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Abstract In this paper we prove that the unique entropy solution to a scalar nonlinear conser-
vation lawwith strictlymonotone velocity and nonnegative initial condition can be rigorously
obtained as the large particle limit of a microscopic follow-the-leader type model, which is
interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation
law. The result is complemented with some numerical simulations.
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1 Introduction

The approximation of scalar nonlinear conservation laws

ρt + (ρ v(ρ))x = 0 (1)
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via microscopic modeling is a longstanding challenge. A probabilistic approach to this prob-
lem has been proposed in a vast literature in the past decades, see e.g. [1–3] and the references
therein. The kinetic approximation of nonlinear conservation laws has been carried out in
[4].

In [5], the microscopic Lagrangian formulation of (1) via the follow-the-leader particle
system

ẋi = v

(
�

xi+1 − xi

)
(2)

has been rigorously derived for the first time under the assumption that v ismonotone decreas-
ing (plus some additional assumptions, see (V1) and (V2)). The derivation is restricted to
nonnegative, bounded, and compactly supported solutions ρ. Roughly speaking, the main
result in [5] states what follows. Let ρ̄ ∈ L∞(R;R+) be compactly supported. Assume for
simplicity that ρ̄ has unit mass. For a given integer n ∈ N sufficiently large, let the min-
imal interval [x̄min, x̄max] containing supp[ρ̄] be split into n intervals containing the mass
�n

.= 1/n. Let the edges of those intervals x̄0
.= x̄min < x̄1 < · · · < x̄n−1 < x̄n

.= x̄max be the
initial positions of a set of particles with equal mass �n . Let the particles x0(t), . . . , xn−1(t)
evolve via (2) with � = �n , and let xn(t) = x̄n + v(0) t . Then, the discretized density

ρn(t, x)
.=

n−1∑
i=0

�n

xi+1(t) − xi (t)
1[xi (t),xi+1(t))

converges up to a subsequence a.e. in L1
loc(R+ × R) to the unique entropy solution ρ to (1)

with initial condition ρ̄, see Definition 1 below. Moreover, the empirical measure

ρ̃n(t)
.=

n−1∑
i=0

�n δxi (t)

converges to ρ in L1
loc(R+ ; d1), where d1 is the 1-Wasserstein distance on R.

This note aims at shortening the proof of the result in [5] (in particular by avoiding the
Eulerian-to-Lagrangian coordinates change of variables), removing the assumption of initial
compact support and complementing the results of [5] with some numerical simulations.

2 Preliminaries and result

Let us consider the Cauchy problem for a one-dimensional scalar conservation law{
ρt + f (ρ)x = 0, (t, x) ∈ (0,+∞) × R,

ρ(0, x) = ρ̄(x), x ∈ R,
(3)

where f (ρ)
.= ρ v(ρ). The initial datum ρ̄ and the velocity map v : R+ → R satisfy the

basic assumptions

ρ̄ ∈ L∞(R) ∩ L1(R), ρ̄ ≥ 0, (I1)

v ∈ C1(R+), v′(ρ) < 0 for ρ > 0. (V1)

In some cases, we require the additional (optional) assumptions

ρ̄ ∈ BV(R), (I2)
R+ � ρ 	→ [ρ v′(ρ)] ∈ R− is non-increasing. (V2)
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Deterministic particle approximation 489

For simplicity, we shall normalise the total mass and assume ‖ρ̄‖L1(R) = 1. We introduce
the notation vmax

.= v(0) and we shall assume for simplicity that vmax > 0.

Definition 1 Let ρ̄ satisfy (I1). We say that ρ is a weak solution to (3) if ρ ∈
L∞ (

(0,+∞);L∞ ∩ L1(R)
)
and for all φ ∈ C∞

c ((0,+∞) × R)

¨
R+×R

[
ρ(t, x)ϕt (t, x) + f (ρ(t, x)ϕx (t, x)

]
dxdt +

ˆ
R

ρ̄(x)φ(0, x)dx = 0.

A weak solution ρ ∈ L∞(R+ × R) to the Cauchy problem (3) is called entropy solution to
the Cauchy problem (3) if
¨

R+×R

[
|ρ(t, x) − k| ϕt (t, x) + sign(ρ(t, x) − k)

[
f (ρ(t, x)) − f (k)

]
ϕx (t, x)

]
dxdt ≥ 0

for all ϕ ∈ C∞
c ((0,+∞) × R) with ϕ ≥ 0 and for all k ≥ 0.

We point out that the above definition is slightly weaker than the definition in [6]. The
next theorem collects the uniqueness result in [6] and its variant in [7].

Theorem 1 [6,7] Assume that (I1) and (V1) are satisfied. Then there exists a unique entropy
solution according to Definition 1.

We now introduce the approximation scheme. For future use, we introduce the notation

R
.= ‖ρ̄‖L∞(R).

