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Abstract We review the main results on some basic kinetic models for wealth distribution
in a simple market economy, with interaction rules involving random variables to take into
account effects due to market risks. Then, we investigate in more detail long time behavior of
a model which includes the taxation phenomenon and the redistribution of collected wealth
according to proper criterions. Finally, we propose a new class of kinetic equations in which
agent’s trading propensity varies according to the personal amount of wealth.

Keywords Boltzmann and Fokker–Planck equations · Kinetic approach to economic
sciences · Continuous trading limit
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1 Introduction

Kinetic theory was originally proposed in nineteenth century by Maxwell and Boltzmann as
a tool to describe the evolution of a rarefied gas, by means of methods typical of statistical
mechanics. It is an intermediate (mesoscopic) approach between the unfeasible microscopic
descriptionof single particles, and the investigationonly ofmainmacroscopicfields of the gas,
typical of fluid-dynamics. The most famous model is the Boltzmann equation, an integro-
differential equation for the “distribution function” f (x, v, t), representing the density of
molecules at time t in the phase space (where x stands for the position and v for the molecular
velocity, which is the kinetic variable, peculiar of this theory). In classical kinetic approach
collisions are assumed to be elastic, namely with conservation of global momentum and
kinetic energy in each encounter, and these constraints allow to determine uniquely post-
collision velocities (v′,w′) in terms of the ingoing (v,w) and of the “impact parameters” of
the collision. Suitable moments (with respect to v) of the distribution function provide major
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macroscopic fields, therefore Boltzmann approach allows to recover hydrodynamic Euler or
Navier-Stokes equations in proper asymptotic limits. All details of classical kinetic theory
may be found in several books, among which we mention [5,18].

Boltzmann’s analysis has been later adapted to describe problems with non-conservative
interactions (as reactive mixtures of polyatomic gases or plasmas, granular materials, bio-
logical propagation phenomena), and even to model interacting multi-agent systems. The
parallelism between gases and crowds at the basis of kinetic socio-economic models is the
following: a gas is constituted by an enormous number of particles, changing their molecular
velocities through binary collisions; in analogous way, a crowd may be modelled as a huge
amount of agents who modify their goods (wealth, opinion, . . .) by means of binary inter-
actions. It should be emphasized however that there are substantial differences between the
collisionmechanism of particles and human interactions: in social sciences, usualmechanical
conservations are lacking, and random effects may play a crucial role, therefore they have
to be suitably introduced in interaction rules. Moreover, in classical Boltzmann theory the
velocity variable ranges over the whole spaceR3, while in social sciences the variable v must
fulfill some proper bounds: in a market economy, v stands for the amount of wealth, and it
should be v ≥ 0 if debts are not allowed; in the opinion formation, the opinion v may vary
between two extremal points, namely on a closed interval. This fact implies the presence of
suitable discontinuities, represented by unit step functions in the collision operator, able to
cancel non-admissible interactions (which would give rise to post-collision variables (v′, w′)
out of the allowed range). The mathematical study of such models is therefore more compli-
cated, but in several cases a kinetic approach to socio-economic problems is able to identify
some universal behaviors and asymptotic profiles, which turn out to depend only on some
basic features of the interaction rules, neglecting all other details. The major results about
kinetic equations for multi-agent systems have been recently summarized in the book [27].

In this paper, we focus the attention on kinetic models for simple market economies. A
good model should reproduce the fact, pointed out by the Italian economist Pareto [29], that
for v → +∞ the wealth distribution f (v, t) has the so-called “Pareto tails”, namely it is
f (v, t) ∼ v−(α+1) and α is called “Pareto index”. Pareto observed that this distribution is
somehow universal, in the sense that different populations yield very similar curves, varying
little in space and time [6]. Following numerous later studies, today it is known that the bulk
of wealth distribution fits log-normal ( f (v, t) ∼ 1

v
e− (log v−M)2 ) or Gamma distributions

( f (v, t) ∼ vα−1 e−βv), reasonably well; the first one is preferred by economists [25], while
the second type is mainly used by statisticians and physicists [17,37]. Anyway, with different
parameters in the exchange processes modelling multi-agents systems, wealth distribution
may turn from one form to the other [31]. There is much more consensus on the tail of the
distribution, which turns out to be well described by an inverse power law, with Pareto index
in capitalist countries usually such that 1.3 < α < 3. Studies based on real empirical data
may be found for instance in [19,38] for the USA, in [2] for Japan, in [10] for Italy.

Kinetic models, even if simple and not really realistic from an economic point of view,
allow to capture some key factors in socio-economic interactions, and to prove that very
different societies converge to similar forms of unequal distributions, and that such economic
inequalities might be reduced or increased by modifying some basic parameters, such as the
saving habits or the taxation rates [1]. Necessary and sufficient assumptions on trading rules in
kineticmodels guaranteeing the formation of steady distributions (or of self-similar solutions)
with Pareto tails have been proved in [23]. Nevertheless, the explicit determination of the limit
distribution of the kinetic equation is very difficult, and it usually requires suitable numerical
methods, or particular asymptotic limits leading to simpler kinetic models (typically, Fokker–
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Planck-type equations). This kinetic approach has received even critical comments [20],
but more recently, also because of the failure of main economic research lines to correctly
anticipate and analyze the economic crisis, some of the previously critical authors have shown
interest in market dynamics based on statistical mechanics [21].

The present article will be organized as follows. In Sect. 2 we present some mesoscopic
economic equations, introducing notations, major macroscopic observables, andmain results
concerning a basic deterministic model and a more recent approach which takes into account
also risks of themarket bymeans of suitable random variables. Then, in Sect. 3 we investigate
a model in which an external entity (for instance, the state) introduces a small taxation in all
binary interactions, and redistributes the collected wealth to the people according to proper
rules that, for varying parameters, may favor a specific class of individuals (the poor people,
or the rich agents, or the middle class). In Sect. 4 we propose a new class of kinetic models in
which the trading propensity parameter is not a constant, as usual in existing literature on the
matter, but depends on the individual amount of wealth; the distribution behavior in suitable
asymptotic limits is discussed and compared with the corresponding results available for
simpler models. Some concluding remarks and hints for future works are presented in Sect. 5.

