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Abstract Methods developed by Lions and Peetre (Pub Math de l’IHES 19:5–68, 1964)
are used to extend results derived in Artola (Bolletino UMI (9) V:125–158, 2012) for traces
of weighted spaces. The weights are required to belong to the Hardy class H(p) defined in
Artola (Bolletino UMI (9) V:125–158, 2012) to ensure that a necessary convolution product
remains valid in weighted spaces. The restriction, apparently new, is necessary for the present
treatment.

1 Introduction

The paper establishes certain trace properties that extend those for weighted spaces studied in
[5]. The approach involves a (θ, c, p) method originally developed (for unweighted spaces)
by J. Peetre but generalised to include weighted spaces with weights belonging to the Hardy
class H(p), 1 ≤ p < +∞. An integral representation for traces of order j is shown to belong
to a type of weighted spaces that correspond to the unweighted spaces introduced by Lions
and Peetre [21] and called “espaces de moyenne” by these authors.

A similar problem solved in [21] deals with the weights c(t) = tα, with α + 1/p ∈ (0, 1)

so that c belongs to H(p) and 1/c to H(p′). See also: [1,13–15,17,18,20].
A convolution product is introduced which in terms of a normed vector space A and weight

c is defined to be

ρ ∗ φ(t) =
∫ t

0
ρ(t − τ)φ(τ)dτ , ρ ∈ L1(0,+∞;R), cφ ∈ L p(0,+∞;A). (1.1)

Associated with the convolution product is a Young’s inequality of type

|c(ρ ∗ φ)|L p(A) ≤ κ |ρ|L1 . |cφ|L p(A) (1.2)
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242 M. Artola

where κ is a positive constant. Implications of the inequality described here may be regarded
as a stability result and are believed to be new. In this respect, it is worth noting that the
inequality, called “P-condition” in [7], is obvious when the weight is not increasing.

When c ∈ A(p), the Muckenhoupt class [23], the inequality has been proved in [7]. But it
is also known (cf. [7]) that A(p) ⊂ H(p) for all p, which suggests that the inequality is valid
under improved conditions. In fact, it is shown in Theorem 3.1 in Sect. 3 that a sufficient
condition for (1.2) is c ∈ H(p). An implicit proof using the complex derivative Diη(η ∈ R)

is presented in [6] while heuristic arguments are announced in [7]. Consequently, we are led
to the problem, which as far as the author is aware is open and not completely resolved here,
which may stated as

Is H(p) the widest class of weight c for which (1.2) holds?

Nevertheless a positive answer is presented in a particular case in Remark 3.4.
For convenience, notation and conclusions previously obtained mainly in [5–7] are recalled

in Sect. 2.
Section 3 defines a trace of a weighted space that is an alternative to the definition studied

in [5] but which leads to an improved definition of a class of intermediate weighted spaces.
Inequality (1.2) then can be used to embed our trace space into another type of weighted

space.
Specifically inequality (1.2) combined with the procedure introduced in [21] is employed

to show that elements of the trace spaceT(m)
j are represented by integrals. ConsequentlyT(m)

j
can be identified as an “espace de moyenne” in the sense of [21] appropriately modified to
accommodate weighted spaces.

Section 4 interrupts the main discussion and introduces certain intermediates spaces and
other relevant definitions required subsequently. Invariance under the change of variable
t−→λt, (λ > 0), or t−→1/t , with respect to the Haar measure dt/t on R∗, serves to guide
the choice of weights.

By reference to inequality (1.2) two equivalent definitions are formulated for a space 


called here “intermediate mean space”.
A complete account of such spaces, which may found in [8], is omitted. Nevertheless, key

properties and their proofs are recalled partly to enable the space 
 to be represented as


 = 
θ(p0, θ, ĉ0,A0; p1, θ − 1, ĉ1,A1)

for a suitable choice of θ and of ĉi ∈ H(pi ), i = 0, 1.

Section 5, which resumes the main discussion, interprets the space T(m)
j as a particular

“intermediate weighted mean space” 
θ j and contrasts this result with those of [21] which
deals with weights tα where α appears as a parameter. Dependence upon the weight requires
clarification.

It remains to investigate the new spaces with respect to the usual parameters and weights.
For this purpose the methods of Peetre [25–27] are extended in the final Sect. 6. The “quasi
invariance” of all definitions of a ∈ 
, with respect to the change of variable t−→1/t ,
together with a new (Jw- or Kw-) method used to prove, following [27], that the space

 = 
θ depends here, only upon three parameters: θ ∈ (0, 1), a power pθ , and a weight cθ .

I wish to dedicate this work to the memory of Jacques-Louis Lions who was my thesis
adviser1 during 1964–1968 and who introduced me not only to weighted spaces [2,3] but
also to interpolation theory [4].

1 My thesis on Partial Differential Equations with delay was published in 1969 at the Annals of E.N.Sup.ULM
Paris.
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On traces spaces connected with a class of intermediate… 243

The publication of the notes completed during this earlier period was prevented by heavy
demands on my time, due not only to growing research interests in applied mathemati-
cal subjects mainly unrelated to weighted spaces, but also to responsibility for leading the
development of the Applied Mathematic Group at the University Bordeaux I. (Indeed my
entire professional career has been spent at the University of Bordeaux I.) Throughout this
burdensome administrative task, J. L. Lions provided unfailing support and encouragement.

Fortunately, it is now possible to prepare and complete the remaining (1964–1968) notes
for publication. So far , this has led to the appearance of articles [7] in 1998, and [5,6], recently.
The present paper is intended as a contribution toward the continuation of the series.

2 Definitions and background

If X ,Y are vectorial topological spaces, X ⊂ Y means always algebraic inclusion with a
continuous injective mapping and L(X ,Y), resp. (L(X ) if X = Y), denotes the space of
linear continuous mappings from X into Y .

Let X be a normed space with norm | . |X, and let I =(a, b) ⊂ R+ =(0,+∞), L p(I ; X),

(resp. L p(X) if I = R+) denotes the space of (class of) functions which are strongly
measurable with respect to the Lebesgue measure and p-integrable (1 ≤ p ≤ +∞) on I ⊂
R+ with values in X.

IfX is a Banach space, then provided with the normu−→|u|p = (∫
I |u(x)|pXdx

)1/p
, (1 ≤

p < +∞), L p(I ;X) is a Banach space; Similarly for the usual modification when p = +∞.
Finally if X = R (resp. C)) we denote by L p the space L p(R+;R) (resp. L p(R+;C)

and by L p∗ (X) (resp. L p∗ ) the space L p(X) for the Haar measure dt
t on R∗.

Let ω be a positive measurable function locally integrable on I ⊂ R+ = (0,+∞) with
values in R+, we can define a measure ν such that dν = ω(t)dt , where ω > 0 is a density
with respect to the Lebesgue measure. Such a density ω is also called a weight and we can
define the weighted space L p

ω(I ;X), of (class of) functions u such that
∫
I
|u(t)|pXdν(t) < +∞,

with usual modification when p = +∞. Provided with the natural norm LP
ω (I ;X) is a

Banach space.
In what follows we let ω(t) = cp(t) and we assume that c > 0 satisfies

∀T > 0, (i) c ∈ L p(0, T ;R+), (ii) c−1 ∈ L p′
(0, T ;R+),

1

p
+ 1

p′ = 1. (2.1)

When ω = cp, the condition u ∈ L p
ω(I ;X) is equivalent to cu ∈ L p(I ;X) provided with

the Lebesgue measure. Accordingly, we still refer to c as a weight. So, in what follows, we
shall denote by L p

c (I ;X) the space of functions u, such that cu ∈ L p(I ;X).The letter ω is
always reserved for the density ω = cp , where c satisfies (2.1).