For a given n ∈ N sufficiently large, we set �n
.= 1/n. Let x̄n1 be defined by

x̄n1
.= sup

{
x ∈ R :

ˆ x

−∞
ρ̄(x)dx < �n

}
,

and the points x̄ni with i ∈ {2, . . . , n − 1} be defined recursively by

x̄ni = sup

{
x ∈ R :

ˆ x

x̄ni−1

ρ̄(x)dx < �n

}
.

It follows that x̄n1 < x̄n2 < · · · < x̄nn−1. Moreover

ˆ x̄n1

−∞
ρ̄(x)dx =

ˆ x̄ni

x̄ni−1

ρ̄(x)dx =
ˆ +∞

x̄nn−1

ρ̄(x)dx = �n, i ∈ {2, . . . , n − 1}. (4)

We let the (n − 1) particles defined above evolve according to the follow-the-leader system
of ODEs⎧⎪⎨

⎪⎩
ẋni (t) = v(Rn

i (t)), i ∈ {1, . . . , n − 2},
ẋnn−1(t) = vmax,

xni (0) = x̄ni , i ∈ {1, . . . , n − 1},
Rn
i (t)

.= �n

xni+1(t) − xni (t)
. (5)

The discrete maximum principle in [5, Lemma 1] ensures that the solution (xni )n−1
i=1 to (5) is

well defined, since the particles (xni )n−1
i=1 strictly preserve their initial order. More precisely,

we have the following lemma.
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490 M. Di Francesco et al.

Lemma 1 (Discrete maximum principle [5]) Assume (I1) and (V1) are satisfied. Then, for
all t ∈ R+, the solution to (5) satisfies

xni+1(t) − xni (t) ≥ �n

R
, i ∈ {1, . . . , n − 2}.

We have split the initial condition into n regions with equal mass �n . We have then defined
the motion of (n − 1) particles. This permits to reconstruct a time-depending (piecewise
constant) density within the interval [xn1 (t), xnn−1(t)], which will consist of (n − 2) constant
values on as many intervals. Under the natural assumption that a mass �n will be maintained
on each interval, we still need to assignmass to two points outside the interval [xn1 (t), xnn−1(t)]
in order to obtain a time-depending density with unit mass. To perform this task, we set two
artificial particles xn0 (t) and xnn (t) as follows

xn0 (t)
.= 2xn1 (t) − xn2 (t), xnn (t)

.= 2xnn−1(t) − xnn−2(t), (6)

and let Rn
0 (t)

.= Rn
1 (t) and Rn

n−1(t)
.= Rn

n−2(t) for all t ≥ 0. We then set

ρn(t, x)
.=

n−1∑
i=0

Rn
i (t) 1[xni (t),xni+1(t))

(x) =
n−1∑
i=0

�n

xni+1(t) − xni (t)
1[xni (t),xni+1(t))

(x). (7)

We notice that
´
R

ρn(t, x)dx = n �n = 1 and that ρn(t, ·) is compactly supported for all n
and for all t . For future use we compute⎧⎪⎪⎨

⎪⎪⎩
Ṙn
i (t) = − Rn

i (t)2

�n

[
v(Rn

i+1(t)) − v(Rn
i (t))

]
, i ∈ {1, . . . , n − 3},

Ṙn
n−2(t) = − Rn

n−2(t)
2

�n

[
vmax − v(Rn

n−2(t))
]
.

(8)

Remark 1 In case supp[ρ̄] is bounded either from above or from below, it is possible to
improve the above construction. In the former case, the particle xnn can be set onmax{supp[ρ̄]}
initially and let evolve with maximum speed vmax, and the preceding particle xnn−1 let evolve
according to ẋnn−1(t) = v(�n/(xnn (t) − xnn−1(t))). In the latter case, the particle x

n
0 can be set

on min{supp[ρ̄]} initially and let evolve according to ẋn0 (t) = v(�n/(xn1 (t) − xn0 (t))). In [5]
both these conditions are required for the initial datum and such construction is applied.

Our result, which extends the one in [5], reads as follows.

Theorem 2 Assume that (I1) and (V1) are satisfied. Moreover, assume that at least one of
the two conditions (I2) and (V2) is also satisfied. Then, ρn converges (up to a subsequence)
almost everywhere and in L1

loc on R+ × R to the unique entropy solution ρ to the Cauchy
problem (3) according to Definition 1.

The result in [5] also states the convergence of the empirical measure ρ̃n(t)
.=∑n

i=1 �n δxni (t) towards the entropy solution ρ. We conjecture that the result holds also in
the case of not compactly supported initial datum, with the additional hypothesis of finite
first moment. For the sake of brevity, we shall skip that part in this note.

Remark 2 Condition (V2) can be also motivated as follows. The ODE system (8) can be
roughly rewritten as

Ṙn
i (t) = − Rn

i (t)2

�n

[
v(Rn

i+1(t)) − v(Rn
i (t))

] = −Rn
i (t)

v(Rn
i+1(t)) − v(Rn

i (t))

xni+1(t) − xni (t)
,
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Deterministic particle approximation 491

which mimics the ‘Lagrangian’ continuum equation

Dρ

Dt
+ ρv′(ρ)

Dρ

Dx
= 0, (9)

where Dρ
Dt is a material time derivative, and x is still the Eulerian space variable. The equation

(9) can be seen as a conservation law with flux having ρv′(ρ) as first derivative. Condition
(V2) requires ρv′(ρ) to be monotone non-increasing, i.e. (9) having concave flux.