2 Some basic kinetic equations for a market economy

In this section we present some basic features of kinetic models for the economy, and we
discuss in more detail a simple deterministic model (in Sect. 2.1) and a more recent model
accounting for market risks (in Sect. 2.2).

We are interested in describing the evolution of wealth distribution f (v, t) in a simple
market economy in which agents interact through binary trades. In this frame, the quantity
f (v, t) dv represents the number of agents who at time t have wealth in (v, v+dv). As usual
in the kinetic approach, macroscopic information may be extracted from the moments of the
distribution with respect to the kinetic variable v (representing individuals’ wealth), namely

Ms(t) =
∫ +∞

0
vs f (v, t) dv. (1)

Indeed, M0 is nothing but the total number of individuals (constant, usually normalized
as M0 ≡ 1), M1 provides the global amount of wealth (coinciding with the mean wealth
if M0 = 1), while M2 is related to the variance of the distribution function. It is well
known [9,14] that in a capitalist country wealth distribution usually follows a “Pareto law”,
namely f (v, t) ∼ v−(α+1) for v → +∞, with the exponent α ≥ 1. The “Pareto index” α,
representing also the sup {s > 0 : Ms < +∞}, describes the size of the rich people class, in
the sense that the smaller α is, the more of the total wealth is owned by a small group of
individuals. If a distribution f (v, t) has all of its moments Ms finite, as it may happen in
societies with an almost uniformly distributed wealth, it is said to possess “slim tails”.

When two agents with wealths (v,w) undertake in a trade, they change their amount of
wealth according to proper rules (v′, w′) = h(v,w), that may be usually cast as{

v′ = p11 v + p12 w

w′ = p21 v + p22 w
(2)

The interaction coefficients pi j are non-negative (in order to guarantee that post-interaction
wealths (v′, w′) are non-negative), and are assumed to havefixed laws, independent ofwealths
and time, so that the amount of wealth that each agent transfers to the other is proportional
to the respective wealth.
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146 M. Bisi

From now on we assume that f (v, t) is a probability density f ∈ C1(R+ × R
+) with

f (0, t) = 0 (therefore individuals have strictly positive wealth) and with M2+δ < +∞ for
all t ≥ 0, for some δ > 0. The Boltzmann-type equation for the distribution f (v, t) may be
derived by standardmethods of kinetic theory [5]. The variation in the time interval (t, t+dt)
of the number of individuals with wealth in (v, v + dv) is provided by

f (v, t + dt)dv − f (v, t)dv = Q( f, f )(v, t) dv dt, (3)

where the interaction operator Q( f, f )(v, t) measures the contribution due to the trading
interactions. This operator may be cast as the difference between a “gain term” Q+( f, f )
and a “loss term” Q−( f, f ). The loss term counts the agents having wealth in (v, v + dv) at
time t and different wealth (due to trade exchanges) v′ /∈ (v, v + dv) at time t + dt :

Q−( f, f ) dv dt = dt f (v, t) dv

∫ +∞

0
f (w, t) dw.

On the other hand, Q+( f, f ) accounts for the individuals with wealth v◦ /∈ (v, v + dv) at
time t , but in the desired interval at time t + dt :

Q+( f, f ) dv dt = dt dv

∫ +∞

0

1

|J | f (v◦, t) f (w◦, t) dw

where (v◦, w◦) = h−1(v,w) and J is the Jacobian of the linear transformation h(v,w)

defined in (2). In thisway, the newvariables (v◦, w◦)denote the pre-interactionwealths having
(v,w) as post-interactionoutput (i.e.h(v◦, w◦) = (v,w)),while the variables (v′, w′)defined
in (2) denote the output of a trade with ingoing wealths (v,w) (i.e. h(v,w) = (v′, w′)).

The kinetic evolution equation for f (v, t) follows from (3) dividing by dv dt and passing
to the limit dt → 0:

∂ f (v, t)

∂t
= Q( f, f )(v, t).

The most useful tool in the sequel will be the weak form of the Boltzmann equation, that
may be cast as

d

dt

(∫ +∞

0
ϕ(v) f (v, t) dv

)
=

∫ +∞

0

∫ +∞

0

[
ϕ(v′) − ϕ(v)

]
f (v, t) f (w, t) dv dw (4)

where ϕ(v) ∈ C∞(R+) stands for a generic test function. Notice that on the right hand side
a suitable change of variables ((v◦, w◦) → (v,w)) has allowed to get rid of the Jacobian.

One may immediately note that total number of individuals M0 (corresponding to ϕ ≡ 1)
is constant, therefore it may be assumed equal to 1 without loss of generality, while the
evolution of higher moments depends on the nature of the chosen coefficients pi j . In the
following subsections we briefly present a simple deterministic model in which pi j are fixed
constants, and a more realistic model in which coefficients pi j involve random variables
taking into account market risks. A more detailed description of existing kinetic models for
a market economy and social sciences may be found in Refs. [8,27].

2.1 A deterministic market model

One of the simplest descriptions of a binary wealth exchange dates back to Chakraborti and
Chakrabarti [7], who proposed a trade rule of the form (2) depending only on a constant
parameter γ :
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{
v′ = (1 − γ ) v + γ w

w′ = γ v + (1 − γ )w
(5)

The coefficient γ represents the “trading propensity”, since itmeasures the fraction of the own
wealth that each agent transfers to the other; since each individual would like to preserve the
major part of his wealth, it is reasonable to assume 0 < γ < 1/2. The model (5) is pointwise
conservative, namely the total wealth is preserved in each trade (v′ + w′ = v + w), and
consequently, as it may be obviously deduced from (4) setting ϕ(v) = v, the mean wealth is
preserved in time: M1(t) = M1.

For this simple model, it is possible to find an explicit steady state resorting to the Laplace
transform

f̃ (s, t) =
∫ +∞

0
e− sv f (v, t) dv.