Remark 2.1 1. Obviously the condition [(2.1), (ii)] for c is reasonable to satisfy by Hölder
inequality:

∀I ∈ R+, I 
= (a,+∞), L p
ω(I ;X) ⊂ L1(I ;X)

with continuous injective mapping. On the other hand, the condition is necessary for
c ∈ H(p) (see later).
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244 M. Artola

2. Suppose X is reflexive and X′ the dual (or antidual) of X. Then the dual of

L p
ω(X) is L p′

ω′(X′) with ω′ = ω1−p′ = c−p′
.

As in [5], we are concerned with weights in the Hardy class H(p), that is weights c for
which the Hardy operator H : : u−→ 1

t

∫ t
0 u(τ )dτ is continuous from L p

c (X) into itself.
We recall2 that c ∈ H(p), 1 ≤ p < ∞, if and only if c satisfies the inequality:

Sup
t>0

(∫ +∞

t

[
c(τ )

τ

]p

dτ

)1/p (∫ t

0

dτ

[c(τ )]p′

)1/p′

< +∞ (2.2)

with the usual modifications when p = 1 (or p′ = +∞), where (2.2) is replaced by

there is a constant K , (0 < K < +∞) such that ∀t0 > 0,

∫ +∞

t0

c(t)

t
dt ≤ Kc(t0).

Remark 2.2 (i) It is of interest to notice that the condition

∀t > 0,

∫ +∞

t

[
c(τ )

τ

]p

< +∞, (2.3)

is only a necessary condition for c to be in H(p).
(ii) The condition [(2.1), (ii)] is also necessary for c ∈ H(p), but [(2.1), (i)] is not necessary

for (2.2).
Indeed if c ∈ H(p) and if φ is non-increasing, then φc ∈ H(p): for example the
weight c(t) = t−1/p(p ≥ 1) (which corresponds to the density ω(t) = 1

t for the Haar

measure in L p∗ ) belongs to H(p) but
∫ t

0 cp(τ )dτ = +∞. Thus we could assume only
c ∈ L p(ε, t;R+) for all (ε, t), 0 < ε < t , in place of [(2.1) (i)] for c, but the last
condition is needed for the existence of traces 
=0.

Assume now thatX is reflexive so that the dual (or antidual) operatorH∗ ofH is defined by

H∗(t) = ∫ +∞
t

u(τ )
τ

dτ which is continuous from L p′
1/c(X

′) into itself if and only if c satisfies
(2.2) [5].

2.1 Spaces W(m) and spaces of traces

Following [5], let A0,A1 be two Banach spaces continuously imbedded in a topological
vector space A with

X = A0 ∩ A1 equipped with the norm |u|X = max{|u|A0 , |u|A1} (2.4)

Y = A0 + A1 equipped with the norm |u|Y = inf
u=a0+a1

(|a0| + |a1|). (2.5)

Thus X,Y are Banach spaces and X ⊂ Ai ⊂ Y, (i = 0, 1). We assume that

Ai , (i = 0, 1) is reflexive (2.6)

X is dense in Ai , i = 0, 1. (2.7)

For i = 0, 1, let ci satisfy (2.1), and let pi , 1 ≤ pi ≤ +∞. Consider the spaces

Xi = L pi
ci (Ai ), with norm denoted Ni (.). (2.8)

2 See [16] and the bibliography therein.
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On traces spaces connected with a class of intermediate… 245

and define for m ≥ 1

W(m)(p0, c0,A0; p1, c1,A1) = W(m),

be the space of functions u, locally integrable on R+ with u ∈ X0, such that Dmu ∈ X1. The
last condition must be understood as follows: u is m-times differentiable in the distribution
sense with values in Y and Dmu locally integrable, so that the product with c makes sense.

Equipped with the norm

u−→ ‖u‖W(m) = max{N0(u), N1(D
mu)} (2.9)

W(m) is a Banach space.
Let W(m)

K (X) be the subspace of functions u ∈ W (m) with values in X, with compact
support in [0,+∞[, then from [5] we have

Lemma 2.3 If c1 ∈ H(p1), then W(m)
K (X) is dense in W(m).

Indeed, since Dmu is locally integrable with values in Y, then Dm−1u is absolutely con-
tinuous, hence continuous.

Then we can consider that u is (m − 1)-times continuously differentiable on R+ with
values in Y and D ju(t), 1 ≤ j ≤ m − 1 is well defined for t ∈ (0,+∞).

Therefore, when limt−→+0D ju(t) = a j in Y exists, we shall say that D ju has
a trace of order j, D ju(0) = a j at t = 0.

We have proved in [5] that if for j ∈ {0, 1, . . . ,m − 1}, t j c0 /∈ L p0(0, 1) then the trace
a j = 0. Consequently we can adapt a result of Poulsen [2,3,28] to obtain

Lemma 2.4 Assume,

t j c0 ∈ L p0(0, 1) (2.10)

then a necessary and sufficient condition for the existence of a trace of order j is

tm− j−1

c1
∈ L p′

1(0, 1). (2.11)

Denote by T(m)
j (p0, c0,A0; p1, c1,A1) = T(m)

j the space spanned in Y by D ju(0) = a j

when u spans W(m). Equipped with the norm

‖a‖
T(m)

j
inf

D j u(0)=a
‖u‖W(m) (2.12)

one obtains a Banach space. The spaces T(m)
j are called spaces of traces.

It follows that (see [5], Proposition 2.6), we have

Lemma 2.5 Let u ∈ W(m) with D ju(0 = a j ) then for 1 ≤ j ≤ m − 1:
∣∣a j

∣∣
T(m)

j
= Inf

u
max{N0(u)1−γ j,m , N1(D

mu)γ j,m }, γ j,m = j + 1/p0

m + 1/p0 − 1/p1
. (2.13)

From [5, Theorem 4.9] we can reduce the study of T(m)
j for j ∈ {0, 1, . . . ,m−1}, only to

T1
0 = T(p0, c0,A0; p1, c1,A1) and the condition on the weights in order to possess a trace

u(0) is

∀T > 0, c0 ∈ L p0(0, T ), c−1
1 ∈ L p′

1(0, T ). (2.14)

Then we have from [5]
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246 M. Artola

Proposition 2.6 Assume, (2.10), (2.11) hold for j ∈ {0, 1, . . . ,m − 1} (in fact (2.14) is
sufficient) then

T(m)
j (p0, c0, A0; p1, c1, A1) = T1

0(p0, t
j c0, A0; p1, t

j−m+1c1, A1) (2.15)

with equivalent norms.

Now let A be a topological vector space such that

X ⊂ A ⊂ Y, (2.16)

we shall say that A is an intermediate space (between A0 and A1).