3 Proof of the main result

In this section we prove Theorem 2. Clearly, the result in Lemma 1 ensures that
‖ρn(t, ·)‖L∞(R) ≤ R for all t ≥ 0. For notational simplicity, whenever it is clear from
the context, we shall omit the n-dependence in the approximating scheme. Moreover, as our
result is a slight extension of the one in [5], we shall often shorten proofs and refer to the
corresponding results in [5], still trying to keep this note as much self-contained as possible.

As usual in the context of scalar conservation laws, a uniform control of the BV norm is
necessary in order to gain enough compactness of the approximating scheme. In our case, the
compactness can be obtained in two distinct ways. The first one is a uniform BV contraction
property for ρn , and it obviously requires BV initial data.

Proposition 1 Assume that (I1), (I2) and (V1) are satisfied. Then, for all n ∈ N one has

TV[ρn(t, ·)] ≤ TV[ρn(0, ·)] ≤ TV[ρ̄].

Proof The estimate TV[ρn(0, ·)] ≤ TV[ρ̄] is a simple exercise. We now compute

d

dt
TV[ρn(t, ·)] = d

dt

⎡
⎣R1(t) + Rn−2(t) +

n−3∑
i=1

|Ri (t) − Ri+1(t)|
⎤
⎦

= Ṙ1(t) + Ṙn−2(t) +
n−3∑
i=1

sign
(
Ri (t) − Ri+1(t)

)[
Ṙi (t) − Ṙi+1(t)

]

= [
1 + sign

(
R1(t) − R2(t)

)]
Ṙ1(t) + [

1 − sign
(
Rn−3(t) − Rn−2(t)

)]
Ṙn−2(t)

+
n−3∑
i=2

[
sign

(
Ri (t) − Ri+1(t)

)− sign
(
Ri−1(t) − Ri (t)

)]
Ṙi (t).

By plugging (8) into the above computation and employing the assumption (V1) one can
easily prove that the above quantity is not positive. �

The secondway to achieve compactness is via the following discrete Oleinik-type inequal-
ity. Here we do not require the extra assumption (I2) on the initial condition, but we need the
assumption (V2) on the velocity map.

Proposition 2 Assume that (I1), (V1) and (V2) are satisfied. Then, for all t ≥ 0 one has

ẋni+1(t) − ẋni (t)

xni+1(t) − xni (t)
≤ 1

t
, i ∈ {0, . . . , n − 1}. (10)
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Proof Due to (6), it suffices to prove (10) for i ∈ {1, . . . , n − 2}. We start by observing that
this is equivalent to prove

zi (t)
.= t Ri (t)

[
ẋi+1(t) − ẋi (t)

]
≤ �n, i ∈ {1, . . . , n − 2}.

We shall prove the above estimate inductively on i by using the Eq. (8). We drop the time
dependency for simplicity.

We start by proving zn−2 = t Rn−2[vmax − v(Rn−2)] ≤ �n . We have, due to (8) and (V1),
that

żn−2 = Rn−2
[
vmax − v(Rn−2)

]+ t Ṙn−2
[
vmax − v(Rn−2) − Rn−2 v′(Rn−2)

]

= Rn−2
[
vmax − v(Rn−2)

]− t
R2
n−2

�n

[
vmax − v(Rn−2)

][
vmax − v(Rn−2) − Rn−2 v′(Rn−2)

]

≤ Rn−2
[
vmax − v(Rn−2)

] [
1 − zn−2

�n

]
.

Since zn−2(0) = 0, a simple comparison argument shows that zn−2(t) ≤ �n for all times.
Next we prove that the inequality zi+1(t) ≤ �n being true for all t ≥ 0 and for some

i ∈ {1, . . . , n−3} implies zi (t) = t Ri (t) [v(Ri+1(t))−v(Ri (t))] ≤ �n for all t ≥ 0.We use
the positive part (z)+

.= max{z, 0} and recall that sign+(zi ) = sign+(v(Ri+1) − v(Ri )) =
sign+(Ri − Ri+1) for any i ∈ {1, . . . , n − 3}. Let us compute

d

dt
(zi )+ = Ri

(
v(Ri+1) − v(Ri )

)
+ + t Ṙi

(
v(Ri+1) − v(Ri )

)
+

+ t Ri
[
v′(Ri+1) Ṙi+1 − v′(Ri ) Ṙi

]
sign+

(
v(Ri+1) − v(Ri )

)

= Ri
(
v(Ri+1) − v(Ri )

)
+

[
1 − (zi )+

�n

]
− v′(Ri+1) Ri Ri+1

zi+1

�n
sign+(zi )

+ v′(Ri ) R
2
i
(zi )+
�n

.