Indeed, using the weak form of the kinetic equation (4) with the weight function ϕ(v) = e− sv

we get

d

dt
( f̃ (s, t)) = f̃ ((1 − γ )s, t) f̃ (γ s, t) − f̃ (s, t)

so that each stationary (time-independent) state f̃∞(s) must fulfill the equation

f̃∞(s) = f̃∞((1 − γ )s) f̃∞(γ s)

with the constraints f̃∞(0) = 1 and f̃ ′∞(0) = − M1. It is easy to check that the unique
solution is f̃∞(s) = e− M1s , and consequently the inverse Laplace transform provides the
steady state f∞(v) = δ(v − M1), namely a distribution with all agents having the same
amount of wealth. The evolution of the variance of the distribution function, provided by (4)
with ϕ(v) = (v − M1)

2, reads as

d

dt

(∫ +∞

0
(v − M1)

2 f (v, t) dv

)
= − 2 γ (1 − γ )

∫ +∞

0
(v − M1)

2 f (v, t) dv,

proving that the variance tends to zero at the exponential rate 2 γ (1 − γ ), therefore we may
conclude that in this basic kinetic model the wealth distribution really evolves towards the
steady state consisting in a Dirac delta concentrated at the mean wealth. Of course this model
describes an ideal (not realistic) closed society in which each individual is ready to share
his wealth and to reduce economic inequalities, and for this reason new models, taking into
account market risks or other external phenomena, have been proposed and investigated.

2.2 A model with random market risks

In 2005, the authors Cordier et al. proposed a kinetic model [12], usually referred to as CPT
model, in which coefficients pi j appearing in the interaction rule (2) also contain random
variables, in order to take into account risks and other non deterministic effects in the market.
More precisely, trading rule in CPT reads as

{
v′ = (1 − γ + μ) v + γ w

w′ = γ v + (1 − γ + η)w
(6)

where μ, η are independent and identically distributed random variables, with probability
distribution 	(·) assumed to be symmetric (	(μ) = 	(−μ)), with zero mean and variance
σ 2:
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〈μ〉 =
∫

�

μ	(μ) dμ = 0, 〈μ2〉 =
∫

�

μ2 	(μ) dμ = σ 2,

where the domain � has to be properly determined. Indeed, the idea of this model is that
individual wealth changes not only because of deterministic trades, but also thanks to proper
investments, that of course have some risks (causing a loss of wealth), but allow also the
possibility to further increase (in a non-deterministic way) the personal amount of wealth.
Parameters μ and η may thus take positive and even negative values, provided that the
post-interaction wealths (v′, w′) turn out to be both positive. In real problems, individuals
have self-thinking capability and they try to enter in a trade only if they feel that this trade
could be a favourable investment; therefore, interactions in which non deterministic effects
(provided by μ and η) are both positive are quite frequent. Moreover, correlations between
random market effects occurring on the two interacting individuals should not be neglected,
therefore the independence of the two random variables μ and η is somehow restrictive. For
this reason, a model in which μ and η assume the same value has been presented in [35], but
a general model taking into account of stochastic dependency between the two random risks
is still lacking.

A simple way to guarantee non-negative post-trade wealths consists in assuming random
variables with compact support � = (−1 + γ, 1 − γ ). In this case, denoting with 〈·〉 the
mean of a given function k(·, ·) with respect to random variables:

〈k(μ, η)〉 =
∫ 1−γ

−1+γ

∫ 1−γ

−1+γ

k(μ, η)	(μ)	(η) dμ dη,

it can be easily checked that the model (6), even if no more pointwise conservative (since
v′ + w′ �= v + w), is “conservative in the mean”, in the sense that 〈v′ + w′〉 = v + w.
This implies that the mean wealth is preserved in time: M1(t) = M1(0) = M0

1 , and this is
confirmed also by inserting the test function ϕ(v) = v into the weak form of the Boltzmann
equation, that in the present non-deterministic case may be cast as

d

dt

(∫ +∞

0
ϕ(v) f (v, t) dv

)
=

〈∫ +∞

0

∫ +∞

0

[
ϕ(v′) − ϕ(v)

]
f (v, t) f (w, t) dv dw

〉
. (7)

The evolution of the second moment M2 (corresponding to the option ϕ(v) = v2), taking
into account that

(v′)2 − v2 = (
γ 2 + μ2 − 2γ + 2μ − 2γμ

)
v2 + γ 2w2 + 2γ

(
1 − γ + μ

)
vw,

reads, after some simple computations that we skip here for brevity, as

dM2(t)

dt
= −[

2 γ (1 − γ ) − σ 2]M2(t) + 2γ (1 − γ )(M0
1 )2. (8)

Consequently, if the variance of random variables, measuring non-deterministic effects, is
large enough, the secondmomentM2 increases in time, exponentially if σ 2 > 2 γ (1−γ ), and
linearly if the equality holds. Thus, the wealth distribution for infinite time is characterized
by a Pareto tail with index less than two, quite in agreement with empirical observations. On
the other hand, if the variance of random variables is lower than the threshold 2 γ (1 − γ ),
the evolution of M2(t) is explicitly provided by

M2(t) = M0
2 exp

[
−

(
2γ (1 − γ ) − σ 2

)
t
]

+ 2γ (1 − γ )(M0
1 )2

2γ (1 − γ ) − σ 2

{
1 − exp

[
−

(
2γ (1 − γ ) − σ 2

)
t
]}
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and

lim
t→+∞ M2(t) = 2γ (1 − γ )(M0

1 )2

2γ (1 − γ ) − σ 2 > 0,

therefore even in this case with few random effects, the steady state is no more a Dirac
delta with all people sharing the same amount of wealth, typical of the simple basic model
described in the previous subsection. Estimates on the possible formation of Pareto tails may
be performed resorting to the following function involving powers of the coefficients pi j
(i, j = 1, 2) of the interaction rule:

S(s) = 1

2

(
2∑

i=1

〈
(pi1)

s + (pi2)
s
〉)

− 1.

Indeed, for “conservative in the mean” models, S(s) is convex in s > 0, with S(0) = 1
and S(1) = 0, and it has been proved in [23] that if S(α) = 0 for some α > 1 then the
steady state has a Pareto tail of index α, otherwise it has slim tails; therefore the macroscopic
features of the asymptotic profiles are completely determined by the interaction coefficients
in (6). In [23] tails formation has been analytically studied for simple random variables, for
instance when μ and η take only the two values ±k with probability 1/2 each, or when the
probability distribution 	(·) has an exponential decay; for more complicated options, the
behavior of S(s) may be numerically investigated.