With this definition Ai , i = 0, 1 is itself an intermediate space and we recall (see [15,
p. 145]) that

∀ j, 0 ≤ j ≤ m − 1, X ⊂ T(m)
j ⊂ Y. (2.17)

Thus T(m)
j are intermediate spaces with the following interpolation property:

let (B0,B1,B) is a family of spaces with properties analogous to the family (A0,A1,A).
AssumeX ⊂ A ⊂ Y, B0∩B1 ⊂ B ⊂ B0+B1. Let π be a linear mapping fromY into B0+B1

which restricted to Ai is linear and continuous from Ai into Bi (i = 0, 1) (that is π ∈
L(Ai ,Bi )). Then the restriction of π to A belongs to L(A,B) (see [5]).

3 Another representation of the traces in W(m)

Orientation Let a j ∈ T(m)
j . We want show in Sect. 3.2 that a function, ũ ∈ W(m), can be

found, eventually with compact support, such that

a j =
∫ +∞

0
ũ(t)

dt

t
, with t j ũ ∈ L p0

π0
(A0), t j−mũ ∈ L p1

π1
(A1). (3.1)

This will enable us to introduce in Sect. 4 new weighted spaces which extends those of [21].
Since the main tool used in extension of the proofs involves convolution products with

some weighted functions, it is of prime necessity to establish beforehand some essential
results (see especially Theorem 3.1) which appear to be new.

3.1 A stability result for convolution product with weight

Theorem 3.1 Let B a Banach space, c a weight satisfying (2.1), with c ∈ H(p), 1 ≤ p <

+∞, φ ∈ L1(R+), cu ∈ L p(B) then φ ∗ u ∈ L p
c (B) (where ∗ means the convolution) and

there is a constant κ > 0, such that

|φ ∗ u|L p
c (B) ≤ κ |φ|L1(R+) . |u|L p

c (B) (3.2)

Remark 3.2 As mentioned in the introduction, the result is the (P)-condition of [7] proved,
only for non-increasing weights (that is obvious) and for the weights c ∈ A(p) (the class of
Muckenhoupt see: [24]), where, following [7], it was proved by a method of Stein [30] that
gives one estimate for u using the maximal theorem of Hardy–Littlewood. Thus we have a
sufficient condition for c ∈ A(p). But we know that strictly A(p) ⊂ H(p) and accordingly
Theorem 3.1 gives the best result.

Moreover a direct procedure, independent of Stein’s method is used.
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Proof of Theorem 3.1 The proof is divided into three steps, repeating the outlines of certain
proofs of [6] in order to correct some misprints.
(i) First step:

We introduce the operator Diη = Y−iη∗, η ∈ R where3

Y−iη = 1

�(−iη)
P f

[
1

x1+iη

]
if η 
= 0, Y0 = δ

If � ∈ D(R+) then

Diη�(t) = 1

�(−iη)
Lim

ε−→0+

(∫ t

ε

�(t − x)

x1+iη
dx − �(t)ε−iη

−iη

)
, η 
= 0, D0� = �

For convenience we set Diη� = �̂. It is of interest for what follows to apply Diη to the
characteristic function χ]a,b[ on the interval (a, b), 0 ≤ a < b < +∞. We get

χ̂]a,b[(t) = 0 if t < a,= i

η�(−iη)

[
1

(t − a)iη

]
if a < t < b,

= i

η�(−iη)

[
1

(t − a)iη
− 1

(t − b)iη

]
if t > b,

and we can check that

t > b�⇒ ∣∣χ̂]a,b[(t)
∣∣ = γ (η)

2

|η|
∣∣∣∣sin

[
η

2
Log

(
1 + b − a

t − b

)]∣∣∣∣ ,

γ (η) = 1

|�(−iη)| =
(

ηshη

π

)1/2

(3.3)

Then the first step is to prove4 the

Theorem 3.3 Let B a Banach space, and let c satisfy (2.1) and c ∈ H(p). Then for 1 ≤
p < +∞ one has Diη ∈ L(L p

c (B)).

Remark 3.4 (1) For unweighted spaces (i.e.: c ≡ 1) the result is known only for 1 < p < ∞
with B = R or =C (see: [22,30]). It is also true when B is a Hilbert or Banach spaces (see:
[2–4,7]) but again for 1 < p < ∞.

(2) The conditions on c are here sufficient conditions, nevertheless if Logc is of finite
order with respect to Logt as t−→ + 0, or t−→∞, then (using Bourbaki [11]), we can
show that those conditions are also necessary.

Actually, for β ∈ B, if we want χ̂]a,b[ ⊗ β ∈ L p
c (B), then from (3.3), we see that the

norm in B of the function is equivalent (up to a multiplicative constant) to 1/t as t−→∞, so
that (2.3) must hold.

Now if the order of Logc with respect to Logt is −1 then (2.1) is not true. If the order is ∞,
then (2.3) fails. So from a result of [11], the integral in (2.3) is equivalent (up to a multiplicative
constant) to t−p+1cp(t) and

∫ t
0 c−p′

(τ )dτ � (constant)tc−p′
(t) as t−→ + ∞ or −→ + 0,

we easily check that (2.2) is true.
In this case the condition (2.2) is necessary for Theorem 3.3 and one has an answer for

the problem posed in the Sect. 1.
(3) When c ≡ 1, the integral of (2.3) is divergent, then Diη does not act in L1.

3 Pf = Finite Part at the sense of Laurent Schwartz [29].
4 See Theorem 3.3 of [6].
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(1) To prove Theorem 3.3 we need the

Lemma 3.5 Let φ a locally measurable function with compact support ⊂ (o, T ) taking
values in B. Then there is a constant γ such that

∀T > 0,

∣∣∣φ̂(2T )

∣∣∣
B

≤ γ
1

T

∫ T

0
|φ(τ)|B dτ . (3.4)

To prove the lemma, consider a step function φk, supp(φk) ⊂ (0, T ), given by φk =∑i=k−1
i=0 βi ⊗ χ]ai ,ai+1[,, where βi ∈ B, a0 ≥ 0 and ak = T . From (3.3) we obtain for t > T

∣∣∣φ̂k(t)
∣∣∣
B

≤ γ (η)

i=k−1∑
i=0

ai+1 − ai
t − ai+1

|βi |B , ∀t > T

(where we have used |sinu| ≤ |u| , and Log(1 + v) ≤ v, 0 < v < 1).
Now choosing t = 2T, since t − ai+1 ≥ T, o ≤ i ≤ k − 1, one has for all T > 0

∣∣∣φ̂k(2T )

∣∣∣
B

≤ γ (η)
1

T

i=k−1∑
i=0

(ai+1 − ai ) |βi |B = γ (η)
1

T

∫ T

0
|φk(τ )|B dτ ,

which is (3.4) and the lemma is proved for φk .
Now if φ ∈ L1(0, T );B) with compact support contained in (0, T ), we may always find

a step function φk with compact support in (0, T ) such that: φk−→φ a.e. and in L1(0, T ;B)

norm as k−→∞. Then, observing that the kernel of φ̂k(2T ) is bounded because 2T − x ≥
T, 0 ≤ x ≤ T, we can pass to the limit by Lebesgue’s theorem and Lemma 3.5 is proved.