The inequality zi+1 ≤ �n and the assumption (V2) imply

d

dt
(zi )+ ≤ Ri

[ (
v(Ri+1) − v(Ri )

)
+ − v′(Ri ) Ri

] [
1 − (zi )+

�n

]
.

We observe that the first squared bracket on the right-hand-side of the above estimate is
nonnegative. Therefore, a comparison argument similar to that used before shows that zi (t) ≤
�n for all times t ≥ 0. Hence, the proof is complete. �

For i ∈ {1, . . . , n − 2}, the estimate (10) reads

v(Rn
i+1(t)) − v(Rn

i (t))

xni+1(t) − xni (t)
≤ 1

t
,

which recalls the one-sided Lipschitz condition in [8] and characterises entropy solutions to
(1) for genuine nonlinear fluxes.

The result in Proposition 2 implies a uniform bound for ρn inBVloc((0,+∞)×R). In this
sense, the L∞ → BV smoothing effect featured by genuinely nonlinear scalar conservation
laws is intrinsically encoded in the particle scheme (5). In what follows, we denote by
TV( f ; U ) the (local) total variation of a function f on the subset U ⊂ R.
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Deterministic particle approximation 493

Proposition 3 Assume that (I1), (V1) and (V2) are satisfied. Let δ > 0 and a < b. Then, the
quantity

sup
t≥δ

TV
(
ρn(t, ·); [a, b])

is uniformly bounded with respect to n.

Proof Fix t ≥ δ. We assume that xn0 (t) ≤ a < b ≤ xnn (t), leaving to the reader the study of
the remaining cases. We introduce then

I na (t)
.= max

{
i ∈ {0, . . . , n} : xni (t) ≤ a

}
, I nb (t)

.= max
{
i ∈ {0, . . . , n} : xni (t) ≤ b

}
.

We consider

σ n(t, x)
.= v(ρn(t, x)) − 1

t
Xn(t), Xn(t, x)

.=
n−1∑
i=0

xni (t) 1[xni (t),xni+1(t))
(x).

We point out that σ n(t, ·) is non-increasing in (xn0 (t), xnn (t)). Indeed, by (6)

σ n(t, xni (t)−) − σ n(t, xni (t)+) = 1

t
[xni (t) − xni−1(t)] ≥ 0, i ∈ {1, n − 1},

and the ODEs in (5) together with the inequality (10) show that σ n(t, ·) is non-increasing in
(xn1 (t), xnn−1(t)).

By (7) we can estimate the total variation of v(ρn(t, ·)) on [a, b] as follows

TV
(
v(ρn(t, ·)); [a, b]

)
=
∣∣∣v(Rn

I na (t)+1) − v(Rn
I na (t))

∣∣∣+ TV
(
v(ρn(t, ·)); [xnI na (t)+1, x

n
I nb (t)]

)

≤
[
vmax − v(R)

]
+ TV

(
σ n(t, ·); [xnI na (t)+1, x

n
I nb (t)]

)
+ 1

t
TV

(
Xn(t, ·); [xnI na (t)+1, x

n
I nb (t)]

)

=
[
vmax − v(R)

]
+
[
σ n(t, xnI na (t)+1) − σ n(t, xnI nb (t))

]
+ 1

t

[
Xn(t, xnI nb (t)) − Xn(t, xnI na (t)+1)

]

=
[
vmax − v(R)

]
+
[
v(ρn(t, xnI na (t)+1)) − v(ρn(t, xnI nb (t)))

]
+ 2

t

[
xnI nb (t) − xnI na (t)+1

]

≤ 2

[
vmax − v(R) + b − a

δ

]
.

Since v is monotone and continuous on R+, we get the assertion. �
Propositions 1 and 3 provide the needed compactness of ρn with respect to the space

variable. Typically, in the context of scalar conservation laws (e.g. the wave-front tracking
scheme) an L1 uniform Lipschitz continuity estimate provides sufficient control of the time
oscillations. In our case, we are only able to provide a uniform time continuity estimate with
respect to the 1-Wasserstein distance, which nevertheless will suffice to achieve strong L1

compactness (with respect to both space and time).
We first recall the following concepts on the one dimensional 1-Wasserstein distance. Let

μ be a probability measure on R. We define the pseudo-inverse variable Xμ ∈ L1([0, 1]) as
Xμ(z)

.= inf{x ∈ R : μ((−∞, x]) > z}.
Given two probability measures μ and ν on R, we set

W1(μ, ν)
.= ‖Xμ − Xν‖L1([0,1]).

123



494 M. Di Francesco et al.

By (7) we have that

Xρn(t,·)(z) =
n−1∑
i=0

[
xni (t) + (z − i �) Rn

i (t)−1
]
1[i�,(i+1) �)(z).

Proposition 4 Assume (I1) and (V1) are satisfied. There exists a constant C independent of
n, such that W1(ρ

n(t, ·), ρn(s, ·)) ≤ C |t − s| for any t, s > 0.

