk, vk′ } = Nl

Pn
(vi ) ∩ Ns

Pn
(v j ), where

Nq
Pn

(v) := {v′ ∈ V (Pn) : d(v, v′) = q}. The only occurring case is that vi−l = v j−s and
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vi+l = v j+s , from which i = j , that is impossible. This means that πP(A) = v1| . . . |vn , so
DcP(vi ) = {vi }when i = 2, . . . , n−1 and, moreover, DcP(A) = V (G) in the other cases.

(ii): The claim on BAS(P[Pn, d]) and on ρ(P[Pn, d]), follows immediately by part (i).
On the other hand, let G be a connected n-graph such that ρ(P[G, d]) = 1. This means

that there exists A ∈ MBAS(P[G, d]) such that |A| = 1. So, let A = {v}. In particular,
πP(A) = πP(V (G)) = v1| . . . |vn , thus the map w ∈ V (G) !→ d(v,w) ∈ {0, . . . , n − 1}
is bijective. The only graph having this property is exactly Pn and v is one of its extreme
points. ��

7.2 Adjacency pairing

Let G be a n-graph. We consider now the pairing P[G] := (V (G), F, {0, 1}) ∈
PAI R(V (G)), where F : V (G) × V (G) → {0, 1} is defined by

F(u, v) :=
{
1 if u ∼ v

0 otherwise

We call P[G] the adjacency pairing of G and we usually write G instead of P[G]. Let
A ⊆ V (G) a vertex subset. It is easy to prove that the A-symmetry relation ≡A can be
translated as follows:

v ≡A v′ :⇐⇒ NG(v) ∩ A = NG(v′) ∩ A (13)

We now prove some basic property of A-symmetry for graphs.

Proposition 7.4 Let v, v′ ∈ G and A ⊆ V (G). Then:

(i) v ≡A v′ if and only if for all z ∈ A it results that v ∼ z if and only if v′ ∼ z.
(ii) If v ∼ v′ then v /≡A v′ or {v, v′} ∩ A = ∅.
(iii) If v ≡A v′ and {v, v′} ∩ A 
= ∅, then v � v′.

Proof Straightforward. ��
Definition 7.5 A n-graph G = (V (G), E(G)) is said complete multipartite if there exist s
non-empty subsets B1, . . . , Bs of V (G) such that

(i) |Bi | = ri ;
(ii) Bi ∩ Bj = ∅ if i 
= j ;
(iii)

⋃s
i=1 Bi = V (G);

(iv) E(G) = {{x, y} : x ∈ Bi , y ∈ Bj , i 
= j}.
We denote a complete multipartite graph by Kr1,...,rs or (B1| · · · |Bs).

In the next result, we are able to express CLOS(Kr1,··· ,rs ) and to prove that complete
multipartite graphs are attractive pairings.

Theorem 7.6 Let G := Kr1,...,rs = (B1| . . . |Bs), with ri ≥ 2 for any i = 1, . . . , s. Then:

(i) A ∈ CLOS(G) if and only if A = V (G) or A = ⋃t
q=1 Biq , where 0 ≤ t ≤ s − 2;

(ii) G is attractive.

Proof (i): We need to compute the A-symmetry partition of Kr1,...,rs . For, let A ⊆ V (G),
then we set

QG(A) := {Bi : A ∩ Bi 
= ∅}.
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We denote by r the quantity |QG(A)|. We claim that

πG(A) = Bi1 | · · · |Bir |QG(A)c (14)