For general symmetric probability distributions 	(·), with unbounded support, one has
to insert suitable unit step functions into the kernel of the Boltzmann collision operator, in
order to only retain interactions with non-negative post-trade wealths. In this case, the weak
form of the kinetic equation reads as

d

dt

(∫ +∞

0
ϕ(v) f (v, t) dv

)
=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

0

[
ϕ(v′) − ϕ(v)

]

×�(v′ ≥ 0)�(w′ ≥ 0)	(μ)	(η) f (v, t) f (w, t) dv dw dμ dη, (9)

where �(B) is the indicator function of the set B. For the evolution of mean wealth we have

dM1(t)

dt
=

∫∫∫∫
μv �(v′ ≥ 0)�(w′ ≥ 0)	(μ)	(η) f (v, t) f (w, t) dv dw dμ dη

(10)

(the integral of the other term of v′ − v vanishes for parity arguments). Noticing that, since
	(·) is symmetric,

∫
	(η)�

(
η ≥ −(1 − γ ) − γ

v

w

)
dη ≥

∫
	(η)�(η ≥ 0)dη = 1

2

and
∫

μ	(μ)�
(
μ ≥ −(1 − γ ) − γ

w

v

)
dμ =

∫
μ	(μ)�

(
μ ≥ 1 − γ + γ

w

v

)
dμ

≥ �(w ≤ v)

∫
μ	(μ)�(μ ≥ 1)dμ

:= A�(w ≤ v),

123
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one has the estimate

dM1(t)

dt
≥ A

2

∫∫
v �(w ≤ v) f (v) f (w) dv dw

= A

4

∫∫ [
v �(w ≤ v) + w �(v ≤ w)

]
f (v) f (w) dv dw ≥ A

4
M1(t).

In conclusion, the mean wealth increases in time at least exponentially, with M1(t) ≥
M0

1 exp( A
4 t); more precisely, by similar arguments it can be also proved [12] that it does

not increase more than exponentially in time. Of course these proofs are expected to be
much more involved in case of not independent pairs of random variables. The global
increasing of total (and mean) wealth is in complete agreement with historical observa-
tions showing that global wealth, even if not strictly monotone (especially in economic crisis
periods), has an increasing trend over long times [33]. From a mathematical point of view,
such a property is due to the fact that in (9) the collision kernel is no more symmetric,
and it keeps all interactions giving rise to gains while it cancels all trades producing “too
much” loss (in the sense that one of the individuals would remain with a negative wealth).
Indeed, agents are usually willing to be involved in a trade only if they have reasonable
possibilities to improve their personal conditions, learning also from their previous mis-
takes [26], and this kinetic model is somehow able to reproduce the effects of this way of
thinking.

3 A kinetic model with taxation and redistribution

In this section, we review and investigate a kinetic model which tries to take into account the
taxation and the redistribution of the collected wealth. The problem of finding an “optimal
taxation” has gained interest since almost one century ago, with the advent of NewWelfare in
1930s [36]: it seems morally obvious that taxation rate should be progressive versus income,
but this is not true for economists, whose role consists in finding the most efficient strategy,
irrespective of population opinions. A review on studies about relations between politics and
economymay be found in [16]. The standard theory of optimal taxation looks for a tax system
which maximizes a social welfare function subject to a set of constraints (some examples
may be found in [24,30]). However, it has been recently asserted that a “flat taxation”, with
the same rate at every income level, could be close to optimal [22]. On the other hand, other
authors recommend to rise taxes for very high earning and to supply subsidies to low income
families [13]. In this respect, in [4] we have introduced and investigated a kinetic model for
wealth distribution which includes taxation with a fixed rate in each trading process, and also
redistribution of the collected money among the population according to a given criterion,
which could be uniform (reproducing thus the case of “flat taxation”), or even favourable
for poor or rich people. The aim of this section is to discuss in more detail the kinds of
redistribution described by the model for varying parameters, and to show that, at least in
some proper asymptotic limit, the redistribution is able to modify the Pareto index of the
steady wealth distribution.

The crucial idea of this model is to introduce a simple taxation mechanism at the level of
each single trade, in order to generate a portion of the total wealth of the society that will
be totally redistributed to agents, maintaining thus the total wealth constant. The mechanism
of redistribution will be sufficiently flexible to be able to redistribute to agents a constant
amount of wealth independently of the wealth itself, or to redistribute proportionally (or
inversely proportionally) to their wealth. As concerns the interaction rule, let us assume that
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Some kinetic models for a market economy 151

the transaction coefficients p11, p22 in (2) are bounded from below: min{p11, p22} > δ, for
a given small constant δ > 0; then, for any positive constant ε ≤ δ, the trade{

v′
ε = (p11 − ε)v + p12 w

w′
ε = p21 v + (p22 − ε)w

(11)

is such that both v′
ε and w′

ε are non-negative, but conservation of wealth is generally lost.
We assume that parameters pi j contain random variables such that 〈p11〉 + 〈p21〉 = 〈p12〉 +
〈p22〉 = 1; consequently, total wealth decreases even “in the mean”:

〈v′
ε + w′

ε〉 = (1 − ε)(v + w). (12)

Moreover, since the role of the two interacting individuals is symmetric, we take 〈p11〉 =
〈p22〉 and 〈p12〉 = 〈p21〉 and, owing to the weak Boltzmann equation (7) with ϕ(v) = v,
since v′

ε − v = p11v + p12 w − (1+ ε)v we notice that dM1(t)
dt = − ε M1(t), hence the mean

wealth is exponentially decaying in time as M1(t) = M0
1 exp(− ε t).

The percentage of mean wealth that comes out by taxation, can be restituted to the agents,
resorting to a proper redistribution operator R( f ), in such a way that the total wealth is
left unchanged. Let us assume that the amount of collected wealth q = ε M1(t) is entirely
and instantaneously redistributed to the population; the operator R has thus to fulfill the
constraints ∫ +∞

0
R( f )(v, t) dv = 0,

∫ +∞

0
v R( f )(v, t) dv = q, (13)

and, if ψ(v) denotes the fraction of the available wealth q to be given to each agent with
wealth v, it should be ∫ +∞

0
ψ(v) f (v, t) dv = 1. (14)

We consider a balance equation for agents with wealth in (v, v + dv) due to redistribution.
Each individual having wealth v at time t , will have wealth v∗ = v+ψ(v) q dt at time t+dt .
Therefore

∂ f (v, t)

∂t
dv dt = f (v∗, t) dv∗ − f (v, t) dv

where v∗ is the pre-redistribution wealth having a corresponding output v at time t + dt :

v∗ = v − ψ(v∗) q dt = v − ψ(v) q dt + O(dt2), dv∗ = dv − ψ ′(v) q dv dt + O(dt2).