Proof For 0 < s < t we compute

W1(ρ
n(t, ·), ρn(s, ·)) = ‖Xρn(t,·) − Xρn(s,·)‖L1([0,1])

=
n−1∑
i=0

ˆ (i+1) �

i�

∣∣∣xni (t) − xni (s) + (z − i �)
(
Rn
i (t)−1 − Rn

i (s)−1
)∣∣∣ dz

≤
n−1∑
i=0

� |xni (t) − xni (s)| +
n−1∑
i=0

∣∣∣Rn
i (t)−1 − Rn

i (s)−1
∣∣∣
ˆ (i+1) �

i�
(z − i �)dz

≤ max{vmax, |v(R)|} |t − s| +
n−1∑
i=0

�2

2

ˆ t

s

∣∣∣∣ ddτ

(
Rn
i (τ )−1

)∣∣∣∣ dτ,

and by using (8) and (6)

W1(ρ
n(t, ·), ρn(s, ·)) ≤ max{vmax, |v(R)|} |t − s|

+
n−3∑
i=1

�

ˆ t

s
|v(Rn

i+1(τ )) − v(Rn
i (τ ))|dτ + �

ˆ t

s
|vmax − v(Rn

n−2(τ ))|dτ

≤
[
max{vmax, |v(R)|} + 2[vmax − v(R)]

]
|t − s|. �

Theorem 3 (Generalised Aubin-Lions lemma) Let T > 0, a, b ∈ R be fixed with a < b
and v satisfy (V1). Let ρn be a sequence in L∞((0, T ); L1(R)) with ρn(t, ·) ≥ 0 and
‖ρn(t, ·)‖L1(R) = 1 for all n ∈ N and for all t ∈ [0, T ]. Assume further that

(A) supn∈N
[´ T

0

[‖v(ρn(t, ·))‖L1([a,b]) + TV(v(ρn(t, ·)); [a, b])] dt] < +∞,

(B) there exists a constantC > 0 independent of n such thatW1(ρ
n(t, ·), ρn(s, ·)) ≤ C |t−s|

for all s, t ∈ (0, T ).

Then, ρn is strongly relatively compact in L1([0, T ] × [a, b]).

The proof of Theorem 3 is presented in the Appendix.

Conclusion of the proof of Theorem 2 Propositions 1 and 3 show that ρn satisfies the
assumption (A) of Theorem 3 on the time interval [δ, T ] for arbitrary 0 < δ < T when
beside (I1) and (V1), we assume either (I2) or (V2). The result in Proposition 4 implies that
ρn satisfies assumption (B) of Theorem 3. Hence, by a simple diagonal argument stretching
the time interval [δ, T ] to (0, T ], one easily gets that ρn has a subsequence (still denoted ρn)
converging almost everywhere in L1

loc((0, T ) × R). Let ρ be the limit of said subsequence.
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Deterministic particle approximation 495

• Step 1: ρ is a weak solution to (3). Let ϕ ∈ C∞
c (R+ × R). By (7) we compute

¨
R+×R

[
ρn(t, x) ϕt (t, x) + ρn(t, x) v(ρn(t, x)) ϕx (t, x)

]
dxdt

=
n−1∑
i=0

ˆ
R+

Rn
i (t)

[ˆ xni+1(t)

xni (t)
ϕt (t, x)dx + v(Rn

i (t))
[
ϕ(t, xni+1(t)) − ϕ(t, xni (t))

]]
dt

=
n−1∑
i=0

ˆ
R+

Rn
i (t)

[
d

dt

(ˆ xni+1(t)

xni (t)
ϕ(t, x)dx

)
+
[
ẋni (t) − v(Rn

i (t))
]
ϕ(t, xni (t))

−
[
ẋni+1(t) − v(Rn

i (t))
]
ϕ(t, xni+1(t))

]
dt

=
n−1∑
i=0

ˆ
R+

[
−Ṙn

i (t)

(ˆ xni+1(t)

xni (t)
ϕ(t, x)dx

)
+ Rn

i (t)
[
ẋni (t) − v(Rn

i (t))
]
ϕ(t, xni (t))

− Rn
i (t)2

�

[
ẋni+1(t) − v(Rn

i (t))
][ˆ xni+1(t)

xni (t)
ϕ(t, xni+1(t))dx

]]
dt −

ˆ
R

ρn(0, x) ϕ(0, x)dx .

By (4) and the definition of Rn
i we have that

∣∣∣∣
ˆ
R

[
ρ̄(x) − ρn(0, x)

]
ϕ(0, x)dx

∣∣∣∣ ≤
ˆ x̄n0

−∞
ρ̄(x) ϕ(0, x)dx +

ˆ +∞
x̄nn

ρ̄(x) ϕ(0, x)dx

+
n−1∑
i=0

∣∣∣∣∣
ˆ x̄ni+1

x̄ni

[
ρ̄(x) − Rn

i (0)
]
ϕ(0, x)dx

∣∣∣∣∣
≤ 2�n ‖ϕ(0, ·)‖L∞(R)

+
n−1∑
i=0

∣∣∣∣∣
ˆ x̄ni+1

x̄ni

ρ̄(x)

[
ϕ(0, x) −

 x̄ni+1

x̄ni

ϕ(0, y)dy

]
dx

∣∣∣∣∣
and clearly the above quantity goes to zero as n → +∞. Now we have to consider two
separate cases.