For, just observe that two vertices u, u′ belonging to the same subset Bi are not adjacent to
the vertices of the same subset but they are adjacent to the other vertices. In particular, we
deduce that u ≡A u′ if and only if u, u′ ∈ Bi for some i = 1, . . . , s or u, u′ ∈ QG(A)c.
Therefore, we have πG(A) = Bi1 | . . . |Bir |QG(A)c and this proves (14). Let us also observe
that if r = n−1, thenπG(A) = B1| . . . |Bs = πG(V (G)). It is now straightforward to deduce
that A ∈ CLOS(G) if and only if A = V (G) or A = ⋃t

q=1 Biq , where 0 ≤ t ≤ s − 2.
(ii): Let A ∈ P(V (G)) and b, c ∈ V (G) such that {b, c} �∀ A and {c} ← A ∪ {b} (the

case {b} ← A ∪ {c} is similar). This means that b, c ∈ QG(A)c and, in particular, that they
belong to the same subset Bl ∈ QG(A)c. Thus

DcG(A ∪ {b}) = QG(A) ∪ Bl = DcG(A ∪ {c}),
so b ∈ DcG(A ∪ {c}), as claimed. ��

In the next result, we give the A-symmetry partition for the complete graph Kn , provide
an explicit expression for CLOS(Kn) and finally prove that Kn is attractive.

Proposition 7.7 Let n ≥ 2 and let A = {w1, . . . , wk} be a generic subset of V (Kn) =
{v1, . . . , vn}. Then we have that:
(i) πKn (A) = w1|w2| . . . |wk |Ac;
(ii) CLOS(Kn) = {K ⊆ V (Kn) : |K | ≤ n − 2} ∪ {V (Kn)};
(iii) Kn is attractive.

Proof (i): Let v, v′ ∈ V (Kn), with v 
= v′. In view of (i i i) of Proposition 7.4, as v ∼ v′,
we deduce that the condition v ≡A v′ implies v, v′ ∈ Ac. On the other hand, if v, v′ ∈ Ac,
then ∀z ∈ A, F(z, v) = F(z, v′) = 1, namely v ≡A v′.

(ii): Let H := {B ⊆ V (Kn) : |B| ≤ n − 2} ∪ {V (Kn)} and B ∈ H. We must prove that
B = DcKn (B). By definition of DcKn (B) we have that B ⊆ DcKn (B), therefore it remains
to show that DcKn (B) ⊆ B.

If B = V (Kn), then obviously B = DcKn (B). We can assume therefore B 
= V (Kn).
Let now v ∈ V (Kn)\B. Since |B| ≤ n − 2, there exists a vertex let z ∈ V (Kn)\B such that
v 
= z. Since 0 = F(v, v) 
= F(v, z) = 1 and v ≡B z, by (2) we have that v /∈ DcKn (B). It
follows that V (Kn)\B ⊆ V (Kn)\DcKn (B), and thus DcKn (B) ⊆ B. Hence if B ∈ H then
B = DcKn (B).

We assume now that B ⊆ V (Kn) and B = DcKn (B). We must prove that B = V (Kn) or
|B| ≤ n−2. Let B 
= V (Kn) and suppose by absurd that |B| = n−1. Then Bc is a singleton
and therefore we have that πKn (B) = v1| · · · |vn = πKn (V (Kn)), in view of part (i). Thus
B �Kn V (Kn), and this implies B = DcKn (B) = V (Kn) by virtue of (i i) of Proposition
3.6, which gives a contradiction because B 
= V (Kn). This shows that |B| ≤ n − 2, i.e.
B ∈ H.

(iii): Let A ∈ P(V (Kn)) and b, c ∈ V (Kn) such that {b, c} �∀ A and {c} ← A∪{b} (the
case {b} ← A∪{c} is similar). Then, in view of part (i i), it must necessarily be |A| ≤ n−2,
so DcKn (A) = A. We distinguish two cases: if |A| < n− 2, then again by part (i i), we have
DcKn (A ∪ {b}) = A ∪ {b}, so b = c and the claim is true; on the contrary, if |A| = n − 2,
then |A ∪ {b}| = |A ∪ {c}| = n − 1 and DcKn (A ∪ {b}) = DcKn (A ∪ {c}) = V (Kn), so by
(i i) of Proposition 3.6, A ∪ {b} �P A ∪ {c} and the claim has been proved. ��
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