Neglecting O(dt2) terms we find

∂ f (v, t)

∂t
= R( f )(v, t) = − q

∂

∂v

[
ψ(v) f (v, t)

]
. (15)

This operator fulfills the first constraint in (13) if f (0, t) = 0, while it is not so easy to find
reasonable functions ψ(v) satisfying (14) and the second of (13). If we look for a linear
redistribution function ψ(v) = C v + D (case to which we will stick here for simplicity),
we find that admissible options are

ψ(v) = 1

M1(t)

[
− χ v + (χ + 1) M1(t)

]
, (16)

where χ is a free parameter. Notice that positivity of ψ(v) is not guaranteed, therefore for
a part of the population redistribution could be negative (corresponding thus to a further
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taxation). More precisely, for χ < −1 we haveψ(v) < 0 for v < M1(t)(1/χ +1), therefore
the poorest agents supply additional resources to the richest ones. For −1 < χ < 0, ψ(v)

is positive for each v > 0, but it remains an increasing function, therefore rich people are
again favored. The particular choice χ = 0 corresponds to a uniform redistribution. Finally,
for positive values of the parameter χ , money is redistributed especially to agents with little
wealth, while people with wealth v > M1(t)(1/χ + 1) are taxed once more.

We consider now the whole kinetic model with taxation included in the interaction rules
and with the additional redistribution operator defined in (15) with ψ(v) provided by (16):

∂ f (v, t)

∂t
= Qε( f, f )(v, t) + R( f )(v, t).

Trading rule is assumed given by (11), with the same coefficients pi j considered in the CPT
model (6), including market risks by means of suitable random variables, that we assume
here independent and with compact support (−1+ γ + ε, 1− γ − ε). The weak form of the
Boltzmann equation with taxation and redistribution reads as

d

dt

(∫ +∞

0
ϕ(v) f (v, t) dv

)
=

〈∫ +∞

0

∫ +∞

0

[
ϕ(v′

ε) − ϕ(v)
]
f (v, t) f (w, t) dv dw

〉

− ε

∫ +∞

0
ϕ′(v)

[
χ v − (χ + 1) M1

]
f (v, t) dv, (17)

where the first term on the right hand side is analogous to the standard weak Boltzmann
operator in (7), with v′

ε = (1 − γ + μ − ε)v + γ w, while last contribution is obtained by
a simple integration by parts of R( f ), bearing in mind that f (0, t) = 0. The redistribution
operator has been built up in order to compensate the loss of wealth due to taxation, and for
this reason in the global equation M1 is constant (independent from t).

We investigate now situations in which most of the trades correspond to a very small
exchange of money (therefore with the trading propensity γ small), but at the same time
we want to keep trace at the macroscopic level of all phenomena affecting market rules
(market risks, taxation, and redistribution). This kind of asymptotic analysis is referred to
as “continuous trading limit”, and it allows to prove that under proper assumptions on the
interaction parameters, at suitably large times the kinetic Boltzmann-type equation may be
approximated by a simpler Fokker–Planck equation, allowing an analytical investigation of
long time behavior ofwealth distribution [3,12].Wemeasure the variance of randomvariables
and the taxation parameter in terms of γ as

σ 2 = λ γ, ε = κ γ (18)

(with λ > 0 and κ > 0), and we investigate the limit γ → 0. The first of (18) implies that
in this limit even the variance of random variables tends to zero, so that risks are really low
in most of binary interactions, but they are still present in the market and they will affect the
kinetic equation we will recover in this asymptotic regime. A second order Taylor expansion
of ϕ(v) around v provides

ϕ(v′
ε) − ϕ(v) =

[
γ (w − v) + μv − ε v

]
ϕ′(v) + 1

2

[
γ (w − v) + μv − ε v

]2
ϕ′′(v)

+o((v′
ε − v)2). (19)
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Setting τ = γ t as new time variable, and inserting (19) into (17), the weak form for the
scaled distribution function g(v, τ ) turns out to be

d

dτ

(∫ +∞
0

ϕ(v) g(v, τ ) dv

)
= 1

γ

〈∫ +∞
0

∫ +∞
0

{[
γ (w − v) + μv − ε v

]
ϕ′(v)

+ 1

2

[
γ (w − v) + μ v − ε v

]2
ϕ′′(v)

}
g(v, τ )g(w, τ) dv dw

〉

− ε

γ

∫ +∞
0

ϕ′(v)
[
χ v − (χ + 1) M1

]
g(v, τ ) dv, (20)

where o((v′
ε − v)2) terms have been neglected. Passing now to the limit γ → 0 one may

note that Eq. (20) is nothing but the weak form of the Fokker–Planck equation

∂g

∂τ
= ∂

∂v

{
λ

2
v

∂

∂v
(vg) +

[(
λ

2
+ κ(χ + 1) + 1

)
v − (

κ(χ + 1) + 1
)
M1

]
g

}
. (21)

The evolution of wealth distribution is thus a balance between a diffusion operator and
a drift term, which would concentrate distribution towards the mean value M1. The formal
derivationof such aFokker–Planck equation canbemade rigorous repeating the very technical
computations of [3,12]. Different balances among the parameters γ , σ 2, ε may of course
give purely diffusive, or purely drift equations.