• Case 1: ρ̄ is compactly supported. In this case,we canuse the improved construction
of the particle scheme described in Remark 1 and the equations analogous to (8) and (5)
as follows. Assuming that supp[ϕ] ⊂ [δ, T ] × R for some 0 < δ < T , we obtain
∣∣∣∣
¨

R+×R

[
ρn(t, x) ϕt (t, x) + ρn(t, x) v(ρn(t, x)) ϕx (t, x)

]
dxdt

∣∣∣∣

=
∣∣∣∣
n−2∑
i=0

ˆ T

0

Rn
i (t)2

�

[
v(Rn

i+1(t)) − v(Rn
i (t))

] [ˆ xni+1(t)

xni (t)

[
ϕ(t, x) − ϕ(t, xni+1(t))

]
dx

]
dt

+
ˆ T

0

Rn
n−1(t)

2

�

[
vmax − v(Rn

n−1(t))
] [ˆ xnn (t)

xnn−1(t)

[
ϕ(t, x) − ϕ(t, xnn (t))

]
dx

]
dt

∣∣∣∣

≤ T Lip[ϕ] �

2
sup

t∈[δ,T ]

⎡
⎣n−2∑
i=0

∣∣v(Rn
i+1(t)) − v(Rn

i (t))
∣∣+ ∣∣vmax − v(Rn

n−1(t))
∣∣
⎤
⎦

≤ T Lip[ϕ] �

2

[
vmax − v(R) + sup

t∈[δ,T ]
TV

(
v(ρn(t, ·)); J (T )

)]
, ♠
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where J (T )
.= [

min{supp[ρ̄]} + v(R) T,max{supp[ρ̄]} + vmax T
]
. Hence, by Proposi-

tion 3 the right hand side in (♠) tends to zero as n → +∞, and, since ρn tends to ρ

almost everywhere up to a subsequence, we have that ρ is a weak solution to the Cauchy
problem (3) for positive times.

• Case 2: ρ̄ is NOT compactly supported. For simplicity we shall assume that
supp[ρ̄] is unbounded both from above and from below. The remaining cases are minor
variations of this one.Assume supp[ϕ] ⊂ [δ, T ]×[a, b] for some0 < δ < T and for some
a < b. Let n ∈ N be sufficiently large so that x̄n1 < a − vmax T and x̄nn−1 > b − v(R) T .
Such a choice is possible because supp[ρ̄] is unbounded both from above and from below,
which implies that the sequence supp[ρn(0, ·)] is not uniformly bounded with respect to
n ∈ N both from above and from below. Such assumptions imply that xn1 (t) < a and
xnn−1(t) > b for all t ∈ [0, T ]. We have

∣∣∣∣
¨

R+×R

[
ρn(t, x) ϕt (t, x) + ρn(t, x) v(ρn(t, x)) ϕx (t, x)

]
dxdt

∣∣∣∣

=
∣∣∣∣
n−2∑
i=1

ˆ
R+

Rn
i (t)

[ˆ xni+1(t)

xni (t)
ϕt (t, x)dx + v(Rn

i (t))
[
ϕ(t, xni+1(t)) − ϕ(t, xni (t))

]]
dt

∣∣∣∣
for all ϕ ∈ C∞

c (R+ × R) and the assertion can be obtained as in case 1 (we omit the
details).

• Step 2: ρ satisfies the entropy inequality in Definition 1. Let ϕ ∈ C∞
c ((0,+∞) × R)

with ϕ ≥ 0 and k ≥ 0. By (7)

¨
R+×R

[
|ρ(t, x) − k| ϕt (t, x) + sign(ρ(t, x) − k)

[
f (ρ(t, x)) − f (k)

]
ϕx (t, x)

]
dxdt

=
ˆ
R+

ˆ xn0 (t)

−∞

[
k ϕt (t, x) + f (k) ϕx (t, x)

]
dxdt

+
ˆ
R+

ˆ +∞

xnn (t)

[
k ϕt (t, x) + f (k) ϕx (t, x)

]
dxdt

+
n−1∑
i=0

ˆ
R+

[
|Rn

i (t) − k|
(ˆ xni+1(t)

xni (t)
ϕt (t, x)dx

)

+ sign(Rn
i (t) − k)

[
f (Rn

i (t)) − f (k)
][

ϕ(t, xni+1(t)) − ϕ(t, xni (t))
]]

dt

= k
ˆ
R+

[[
v(k) − ẋn0 (t)

]
ϕ(t, xn0 (t)) − [

v(k) − ẋnn (t)
]
ϕ(t, xnn (t))

]
dt

+
n−1∑
i=0

ˆ
R+

sign(Rn
i (t) − k)

[[
Rn
i (t) − k

] d

dt

(ˆ xni+1(t)

xni (t)
ϕ(t, x)dx

)

+
[
f (Rn

i (t)) − f (k) − (Rn
i (t) − k) ẋni+1(t)