(2) Now to complete the first step in the proof of Theorem 3.3, consider φ ∈
L1
loc(R

+) and fix t > 0.
Introduce, for n ∈ N, the truncating sequence θn :

θn(τ ) = 1, 0 ≤ τ ≤ t − 1/n,

θn(τ ) = 2n(t − 1/2n − τ), t − 1/n ≤ τ ≤ t − 1/2n,

θn(τ ) = 0, τ ≥ t − 1/2n.

then φn = θnφ has a compact support ⊂ (0, t − 1/2n), so we may apply Lemma 3.5 and
pass to the limit by Lebesgue’s theorem as n−→ + ∞. One obtains

∣∣∣φ̂(2t)
∣∣∣
B

≤ γH(|φ|B)(t) for all t > 0. (3.5)

If we assume φ ∈ L p
c (B), then from [(2.1) (ii)], one has φ ∈ L1

loc(R
+;B) and (3.5) holds.

Noticing that if f > 0, we infer that H( f )(t) ≤ 2H( f )(2t) and on multiplying the two
members of (3.5) by c(2t), we integrate over R+ the power p to each side of (3.5) and
because Hardy’s operator belongs to L(L p

c (B)) Theorem 3.3 is proved.
(ii) Second step:

Now we prove another result obtained in the same way:

Theorem 3.6 Assume c ∈ H(p), 1 ≤ p < +∞, φ ∈ L1(R+), u ∈ L p
c (B) and let

v̂ = Y−iη ∗ v. Then φ ∗ û ∈ L p
c (B) and there is a constant κ1 > 0, such that

∣∣φ ∗ û
∣∣
L p
c (B)

≤ κ1 |φ|L1(R+) . |u|L p
c (B) (3.6)
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Proof We introduce for fixed t > 0 the truncating sequence θn and let un = θnu. We may
write gn = φ ∗ ûn = φ̂ ∗ un, so that

|gn(2t)|B ≤
∫ t−1/2n

0

∣∣∣φ̂(2t − σ)

∣∣∣ |un(σ )|B dσ .

from the definition of un .

Now from the proof of Lemma 3.5 we have
∣∣∣φ̂(2s)

∣∣∣ ≤ γ
s

∫ s
0 |φ(ξ)| dξ and from the last

inequality we deduce

|gn(2t)|B ≤ 2γ

∫ t−1/2n

0

{ |un(σ )|B
2t − σ

∫ t−σ/2

0
|φ(ξ)| dξ

}
dσ

≤ 2γ |φ|L1(R+)

1

t + 1/2n

∫ t−1/2n

0
|un(σ )|B dσ,

because σ ∈ (0, t − 1/2n) and t + 1/2n ≤ 2t − σ ≤ 2t .
As at the end of the proof of Theorem 3.3, we can pass to the limit as n−→ + ∞, to get

∀t > 0, |g(2t)|B ≤ 2γ |φ|L1(R+) .H(|u|B)(t). (3.7)

(iii) Third step:
Since Yiη ∗ Y−iη = δ, ∀η ∈ R, we may write u = Yiη ∗ û, so that

∀η ∈ R, φ ∗ u = φ ∗ [Yiη ∗ û],
and gathering the results of steps 1–2 Theorem 3.1 is proved.

On observing that the weight: t−1/pc(t) ∈ H(p) if c ∈ H(p) and that |cu|L p∗ (B) =∣∣t−1/pcu
∣∣
L p(B)

, we obtain:

Corollary 3.7 Assume c ∈ H(p), 1 ≤ p < ∞, φ ∈ L1, cu ∈ L p∗ (B). Then one has

|c(φ ∗ u)|L p∗ (B) ≤ κ |φ|L1 . |cu|L p∗ (B) . (3.8)

Proof From (3.5) we obtain obviously a version of Theorem 3.3 stating that cDiη ∈
L[L p∗ (B)] because t−1/pc ∈ H(p) (like also t−1/p), while from (3.6) a version of Theo-
rem 3.6 for the same reason implies that there exists a constant κ1 > 0, such that∣∣c(φ ∗ û)

∣∣
L p∗ (B)

≤ κ1 |φ|L1 . |cu|L p∗ (B) .

The proof is completed as in the third step.

Remark 3.8 1. With a convenient extension to R of the functions only defined on R+, for
example by the relation t = ex , we can deduce some variants of previous results in particular
in the important case where φ has a compact support.

2. Generally if we start from g(t) = (φ ∗ u)(t) = ∫
R φ(t − s)u(s)ds and take t =

Logτ, s = Logσ, then on setting f̃ (ξ) = f (Logx), we have that g is expressed by g̃(τ ) =∫ +∞
0 φ̃(τ/σ )ũ(σ ) dσ

σ
; that is the convolution product on the multiplicative groupR∗ provided

with Haar’s measure dσ
σ.

. Notice that |u|L p
c (B) � ∣∣t1/pcu

∣∣
L p∗ (B)

and Theorem 3.1 may be
extended to a convolution as g̃(τ ) with respect to Haar’s measure (see also Corollary 3.7).
In consequence we have

∣∣t1/pcg̃
∣∣
L p∗ (B)

≤ κ

∣∣∣φ̃
∣∣∣
L1∗

∣∣t1/pcũ
∣∣
L p∗ (B)

. (3.9)

123



250 M. Artola

3.2 An integral représentation for the trace of order j

Henceforward, to simplify notation, we set u(r) f or Dru and use the procedure of [21] (even
though it involves adaptation to our structure), which is justified by Theorem 3.1.

First, we state,

Lemma 3.9 Let a j ∈ T(m)
j and v ∈ W(m) be such that v( j)(0) = a j . Then we can construct

a function u ∈ W(m), with compact support in R+ such that

tk Dku ∈ L p0
c0 (A0), k ∈ {1, 2, . . . ,m . . .}, with u( j)(0) = a j . (3.10)

Proof Define a function f on R by f (σ ) = v(eσ ), σ ∈ R. Because

[
dr f

dσ

]
σ=logt

=
k∑

i=1

γik t
i d

iv(t)

dt
,

when ρ ∈ D(R),
∫
R e− jσ ρ(σ )dσ = 1, we obtain

e− jσ ( f ∗ ρ( j))(σ ) = e− jσ ( f ∗ ρ)( j)(σ )−→γ j jv
( j)(0) in Y as σ−→ − ∞.

Since v ∈ W(m) is equivalent to {t1/p0c0v ∈ L p0∗ (A0), t1/p1c1v ∈ L p1∗ (A1)}, and conse-
quently

t1/p0c0 f |σ=logt ∈ L p0∗ (A0) � f |σ=logt ∈ L p0
c0 (A0)

so that from Theorem 3.1, we deduce

( f ∗ ρ)(k) (logt) ∈ L p0
c0 (A0).

Because we want traces at t = 0, only functions in a neighborhood of t = 0 are required, so
that choosing � ∈ D(R+) with �( j)(0) = 1 we can take

u(t) = �(t)( f ∗ ρ)(logt)

which satisfies

u( j)(0) = a j , tk Dku ∈ L p0
c0 (A0)

and (3.10) holds.

Remark 3.10 Lemma 2.3 implies that W(m)
K (X) is dense in W(m), so that there exists v ∈

W(m)
K (X) with v( j)(0) = a j inY. Thenu as previously constructed can be chosen inW(m)

K (X).

Secondly one has

Lemma 3.11 Assume that [(2.1), (ii)], (2.10), (2.11) hold true and let u satisfy (3.10). Then

u( j)(0) = γ j

∫ +∞

0
tm− j−1u(m)(t)dt, γ j = (−1)(m−1)

(m − j − 1)! . (3.11)

Proof Four steps are required
Step 1: T > 0,

∫ T
0 tm− j−1u(m)dt < +∞.