In Eq. (21) the taxation/redistribution mechanism is represented solely by the positive
parameter κ , limiting ratio of vanishingly small taxation rate and transaction coefficient, and
by the constant χ describing the redistribution policy. The presence of random effects is
accounted for by the parameter λ > 0. The steady state g∞(v) has to fulfill

λ v g∞(v) + λ

2
v2g′∞(v) +

[
(κ(χ + 1) + 1) v − (

κ(χ + 1) + 1
)
M1

]
g∞(v) = 0

from which, integrating over the kinetic variable v:
∫ +∞

0

g′∞(v)

g∞(v)
dv = −

∫ +∞

0

{
2

λ v2

[
(κ(χ + 1) + 1) v − (

κ(χ + 1) + 1
)
M1

]
+ 2

v

}
dv

and skipping intermediate details we get

g∞(v) = C v−[2+r ] exp

{
−r M1

v

}
, (22)

where C may be explicitly chosen so that
∫ +∞

0
g∞(v) dv = 1, and

r = 2[κ(χ + 1) + 1]
λ

. (23)

We have g∞(0) = 0, while for v → +∞we get g∞(v) = O
(
v−(2+r)

)
. Therefore the Pareto

index is here 1+r , or, in other words, the moment of order α exists finite if α < 1+r . Notice
that Pareto tails are strongly influenced by the random effects. Indeed, in almost absence of
market risks (with λ small), α increases making fairer the distribution of wealth for large
times, while in a market with high risks (λ big) wealth distribution becomes really unfair.
Unlike other statistical models of wealth exchange between agents [11], this kinetic model is
able to reproduce also situations appearing in feudal societies, or even in India [34], in which
the Pareto index is unusually low (around 1), as discussed in [32].
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The original CPT model of [12] is recovered for κ = 0. The effects of taxation and
redistribution are accounted for and explicitly quantified by the additional exponent−2κ(χ+
1)/λ for the wealth variable, which always makes tails slimmer, and thus wealth distribution
fairer. It is clear that this effect is the stronger the higher is the factor κ , i.e. the higher the
taxation rate. It is also evident that, if κ and λ are fixed, tails become less and less thick as χ

increases, and in all cases with χ > −1 the percentage of agents at high wealth decreases,
whether or not they are in turn favored (as it would occur when χ > 0). No effects on the
wealth distribution are present for χ = −1, in which case the same index as for the CPT
model is recovered, independently of κ , namely, no matter how high is taxation.

4 Kinetic economic models with variable trading propensity

In existing kinetic models summarized in the reviews [8,15,27], the parameters involved in
the interaction rules of kinetic equations for market economies are the same for the whole
population. Actually, in real markets the saving propensity and the risk perception vary
according to the agent’s amount of wealth. For instance, a rich individual could have a lower
saving propensity, and could be willing to risk a considerable amount of his money, conscious
that high risk could correspond to a high gain, and that even in case of high loss, the remaining
amount of money would allow him to survive; but also situations in which rich agents try
to preserve almost all of their own wealth are admissible. Even for poor people there are
essentially two ways of trading: one could try to save as much as possible, or could try the
opposite strategy, risking almost all of his wealth hoping to be lucky and to rapidly increase
his wealth. For this reason, a long-time objective is to build up more general kinetic models
able to investigate all these possibilities, with trading propensity γ in the rule (6) depending
on the individual’s wealth v, and external market risks for the two interacting individuals
not independent (actually, the independency assumption for the random variables μ and η

is very simplistic, even if it allows to reproduce realistic macroscopic effects). Even risk
perception of each agent should be taken into account, leading to different choices for their
own portfolio.

In this section, we try to do a step in this direction, proposing models in which trading
propensity γ is not a fixed constant, but a function of wealth v. Then, we discuss two different
choices for γ (v), one increasing and the other decreasing versus v, and we will notice that
the strategy of rich people determines the basic features of steady distributions.

We consider an interaction rule of the form{
v′ = (1 − γ (v)) v + γ (w)w + μv

w′ = γ (v) v + (1 − γ (w))w + η w
(24)

where γ (v) is a generic function depending onwealth v, with the bounds 0 < γ (v) ≤ γ0 < 1.
A sufficient condition in order to guarantee that post-trade wealths (v′, w′) are non-negative
consists in assuming random variables μ, η with a bounded support (−1 + γ0, 1 − γ0). For
simplicity we stick here to this assumption, but in similar problems it has been rigorously
proved [3,12] that the remainders neglected in the continuous trading limits actually vanish
even with market risks with unbounded domain, provided that the initial wealth distribution
has M2+δ < +∞ for some δ > 0 (the standard Gaussian distribution is of course included
in this class), and that the distribution of random variables has 2 + α finite moments, with
α > δ. The weak form of our Boltzmann equation is again provided by formula (7).

We rewrite the trading propensity as γ (v) = γ0 γ̃ (v), andwe consider the same continuous
trading limit investigated in the CPT model in [12], assuming that
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σ 2 = λ γ0 (25)

and letting γ0 → 0. A Taylor expansion of the test function ϕ(v) provides now

ϕ(v′) − ϕ(v) =
[
γ (w)w − γ (v) v + μv

]
ϕ′(v)

+ 1

2

[
γ (w)w − γ (v) v + μv

]2
ϕ′′(v) + o((v′ − v)2).

By inserting this expression into (7) and solving the integrals over the random variables
(bearing in mind that 〈μ〉 = 0 and 〈μ2〉 = σ 2) we get for the re-scaled distribution g(v, τ ),
with τ = γ0 t , the equation

d

dτ

(∫ +∞

0
ϕ(v) g(v, τ ) dv

)
=

∫ +∞

0

∫ +∞

0

{[
γ̃ (w)w − γ̃ (v) v

]
ϕ′(v) + 1

2

[
γ0 γ̃ 2(w)w2

− 2 γ0 γ̃ (v) γ̃ (w) v w + γ0 γ̃ 2(v) v2 + σ 2

γ0
v2

]
ϕ′′(v)

}
g(v, τ )g(w, τ) dv dw. (26)

With the assumption (25), in the asymptotic limit γ0 → 0 all but the last term multiplying
ϕ′′(v) vanish, and bearing in mind that

∫ +∞
0 g(w, τ) dw = 1 one is left with

d

dτ

(∫ +∞

0
ϕ(v) g(v, τ ) dv

)
=

∫ +∞

0

{[( ∫ +∞

0
γ̃ (w)w g(w, τ) dw

)
− γ̃ (v) v

]
ϕ′(v)

+λ

2
v2ϕ′′(v)

}
g(v, τ )dv. (27)

This is the weak form associated to the nonlinear Fokker–Planck-type equation

∂g

∂τ
= ∂

∂v

{
λ

2

∂

∂v
(v2g) +

[
γ̃ (v) v −

(∫ +∞

0
γ̃ (w)w g(w, τ) dw

)]
g

}
. (28)

Recalling (25), we note that the random variables μ, η affect this equation through the
parameter λ, hence in the diffusion term which guarantees the spread of wealth among
population, and prevents the trend towards a Dirac delta distribution, as it would occur in
models neglecting market risks [7]. The steady state g∞(v) of Eq. (28) is provided by the
solution of the equation

λ

2

∂

∂v
(v2g∞) +

[
γ̃ (v) v − M∞

]
g∞ = 0 (29)

where

M∞ =
∫ +∞

0
γ̃ (w)w g∞(w) dw.