]
ϕ(t, xni+1(t))

−
[
f (Rn

i (t)) − f (k) − (Rn
i (t) − k) ẋni (t)

]
ϕ(t, xni (t))

]
dt

= k
ˆ
R+

[[
v(k) − ẋn0 (t)

]
ϕ(t, xn0 (t)) − [

v(k) − ẋnn (t)
]
ϕ(t, xnn (t))

]
dt
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+
n−1∑
i=0

ˆ
R+

sign(Rn
i (t) − k)

[
−Ṙn

i (t)

(ˆ xni+1(t)

xni (t)
ϕ(t, x)dx

)

−
[
Rn
i (t)

[
ẋni+1(t) − v(Rn

i (t))
]− k

[
ẋni+1(t) − v(k)

]]
ϕ(t, xni+1(t))

+
[
Rn
i (t)

[
ẋni (t) − v(Rn

i (t))
]− k

[
ẋni (t) − v(k)

]]
ϕ(t, xni (t))

]
dt.

Now we have to consider two separate cases.
• Case 1: ρ̄ is compactly supported. In this case,we canuse the improved construction

of the particle scheme described in Remark 1 and the equations analogous to (8) and (5)
as follows. Assuming that supp[ϕ] ⊂ [δ, T ] × R for some 0 < δ < T , we obtain

¨
R+×R

[
|ρ(t, x) − k| ϕt (t, x) + sign(ρ(t, x) − k)

[
f (ρ(t, x)) − f (k)

]
ϕx (t, x)

]
dxdt

= k
ˆ
R+

[[
v(k) − v(Rn

0 (t))
]
ϕ(t, xn0 (t)) − [

v(k) − vmax
]
ϕ(t, xnn (t))

]
dt

+
n−2∑
i=0

ˆ
R+

sign(Rn
i (t) − k)

[
Rn
i (t)2

�n

[
v(Rn

i+1(t)) − v(Rn
i (t))

]

×
[ˆ xni+1(t)

xni (t)

[
ϕ(t, x) − ϕ(t, xni+1(t))

]
dx

]

+ k
[[

v(Rn
i+1(t)) − v(k)

]
ϕ(t, xni+1(t)) − [

v(Rn
i (t)) − v(k)

]
ϕ(t, xni (t))

]]
dt

+
ˆ
R+

sign(Rn
n−1(t) − k)

[
Rn
n−1(t)

2

�n

[
vmax − v(Rn

n−1(t))
]

×
[ˆ xnn (t)

xnn−1(t)

[
ϕ(t, x) − ϕ(t, xnn (t))

]
dx

]

+ k
[[

vmax − v(k)
]
ϕ(t, xnn (t)) − [

v(Rn
n−1(t)) − v(k)

]
ϕ(t, xnn−1(t))

]]
dt.

We already proved, see (♠), that

n−2∑
i=0

ˆ
R+

sign(Rn
i (t) − k)

Rn
i (t)2

�n

[
v(Rn

i+1(t)) − v(Rn
i (t))

]

×
[ˆ xni+1(t)

xni (t)

[
ϕ(t, x) − ϕ(t, xni+1(t))

]
dx

]
dt

+
ˆ
R+

sign(Rn
n−1(t) − k)

Rn
n−1(t)

2

�n

[
vmax − v(Rn

n−1(t))
]

×
[ˆ xnn (t)

xnn−1(t)

[
ϕ(t, x) − ϕ(t, xnn (t))

]
dx

]
dt

converges to zero as n → +∞. Hence, to conclude it suffices to observe that
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k

[[
v(k) − v(Rn

0 (t))
]
ϕ(t, xn0 (t)) − [

v(k) − vmax
]
ϕ(t, xnn (t))

+
n−2∑
i=0

sign(Rn
i (t) − k)

[[
v(Rn

i+1(t)) − v(k)
]
ϕ(t, xni+1(t))

− [
v(Rn

i (t)) − v(k)
]
ϕ(t, xni (t))

]

+ sign(Rn
n−1(t) − k)

[[
vmax − v(k)

]
ϕ(t, xnn (t)) − [

v(Rn
n−1(t)) − v(k)

]
ϕ(t, xnn−1(t))

]]

= k

[n−1∑
i=1

[
sign(Rn

i−1(t) − k) − sign(Rn
i (t) − k)

][
v(Rn

i (t)) − v(k)
]
ϕ(t, xni (t))

+ [
1 + sign(Rn

0 (t) − k)
][

v(k) − v(Rn
0 (t))

]
ϕ(t, xn0 (t))

+ [
1 + sign(Rn

n−1(t) − k)
][

vmax − v(k)
]
ϕ(t, xnn (t))

]
≥ 0.