From (2.11) we have tm− j−1

c1
∈ L p′

1(0T ;R+), and u(m) ∈ L p1
c1 (A1). The result then follows

from Hölder ’s inequality.
Step 2:

∫ +∞
T tm− j−1u(m)(t)dt < +∞.
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Assume u has a compact support (say [0, T0]) in R
+

. From (3.10) with k = m, Hölder’s
inequality gives

∫ +∞

T
tm− j−1u(m)(t)dt ≤

∣∣∣tmu(m)
∣∣∣
A0

(∫ T0

T

dt

[t j+1c0(t)]p′
0

)1/p′
0

.

and similarly, we have
∫ T0

T

dt

[t j+1c0(t)]p′
0

≤ 1

[T j+1]p′
0

∫ T0

0

dt

[c0(t)]p′
0
,

and the result follows by [(2.10), (ii)].

Remark 3.12 The choice of u with compact support was partly to derive the last inequality.
Otherwise it is necessary to assume that: J = ∫ +∞

T
dt

[t j+1c0(t)]p′0
< +∞. This is done in

[21] when c0(t) = tα and gives a condition on the weight: 1/p0 + α + j > 0. Actually

since j ∈ {0, 1, . . . ,m − 1} it is sufficient to assume ∀T > 0, [tc0]−1 ∈ L
p′

0
c0 (T,+∞; R+)

(because J ≤ 1

T jp′0

∫ +∞
T

dt

[tc0]p′0
) which is a necessary condition for 1/c0 ∈ H(p′

0). Then in

this case it seems that the additional assumption

1

c0
∈ H(p′

0) (3.12)

is sufficient to establish step 2 when u does not have compact support.
Furthermore, on setting φ(t) = [tc0]−1, taking into account [(2.1), (ii)], we recover a set

of functions

{�} = {φ; φ ∈ L p′
0(1,+∞;R+

), tφ ∈ L p′
0(0, 1;R+} (3.13)

introduced by Lions in [19] for a problem of interpolation that has only recently been solved.
The reader is referred to [9,19].

Step 3:
Next we prove:∫ +∞

0
tm− j−1u(m)(t)dt = −(m − j − 1)

∫ +∞

0
tm− j−2u(m−1)(t)dt . (3.14)

For ε > 0, we start from I tε = ∫ t
ε

τm− j−1u(m)(τ )dτ and after an integration by parts,
obtain

[τm− j−1um−1(τ )]tε = −(m − i − 1)

∫ t

ε

τm− j−2u(m−1)(τ )dτ .

Since u has compact support, we deduce that

tm− j−1u(m−1)(t)−→0 in Y as t−→∞.

On the other hand, the identity

u(m−1)(ε) = u(m−1)(1) −
∫ 1

ε

u(m)(τ )dt

implies that

∣∣∣u(m−1)(ε)

∣∣∣
Y

≤
∣∣∣u(m−1)(1)

∣∣∣
Y

+
(∫ 1

ε

cp1
1

∣∣∣u(m)(τ )

∣∣∣p1

Y
dτ

)1/p1 (∫ 1

0

dτ

[c1(τ )]p′
1

)1/p′
1
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and the right side is bounded because Dmu ∈ X1, and [(2.1), (ii)] holds. In consequence

εm− j−1u(m−1)(ε)−→0 in Y as ε−→0,

and (3.14) holds true.
Step 4:

Repeating the process leads to
∫ +∞

0
tm− j−1u(m)(t)dt =(−1)m− j−1(m − j − 1)!

∫ +∞

0
u( j+1(t)dt,

but u( j)(t)−→0 in Y as t−→ + ∞. Consequently we get (3.11).

Resume of Sect. 3.2
If a j ∈ T(m)

j we have constructed a function u∗(t) = tm− j u(m)(t), such that

a j =
∫ +∞

0
u∗(t)dt

t
, {t j u∗ ∈ X0, t j−mu∗ ∈ X1}. (3.15)

The interpretation of this result requires some definitions and properties of some spaces.

4 Some intermediate weighted spaces

Here we extend to weighted spaces the spaces that in [21] called “Espaces de moyennes”
while preserving some properties of invariance with respect to Haar’s measure dt

t subject to
the change of the variable t into t + T, λt, or 1/t.

4.1 A first definition

Assume, for the moment, that i ∈ {0, 1}, ci ∈ H(pi ), 1 ≤ pi ≤ +∞, ξi , with ξ0ξ1 < 0
and define the space

V=V(p0, ξ0, c0,A0; p1, ξ1, c1,A1)={v; tξ0c0v ∈ L p0∗ (A0), c1t
ξ1v ∈ L p1∗ (A1)} (4.1)

which being equipped with the natural norm is a Banach Space.
When ci ∈ H(pi ), i = 0, 1, it is of interest to set

ĉi (t) = t−1/pi ci (t), X̂i = L pi
ĉi

(Ai ) (and also ĉ′
i (t) = t−1/p′

i ci (t)). (4.2)

By virtue of

v ∈ X̂i � civ ∈ L pi∗ (Ai ),

one has

V ≡ V̂ = {v; tξ0v ∈ X̂0, t
ξ1v ∈ X̂1}, with ĉi ∈ H(pi ), i = {0, 1}. (4.3)

and we denote by N̂i (v) the norm of v ∈ X̂i = L pi
ĉi

(Ai ).
We can check that ∫ +∞

0
v(t)

dt

t
(4.4)

exists under some conditions on (ci , ξi ), i = {0, 1}.
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For example, assume ξ1 < 0. Then Hölder’s inequality

∫ 1

0
|v(t)|Y ≤

(∫ 1

0
[tξ1 ĉ1(t) |v(t)|p1

Y dt

)1/p1 (∫ 1

0

dt

[t1+ξ1 ĉ1(t)]p′
1

)1/p′
1

< +∞

holds provided

[t1+ξ1 ĉ1]−1 ∈ L p′
1(0, 1; R+), (4.5)

that is assumed for −ξ1 ≥ 1, if [ĉ1]−1 ∈ L p′
1(0, 1) (that is [(2.1, (ii)] for ĉ1).

On the other hand, we further employ
∫ +∞

1
|v(t)|Y ≤

(∫ +∞

1
(tξ0 ĉ0(t) |v(t)|Y dt

)1/p0 (∫ +∞

1

dt

[t1+ξ0 ĉ0(t)]p′
0

)1/p′
0

< +∞

which is valid provided

[t1+ξ0 ĉ0]−1 ∈ L p′
0(1,+∞;R+), (4.6)

assumed for ξ0 ≥ 0, if [t ĉ0]−1 ∈ L p′
0(1,+∞) which holds if [ĉ0]−1 ∈ H(p′

0) (see also
Corollary 3.7) and vice versa if ξ0 < 0.

Now, in what follows, to fix ideas we assume ξ1 < 0.
Accordingly we assume (4.4) holds (when, (ξ0, ξ1) are chosen to satisfy (4.5)–(4.6)), and

we consider a function v with values a.e. in X. Set


 = 
(p0, ξ0, ĉ0,A0; p1, ξ1, ĉ1,A1),

which is the space spanned by a = ∫ +∞
0 v(t) dtt in Y as v spans the space V � V̂.

Equipped with the norm

|a|
 = Infv
{
max

(
N̂0(t

ξ0v), N̂1(t
ξ1v)

)}
(4.7)

(where Infv means the I n f taken on v such that a = ∫ +∞
0 v(t) dtt ), 
 is a Banach space.