Skipping some intermediate steps (similar to the ones in the previous section), Eq. (29)
provides

log(g∞(v)) = −
∫ +∞

0

[
2

v
+ 2

λ

γ̃ (v)

v
+ 2

λ

M∞
v2

]
dv

= − 2 log v + 2

λ

M∞
v

− 2

λ

∫ +∞

0

γ̃ (v)

v
dv. (30)
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In the case of constant trading propensity γ = γ0 (namely γ̃ (v) = 1),we haveM∞ = M1,
and we correctly recover the stationary state found in [12],

g∞(v) = C v
−

(
2+ 2

λ

)
exp

(
− 2

λ

M1

v

)
,

with Pareto index α = 1+ 2
λ
. We note that for varying saving propensity, since by definition

we have γ̃ (v) ≤ 1, the value α = 1+ 2
λ
is always an upper bound for the Pareto index of the

steady state. Moreover, M∞ ≤ M1 < +∞.
Let us consider at first a situation in which trading propensity is provided by

γ (v) = γ0
v + 1

2 v + 1
, (31)

describing thus a market in which the fraction of wealth that each individual is willing to put
into a single trade decreases versus wealth; more precisely, for v ranging from 0 to +∞, the
function γ (v) decreases from γ0 to 1

2 γ0. This option could describe a population in which
a poor agent decides to invest in (hopefully good) trades almost all his remaining money,
in order to try to improve his present condition, while, on the other hand, a rich individual
tries to save the major part of his money, and to invest only a small part of his wealth. The
function (31) implies

∫ +∞

0

γ̃ (v)

v
dv =

∫ +∞

0

(
1

v
− 1

2 v + 1

)
dv = log v − 1

2
log

(
v + 1

2

)
,

and consequently the steady state of the Fokker–Planck equation (28) may be cast as

g∞(v) = C v
−

(
2+ 2

λ

) (
v + 1

2

) 1
λ

exp

(
− 2

λ

M∞
v

)
,

which has a Pareto tail with index α = 1 + 1
λ
, less than the one corresponding to constant

trading parameter γ (v) = γ0. By analogous arguments it may be proved that to the choice
γ (v) = γ0 (v + 1)/(K v + 1) (with K > 1) there corresponds a stationary distribution
with Pareto index α = 1 + 2

λ K , describing the fact that when rich people decide to keep
their huge amount of money for themselves, without investing it in further trades, then the
wealth distribution becomes really unequal for long times, and even the second moment (the
variance of the distribution) is not finite for K > 2

λ
.

Then, let us investigate an opposite situation, in which trading propensity γ (v) increases
versus wealth, for instance as

γ (v) = γ0

(
1 − 1

v + β

)
, (32)

with β > 1, so that for 0 ≤ v < +∞ we have γ (v) increasing from γ0

(
1 − 1

β

)
> 0

to γ0. In this case, the steady state of the Fokker–Planck equation (28) corresponding to the
asymptotic limit (25) turns out to be

g∞(v) = C v
−

(
2+ 2(β−1)

λ β

)
(v + β)

− 2
λβ exp

(
− 2

λ

M∞
v

)
,

therefore its Pareto index is α = 1+ 2
λ
as in case of constant γ (v) = γ0. This analysis allows

to deduce that the macroscopic properties of wealth distribution among the individuals is
essentially determined by the trading strategy of the rich people, while fluctuations in the
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trading propensity of poor people do not influence long time behavior, since such agents can
invest and redistribute to other individuals only a small amount of wealth.

5 Concluding remarks

In this paper we have at first provided a review of some basic kinetic models for economic
problems, in which coefficients appearing in trading rules may be deterministic as in [7],
or random parameters as in [12]. The presence of random unpredictable effects favors the
presence of long time steady distributions with Pareto tails (consistent with quoted economic
references), in which few very rich individuals possess the major part of total wealth. This
process could be modified by an external entity (typically, the state) by means of a proper
taxation policy, and of redistribution and investments of collected wealth according to appro-
priate criterions. A complete overview on the state of art about mathematical and numerical
aspects of models for socio-economic sciences may be found in [6,8,27]. In the last part of
the paper we have proposed new models in which trading propensity parameter depends on
the individual wealth, and in a suitable asymptotic regime we have shown that formation of
Pareto tails depends above all on the strategy adopted by rich people.

A strict interactionwith economists community should bepursued, in viewof a comparison
between our kinetic equations and real data, and even of possible generalizations of the
kinetic approach to current challenging economic problems. From the mathematical point
of view, the investigation of models with non-constant parameters could be extended, since
trading strategies, risk perception, and even optimal taxes should depend on the personal
characteristics [22]; a first attempt in this direction may be found in [28], in which the
evolution of wealth is influenced by the level of knowledge of single agents. Moreover, in
order to help poor people to improve their condition, the possibility of taking on some debts
should be allowed, but in this way of modelling the definition of proper interaction rules
seems to be not trivial, since the nature of trades among individuals with positive wealth
should be different from interactions involving people with debts. All these open problems
are left to future work.

Acknowledgements This work has been performed in the frame of activities sponsored by INdAM-GNFM
and by the University of Parma. Some of the results contained in this paper have been presented in a talk at
the Conference of UMI, held at Siena (Italy) in September 2015.