• Case 2: ρ̄ is NOT compactly supported. For simplicity we shall assume that
supp[ρ̄] is unbounded both from above and from below. The remaining cases are minor
variations of this one. Then, with the same notations and assumptions used in case 2 of
step1, we have
¨

R+×R

[
|ρ(t, x) − k| ϕt (t, x) + sign(ρ(t, x) − k)

[
f (ρ(t, x)) − f (k)

]
ϕx (t, x)

]
dxdt

=
n−2∑
i=1

ˆ
R+

[
|Rn

i (t) − k|
(ˆ xni+1(t)

xni (t)
ϕt (t, x)dx

)

+ sign(Rn
i (t) − k)

[
f (Rn

i (t)) − f (k)
][

ϕ(t, xni+1(t)) − ϕ(t, xni (t))
]]

dt

for all ϕ ∈ C∞
c ((0,+∞) ×R) and the assertion can be obtained as in the above case 1

(we omit the details). �

4 Numerical simulations

This section is devoted to present numerical simulations for the particle method described
above.We compare the numerical simulationswith the exact solutions obtained by themethod
of characteristics.

The particle system (5) is solved using the Runge-Kutta MATLAB solver ODE23, with
the initial mesh size determined by the total number of particles N and the initial density
values. In Fig. 1 we take N = 200 particles and the initial datum

ρ̄(x) =

⎧⎪⎨
⎪⎩
0.4 if − 1 ≤ x ≤ 0,

0.8 if 0 < x ≤ 1,

0 otherwise,

(11)

and final time t = 0.5. In Fig. 2 we compare the simulation with N = 400 particles with
exact solutions at final time t = 0.5.
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Fig. 1 The evolution of ρn with initial datum (11). The cirles in the bottom (in blue in the pdf version of the
paper) denote particle location, while the stars in the top (in red in the pdf version of the paper) denote the
computed density
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1 Comparison

Exact solution
Discretized densitiy

Fig. 2 Comparison between the exact solution (continuous blue line in the pdf version of the paper) and
ρn(t, x) (plus in red in the pdf version of the paper) for N = 400 particles and initial datum (11)

Table 1 Discrete L1-errors corresponding to different numbers of particles N

N 50 100 200 400 1000

4.8e − 02 2.9e − 02 1.4e − 02 8.2e − 03 3.6e − 03

For several values of N , we do a quantitative evaluation through the discreteL1-error, com-
puted as the difference between approximated and exact solutions. The results are collected
in Table 1.

Appendix: Proof of Theorem 3

We recall the following theorem.

Theorem 4 [9] Let X be a separable Banach space. Let
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(F) F : X → [0,+∞] be a normal coercive integrand, i.e. F is lower semi-continuous w.r.t.
the topology of X and its sub-levels are relatively compact in X;

(g) g : X × X → [0,+∞] be a pseudo-distance, i.e. g is lower semi-continuous w.r.t. the
topology ofX, and if ν, μ ∈ X are such that g(ν, μ) = 0, F[ν] < +∞ and F[μ] < +∞,
then ν = μ.

For a fixed T > 0, let U be a set of measurable functions ν : (0, T ) → X such that

sup
ν∈U

ˆ T

0
F [ν(t)] dt < +∞ and lim

h↘0

[
sup
ν∈U

ˆ T−h

0
g (ν(t + h), ν(t)) dt

]
= 0. (12)

Then U is strongly relatively compact in L1((0, T );X).

Let I
.= [a, b]. With the same notation of Theorem 4, we setX

.= L1(I ),U
.= {ρn}n , and

F[ρ] .= ‖v(ρ)‖L1(I ) + TV(v(ρ); I ).

Given a probability measure μ, we set

μ̃
.= μ|(a,b) + μ((−∞, a]) δa + μ([b,+∞)) δb.

We then define

g(μ, ν)
.=
{
W1(μ̃, ν̃) if μ(R) = ν(R) = 1,

+∞ otherwise.

The lower semi-continuity of F with respect to L1(I ) follows from [10, Theorem 1, page
172] and from the fact that v is continuous. The compactness property follows from [10,
Theorem 4, page 176]. This proves that F satisfies the assumption (F). Let μ, ν ∈ L1(I ) be
two probability measures. We observe that W1(μ̃, ν̃) = ‖Xμ̃ − X ν̃‖L1([0,1]), with

Xμ̃
.= a 1[0,μ((−∞,a])] + Xμ 1(μ((−∞,a]),μ([b,+∞))) + b 1[μ([b,+∞)),1].

Consequently, setting Fμ̃, Fν̃ : I → [0, 1]

Fμ̃(x)
.=
ˆ x

−∞
μ(y)dy, Fν̃ (x)

.=
ˆ x

−∞
ν(y)dy,

we easily get, from the fundamental theorem of integral calculus,

W1(μ̃, ν̃) = ‖Xμ̃ − X ν̃‖L1([0,1]) =
ˆ
I
|Fμ̃(x) − Fν̃ (x)|dx

≤
ˆ b

a

ˆ x

a
|μ(y) − ν(y)|dydx ≤ (b − a)‖μ − ν‖L1([a,b]),

and this implies the (lower semi) continuity of g with respect to L1(I ). The remaining part
of the assumption (g) is straightforward. Finally, the conditions (12) easily follow from (A)
and (B) in the statement of Theorem 3.
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