To understand better the properties of the spaces (V, 
) we make the change of variable
t = ex , x ∈ R in V.

On setting f̃ (x) = f (ex ) we have an isomorphism between the space V and the space

Ṽ = {v; eξ0x ṽ ∈ L p0
c̃0

(R;A0), e
ξ1x ṽ ∈ L p1

c̃1
(R;A1)}. (4.8)

We denote


̃ = 
̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1) (4.9)

the associated space spanned by a = ∫ +∞
−∞ ṽ(x)dx in Y when ṽ spans the space Ṽ, which

is naturally a Banach space equipped with the norm induced by (4.3) upon the change of
variable t−→ex .

The space 
̃ is analogous to those studied in [21] by Lions and Peetre and called “Espaces
de Moyennes” and accordingly we call 
̃ is a “weighted mean space”.

4.2 A second definition

We continue to assume ξ0 > 0, ξ1 < 0, ∀i ∈ {0, 1}, ci ∈ H(pi ), 1 ≤ pi ≤ +∞, and we
consider vi measurable with values in Ai such that, the derivatives being taken in the sense
of distributions in Y

∂

∂x
(v0(x) + v1(x)) = 0, a.e. in Y
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which implies

v0(x) + v1(x) = constant, (a.e) in Y = a ∈ Y. (4.10)

In what follows, we set Ñi ( f ) = |c̃i f |L pi (R;Ai ), i = (0, 1).
Consider the space (temporarily) denoted by 
̃− = 
̃−(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1)

which is spanned by a = v0(x) + v1(x) when the vi spans the space

Ṽ− = {eξ0x ṽ0 ∈ L p0
c̃0

(R;A0), eξ1x ṽ1 ∈ L p1
c̃1

(R;A1)} (4.11)

when equipped with the norm

|a|

̃− = Inf

v0(x)+v1(x)=a
max[Ñ0(e

ξ0x ṽ0), Ñ (eξ1x ṽ1)] (4.12)

this space is a Banach space.
Note that we have also

a ∈ 
̃− = {a = v0(x) + v1(x), such that tξ0v0 ∈ X̂0, t
ξ1v1 ∈ X̂1}. (4.13)

Remark 4.1 We can observe, thanks Theorem 3.1, that the spaces 
̃ (resp. 
̃−) are not
changed if we replace the conditions (4.8) for v, (resp. (4.11) for vi , i = (0, 1)), by

∀ j ≥ 1, eξi x D j ṽ ∈ L pi
c̃i

(R;Ai ), (resp. eξi x D j ṽi ∈ L pi
c̃i

(R;Ai )), i = (0, 1).

(Indeed we can generally replace v by the convolution v ∗ ρ, where ρ ∈ D(R), with∫
R ρ(x)dx = 1, so that D j ṽ = ṽ ∗ D jρ and because D jρ ∈ L1, Theorem 3.1 leads to

the result).

We claim

Theorem 4.2 The following equalities hold:

̃−(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1) = 
̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1)

= 
(p0, ξ0, ĉ0,A0; p1, ξ1, ĉ1,A1) (4.14)

with equivalent norms.

Proof Assume, a ∈ 
̃; and note that a = ∫
R v(t)dt = 1 ∗ v, with v satisfying (4.8). Let

χ− be the characteristic function of the interval ] − ∞, 0[ and χ+ that of ]0,+∞[. Because
1 = χ_ + χ+ we can take v0 = χ− ∗ v, v1 = χ+ ∗ v, to give v0 + v1 = a, so that

eξ0xv0 = (eξ0xχ−) ∗ (eξ0xv), eξ1xv1 = (eξ1xχ+) ∗ (eξ1xv),

where eξ0xχ− and eξ1xχ+ belong to L1 with the norms 1
ξ0

and 1
|ξ1| . On applying Theorem 3.1

we obtain


̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1) ⊂ 
̃−(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1), (4.15)

More precisely from Theorem 3.1, we infer that

|a|

̃− ≤ max(Ñ0(e

ξ0x ṽ0, Ñ1(e
ξ1x ṽ1)) ≤ max

(
1

ξ0
Ñ0(e

ξ0x ṽ),
1

|ξ1| Ñ1(e
ξ1x ṽ)

)

≤ max

(
1

ξ0
,

1

|ξ1|
)

|a|

̃ (4.16)
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To prove the converse embedding, Remark 4.1 enables us to put a = v0 + v1, with eξi xv′
i ∈

L pi
c̃i

(R;Ai ), i = {0, 1}. As v′
0 + v

′
1 = 0, we can let v = v′

0 = −v′
1, to conclude that

v satisfies (4.8). Moreover, we can write

1 ∗ v = χ+ ∗ v + χ− ∗ v = χ+ ∗ v′
0 − χ− ∗ v′

1 = Dχ+ ∗ v0 − Dχ− ∗ v1

and since Dχ+ = −Dχ_ = δ, we obtain
∫
R v(x)dx = a. Thus a ∈ 
̃(p0, ξ0, c̃0,A0; p1, ξ1,

c̃1,A1) and the theorem is proved.
By the method of [5], we can easily demonstrate that X is dense in 
̃ and use

X ⊂ 
̃ ⊂ Y,

to deduce that 
̃ is an intermediate space and one can check (see: Sect. 4.2 here after) that

̃ has the interpolation property (analogous to the spaces in [21]).

Nevertheless it is of interest to establish beforehand some others properties related with
symmetry (this is obvious by the definition) or with the invariance of the integral I (ṽ) =∫ +∞
−∞ ṽ(x)dx with respect to the changes of variable x−→x + T , or x−→λx, λ 
= 0.

Lemma 4.3 Let a ∈ 
̃. Then

|a|

̃ = Inf

I (ṽ)=a
[Ñ0(e

ξ0x ṽ)]1−θ [Ñ1(e
ξ1x ṽ) ]θ , (4.17)

where

θ = ξ0

ξ0 − ξ1
. (4.18)

Proof If T ∈ R, set f T (x) = f (x + T ); then

ṽT ∈ ṼT (p0, e
ξ0(x+T )c̃T0 ,A0; p1, e

ξ1(x+T )c̃T1 ,A1),

∫ +∞

−∞
ṽ(x + T )dx = a.

It can be checked that

Ñi (e
ξi (x+T )c̃Ti ṽT ) = e−ξi T Ñi (e

ξi x c̃i ṽ), i = (0, 1)

and consequently

|a|

̃ ≤ max

(
e−ξ0T Ñ0(e

ξ0x c̃0ṽ), e−ξ1T Ñ1(e
ξ1x c̃1ṽ)

)
.

Choosing T such that each term in the bracket, on the right in the last formula, takes the same
value, we obtain (4.17), (4.18).

Remark 4.4 The second definition leads to

|a|

̃− = Inf

v0(x)+v1(x)=a
max[Ñ0(e

ξ0x ṽ0)
1−θ , Ñ (eξ1x ṽ1)

θ ], (4.19)

with θ given by (4.18).