References

1. Abergel, F., Aoyama, H., Chakrabarti, B.K., Chakraborti, A., Ghosh, A. (eds.): Econophysics and Data
Driven Modelling of Market Dynamics. Springer, Berlin (2015)

2. Aoyama, H., Nagahara, Y., Okazaki, M., Souma,W., Takayasu, H., Takayasu,M.: Pareto’s law for income
of individuals and debt of Bankrupt companies. Fractals 8, 293–300 (2000)

3. Bisi, M., Spiga, G.: A Boltzmann-type model for market economy and its continuous trading limit. Kinet.
Relat. Models 3, 223–239 (2010)

4. Bisi, M., Spiga, G., Toscani, G.: Kinetic models of conservative economies with wealth redistribution.
Commun. Math. Sci. 7, 901–916 (2009)

5. Cercignani, C.: The Boltzmann Equation and its Applications. Springer, New York (1988)
6. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A. (eds.): Econophysics and Sociophysics: Trends and

Perspectives. Wiley VCH, Berlin (2006)
7. Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its

distribution. Eur. Phys. J. B 17, 167–170 (2000)

123



158 M. Bisi

8. Chatterjee, A.: Socio-economic inequalities: a statistical physics perspective. In: Abergel, F., Aoyama,
H., Chakrabarti, B.K., Chakraborti, A., Ghosh, A. (eds.) Econophysics and Data Driven Modelling of
Market Dynamics, pp. 287–324. Springer, Berlin (2015)

9. Chatterjee, A., Sudhakar, Y., Chakrabarti, B.K.: Econophysics of Wealth Distributions. New Economic
Windows Series. Spriger, Milan (2005)

10. Clementi, F., Gallegati, M.: Power law tails in the Italian personal income distribution. Phys. A 350,
427–438 (2005)

11. Coelho, R., Néda, Z., Ramasco, J.J., Santos, M.A.: A family-network model for wealth distribution in
societies. Phys. A 353, 515–528 (2005)

12. Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120,
253–277 (2005)

13. Diamond, P., Saez, E.: The case for a progressive tax: from basic research to policy. J. Econ. Perspect.
25, 165–190 (2011)

14. Dragulescu, A., Yakovenko, V.M.: Exponential and power-law probability distributions of wealth and
income in the United Kingdom and the United States. Phys. A 299, 213–221 (2001)

15. Düring, B., Matthes, D., Toscani, G.: A Boltzmann type approach to the formation of wealth distribution
curves. Riv. Mat. Univ. Parma 8, 199–261 (2009)

16. Hindriks, J., Myles, G.D.: Intermediate Public Economics. MIT Press, Cambridge (2013)
17. Hogg, R., Mckean, J., Craig, A.: Introduction toMathematical Statistics. Pearson Education, Delhi (2007)
18. Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969)
19. Levy, M.: Are rich people smarter? J. Econ. Theory 110, 42–64 (2003)
20. Lux, T.: Emergent statistical wealth distributions in simple monetary exchange models: a critical review.

In: Chatterjee, A., Yarlagadda, S., Chakrabarti, B.K. (eds.) Econophysics of Wealth Distributions. New
Economic Windows, pp. 51–60. Springer, Milan (2005)

21. Lux, T., Westerhoff, F.: Economics crisis. Nat. Phys. 5, 2–3 (2009)
22. Mankiw, N.G., Weinzierl, M., Yagan, D.: Optimal taxation in theory and practice. J. Econ. Perspect. 23,

147–174 (2009)
23. Matthes, D., Toscani, G.: On steady distributions of kinetic models of conservative economies. J. Stat.

Phys. 130, 1087–1117 (2008)
24. Mirrlees, J.A.: An exploration in the theory of optimal income taxation. Rev. Econ. Stud. 38, 175–208

(1971)
25. Montroll, E., Shlesinger, M.: On 1/ f noise and other distributions with long tails. Proc. Natl. Acad. Sci.

USA 79, 3380–3383 (1982)
26. Nicolosi, G., Peng, L., Zhu, N.: Do individual investors learn from their trading experience? J. Financ.

Mark. 12, 317–336 (2009)
27. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods.

Oxford University Press, Oxford (2014)
28. Pareschi, L., Toscani, G.: Wealth distribution and collective knowledge. A Boltzmann approach. Phil.

Trans. R. Soc. A 372, 20130396 (2014)
29. Pareto, V.: Cours d’Economie Politique. Macmillan, Lausanne (1897)
30. Ramsey, F.: A contribution to the theory of taxation. Econ. J. 37, 47–61 (1927)
31. Romanov, V., Yakovlev, D., Lelchuk, A.: Wealth distribution evolution in an agent-based computational

economics. In: Li Calzi, M., Milone, L., Pellizzari, P. (eds.) Progress in Artificial Economics, Lecture
Notes in Economics and Mathematical Systems, vol. 645, pp. 191–202. Springer, Berlin (2010)

32. Santos, M.A., Coelho, R., Hegyi, G., Néda, Z., Ramasco, J.: Wealth distribution in modern and medieval
societies. Eur. Phys. J. Special Topics 143, 81–85 (2007)

33. Shorrocks, A., Davies, J., Lluberas, R.: Global Wealth Report 2015. Credite Suisse, Zürich (2015)
34. Sinha, S.: Evidence for power-law tail of the wealth distribution in India. Phys. A 359, 555–562 (2006)
35. Slanina, F.: Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E

69, 046102 (2004)
36. Stiglitz, J.E.: Pareto efficient and optimal taxation and the new welfare economics. Handb. Publ. Econ.

2, 991–1042 (1987)
37. Yakovenko, V., Barkley Rosser Jr., J.: Colloquium: statistical mechanics of money, wealth and income.

Rev. Mod. Phys. 81, 1703–1726 (2009)
38. Willis, G., Mimkes, J.: Evidence for the independence of waged and unwaged income, evidence for

Boltzmann distributions in waged income, and the outlines of a coherent theory of income distribution.
Microeconomics 0408001, EconWPA (2004)

123


	Some kinetic models for a market economy
	Abstract
	1 Introduction
	2 Some basic kinetic equations for a market economy
	2.1 A deterministic market model
	2.2 A model with random market risks

	3 A kinetic model with taxation and redistribution
	4 Kinetic economic models with variable trading propensity
	5 Concluding remarks
	Acknowledgements
	References