Corollary 4.5 There is a constant κ = κ(ξ0, p0, c0; ξ1, p1, c1) such that

|a|

̃ ≤ κ |a|1−θ

A0
|a|θA1

, (4.20)

for all a ∈ X.
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Proof of Corollary 4.5 Consider ρ ∈ D(R) such that
∫
R ρ(x)dx = 1. Then taking ṽ(x) =

φ(x)a in (4.17) gives the result.
Naturally the result is valid for all other definitions of 
̃ (for example 
̃−) with equivalent

norms but with different constants κ .
Now on setting fλ(x) = f (λx), λ > 0, we obtain a homogeneity result:

Lemma 4.6 One has

∀λ>0, 
̃(p0, λξ0c̃0,A0; p1, λξ1, c̃1,A1) � 
̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1, A1) (4.21)

with equivalent norms. Moreover

|a|

̃λ

= λ1−1/pθ |a|

̃ (4.22)

and

1

pθ

= 1 − θ

p0
+ θ

p1
, where θ is given by (4.18). (4.23)

Proof It is obvious that the function ṽλ(x) = λṽ(λx) belongs to the space

Ṽλ(p0, λξ0, c̃0λ,A0; p1, λξ1, c̃1λ,A1)

and that
∫ +∞

−∞
ṽλ(x)dx =

∫ +∞

−∞
ṽ(x)dx = a,

Consequently, we obtain

∀λ > 0, 
̃λ = 
̃(p0, λξ0, c̃0λ,A0; p1, λξ1, c̃1λA1) � 
̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1).

More precisely, we have
∣∣eλξi x c̃iλṽλ

∣∣
L pi (R;Ai )

= λ1−1/pi
∣∣eξi x c̃i ṽ

∣∣
L pi (R;Ai )

(4.24)

On taking into account (4.17)–(4.20) for |a|

̃ and (4.22). The result of the Lemma 4.6 follows.

Remark 4.7 As in the case of unweighted space [21], the estimate (4.22) shows that the result
seems to depend upon the parameters (θ, pθ ) but provided no information about dependence
on the weights.

From Lemma 4.6, we deduce the main formula:


̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1) = 
̃θ

= 
̃(p0, θ, c̃0,A0; p1, 1 − θ, c̃1,A1), θ given by (4.18), (4.25)

with equivalent norms.

4.3 Interpolation property

Consider a family of spaces {B0,B1,B} analogous to {A0,A1,A}.Denote Ya = Y, Yb =
B0 + B1 and let 
a = 
̃(p0, ξ0, c̃0,A0; p1, ξ1, c̃1,A1), 
b = 
̃(p0, ξ0, c̃0,B0; p1, ξ1,

c̃1,B1). We have
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Theorem 4.8 Let π be a linear mapping from Ya into Yb which restricted to Ai is linear
and continuous from Ai into Bi (said π ∈ L(Ai ,Bi )) (i = 0, 1). Then the restriction of
π to A belongs to L(A,B).

Moreover, let ωi the norm of L(Ai ,Bi ), ω that of L(A,B), one has

ω ≤ ω1−θ
0 ωθ

1 , (4.26)

where θ is given by (4.18).

Proof Let a ∈ A. There exists a function ṽ ∈ ∼V with
∫
R ṽ(x)dx = a, the last integral

being convergent into Ya . From the assumptions upon π , we deduce that π ∈ L(Ya,Yb)

and thus

πa =
∫
R

πṽ(x)dx .

From Lemma 4.3, we obtain

|πa|B ≤ ω1−θ
0 ωθ

1 [Ñ0(e
ξ0x ṽ)]1−θ [Ñ1(e

ξ1x ṽ)]θ .
Again with Lemma 4.3, we have

|πa|B ≤ ω1−θ
0 ωθ

1 |a|A
and Theorem 4.8 is proved.

Remark 4.9 From Remark 4.4 Theorem 4.8 stay again valid if we replace 
̃ by 
̃_.

5 Intermediate mean spaces and spaces to traces

Let us return to the definitions and observe that the space 
 is spanned by a = ∫ +∞
0 v(t) dtt ,

as v spans the space Vθ = {v : tθ v ∈ X̂0; tθ−1v ∈ X̂1} with θ ∈ (0, 1) given by (4.18).
Accordingly, with the result obtained in the summary of Sect. 3.2, we conclude that the

function

u∗ = tm− j u(m) ∈ V j = {v ; t1/p0+ j ∈ X̂0; t1/p1+m− jv ∈ X̂1}, j ∈ {0, 1, . . . ,m − 1}.
(5.1)

But
∫ +∞

0 u∗(t) dtt = a j ∈ T(m)and thus we obtain the algebraic and topological inclusion

T(m)
j ⊂ 
̃ j = 
(p0, 1/p0 + j, ĉ0,A0; p1, 1/p1 + j − m, ĉ1,A1),

j ∈ {0, 1, . . . ,m − 1}. (5.2)∣∣a j
∣∣

θ j

≤ c1
∣∣a j

∣∣
T(m)

j
. (5.3)

Furthermore from (4.23), we have

T(m)
j ⊂ 
θ j = 
(p0, θ j , ĉ0,A0; p1, θ j − 1, ĉ1,A1), j ∈ {0, 1, . . . ,m − 1} (5.4)∣∣a j
∣∣

θ j

≤ c1
∣∣a j

∣∣
T(m)
j

. (5.5)

where θ j (=γ jm, (see (2.13)) is given by

θ j = 1/p0 + j

1/p0 − 1/p1 + m
, m ≥ 1, j ∈ {0, 1, . . . ,m − 1}. (5.6)
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Remark 5.1 As in [5] for W(m) (see also [8]), the fact that the space VK (X) of functions v,
with values in X, and compact support, for v ∈ V, is dense in V, can be used to obtain the
previous results.

Next we want to establish the identity with equivalent norms between the space
T(m)

j and 
 j (or 
θ j ). It then remains to prove a converse of the inclusion (5.2).

Assume that a ∈ 
 j , then we can find a function u∗ ∈ Vj = {u∗; t1/p0+ j u∗ ∈
X̂0, t1/p1+ j−mu∗ ∈ X̂1} such that a = ∫ +∞

0 u∗(t) dtt . We require however a function
u ∈ W (m) such that D ju(0) = a.

From the direct proof of (3.15) we must have that u is an integral of order m of the function
ct j−mu∗, (c a constant) then because t j−mu∗ ∈ X1 we have obviously:

Dmu ∈ X1 (5.7)

According to Laurent Schwartz [24] (see also [12]), an integral of orderm of a distribution
T with support restricted on the left, is defined by the convolution

Im(T ) = Y+
m ∗ T,

where

Y+
m (x) = xm−1+

�(m)
.

When S has a support restricted on the right, then

Im(S) = (−1)mY−
m ∗ S,

where

Y−
m (x) = (−x)m−1+

�(m)
.

Since we can choose u∗ with compact support, both definitions are valid. Consequently, it
is the derivative of order j for u which leads us to take

u(t) = (−1)mc

(m − 1)!
∫ +∞

t
(τ − t)m−1τ j−mu∗(τ )dτ (5.8)

so that

D ju(t) = (−1)m− j c

(m − j − 1)!
∫ +∞

t
(τ − t)m− j−1τ j−mu∗(τ )dτ. (5.9)

Then on choosing c such that (−1)m− j c
(m− j−1)! = 1, and tacking t−→ + 0 we deduce from (5.9)

that
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u( j)(0) =
∫ +∞

0
u∗(τ )

dτ

τ
= a, (5.10)

which is the required result.
It remains to prove that

u ∈ X0. (5.11)

To this end, we observe that the integral in (5.8) is I (t) = ∫ +∞
t (1 − t

τ
)m−1τ j u∗(τ ) dτ

τ
,

which is the convolution on R∗ with respect to Haar’s measure dτ
τ

, of two functions with
compact support one, f (t) = (1 − t)m−1 if 0 ≤ t ≤ 1, f (t) = 0 i f t > 1, (which is in L1∗)
while the other is t j u∗. We know that t1/p0+ j u∗ ∈ X̂0, i.e. t j u∗ ∈ X0. From Theorem 3.1
and Corollary 3.7, or Remark 3.8(2), as c0t j u∗ ∈ L p0∗ (A0) then we can deduce that there is
a constant μ > 0, such that

|u|X0 ≤ μ

∣∣∣t j u∗
∣∣∣
X0

.

which gives (5.11).
Thus we have proved that


 j � 
θ j ⊂ T (m)
j (5.12)

with equivalent norms. The conclusion is the converse of the embeddings (5.2)–(5.3), the
topological part following from the inequalities.

The study of Sect. 5 can be summarised by

Theorem 5.2 Assume ci ∈ H(pi ), i = (0, 1), (2.10)–(2.11), and that [c0]−1 ∈ H(p′
0)

holds. Then we obtain

T (m)
j (p0, c0, A0; p1, c1, A1) = 
(p0, 1/p0 + j, ĉ0, A0; p1, 1/p1 + j − m, ĉ1, A1),

j ∈ {0, 1, . . . ,m − 1} (5.13)

with equivalent norms.

We also have

Corollary 5.3 In particular, there holds

T(m)
j (p0, c0,A0; p1, c1,A1) = 
(p0, θ0, ĉ0,A0; p1, θ j − 1, ĉ1,A1) (5.14)

where

θ j = j + 1/p0

1/p0 − 1/p1 + m
, m ≥ 1, j ∈ {0, 1, . . . ,m − 1} (5.15)

with equivalent norms.

If we take into account Proposition 2.6, we deduce from Theorem 5.2 that

T(m)
j = T1

0(p0, t
j c0,A0; p1, t

j−m+1c1,A1)

= 
(p0, 1/p0 + j, ĉ0,A0; p1, 1/p1 + j − m, ĉ1,A1) (5.16)

and from Corollary 5.3


(p0, θ j , ĉ0,A0; p1, θ j − 1, ĉ1,A1) = T1
0(p0, χ0,A0; p1, χ1,A1) (5.17)
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where

χi (t) = tθ j ĉi , i = {0, 1}. (5.18)

To compare with the trace spaces studied in [21], we have

Remark 5.4 In [21] the weights ci (t) = tαi , αi + 1/pi ∈]0, 1[ are considered and the
exponents αi appear in the expression for θ j . Indeed, if we set ηi = αi + 1pi , then θ j =

η0+ j
η0−η1+m , and the exponents of the weights can be considered as parameters ξi . Here, the
weights are different to these parameters.

Notice that the condition αi +1/pi ∈]0, 1[ implies that the weights belong to H(pi ) with,
in particular the Poulsen condition (2.11) given by 1/p1 + α1 + j < m while the condition
1/p0 +α0 + j > 0 gives t−(1+ j+α0) ∈ L p′

0(1,+∞;R+) which is implied by t−α0 ∈ H(p′
0),

that is true in [21] (see Theorem 3.1).

6 On dependence of the spaces upon parameters

In what follows, we want to prove that 
θ(p0, θ, ĉ0,A0; p1, θ − 1, ĉ1,A1) depends only on
three parameters: θ, pθ (see Corollary 4.5) and a weight πθ .

As a preliminary, we note

Remark 6.1 Let f#(t) = f (1/t), then a = ∫ +∞
0 v(t) dtt = ∫ +∞

0 v#(τ ) dτ
τ

, so that∫ +∞
0 [ĉi (t) |v(t)|Ai

]pi dt = ∫ +∞
0 [c#(τ ) |v#(τ )|Ai

]pi dτ
t = ∫ +∞

0 [τ−1/pi c#(τ ) |v#(τ )|Ai
]pi dτ

and the weight ĉi (t) = t−1/pi ci (t) is changed to ĉi#(τ ) = τ _1/pi ci #(τ ), with respect to
Lebesgue measure when t is changed to 1/t.

This property, of “quasi invariance” when t is changed to 1/t, led us to the definitions
{(4.1), (4.2)} for the space V . We obtain


θ =
(p0, θ, ĉ0,A0; p1, θ −1, ĉ1,A1)=
−θ =
(p0,−θ, ĉ0#,A0; p1, 1 − θ, ĉ1#,A1)

(6.1)

with equivalent norms.
Naturally since 
̃− = 
̃ = 
, from {(4.19), (6.1)}, we have also


−θ = {a; a = v0 + v1 ∈ Y, Inf
v0+v1=a

{∣∣t−θc0#v0
∣∣
L
p0∗ (A0)

+ ∣∣t1−θc1#v1
∣∣
L
p1∗ (A1)

} (6.2)

with equivalent norms.

6.1 Some definitions

Now we want to present the technique used by J. Peetre in the case of unweighted spaces5 to
define adapted J and K methods in the particular case where ∀i = (0, 1) pi = p, ci = π.

(1) J.W-method: Define a measurable function u = u(t) on R+, taking values in X, such
that

a = I (u) =
∫ +∞

0
u(t)

dt

t
, (in Y), t−θπ# J (t, u(t) ∈ L p∗ , π ∈ H(p), 1 ≤ p ≤ +∞,

(6.3)

5 See [22–24].
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where the quantity

∀t > 0, J (t, a) = max(|a|A0 , t |a|A1) (6.4)

for a fixed t , is a norm on X equivalent to the norm J (1, a) of .X.
Let (A0,A1)

J
θ,p,π , the space spanned by a equipped with the norm

|a|(A0,A1)
J
θ,p,π

= I n f
I (u)

∣∣t−θ J (t, u(t))
∣∣
L p

π̂#

(where π̂#(t) = t−1/pπ#(t)) which is a Banach space.
When pi = p, ci = c, (6.1) implies


θ(p, θ, ĉ,A0; p, θ − 1, ĉ,A1) = (A0,A1)
J
θ,p,c (6.5)

with equivalence of norms.
(2) K.W-Method: Let vi be two measurable functions with values in Ai (i = 0, 1) and

a ∈ Y such that

a = v0(t) + v1(t), t−θπ#K (t, a) ∈ L p∗ , (6.6)

where K (t, a) defined by

K (t, a) = Inf
a=a0+a1

(|a0|A0 + t |a1|A1

)
, (6.7)

is, for a fixed t , a norm on Y equivalent to the norm K (1, a) of Y.
Let (A0,A)Kθ,p,π be the space spanned by a = v0(t) + v1(t) a.e. in Y with

t−θπ#v0 ∈ L p∗ (A0), t1−θπ#v1 ∈ L p∗ (A1),

and equipped with the norm

|a|(A0,A1)
K
θ,p,π= in f

a=v0(t)+v1(t),a.e.

(∫ +∞

0

(
t−θπ#(t)[|v0(t)|A0 + t |v1(t)|A1

)p dt
t

)1/p

(6.8)

(A0,A1)
K
θ,p,π is a Banach space.

Now when p0 = p1 = p, c0 = c1 = c, we easily include from (6.2) that


θ(p, θ, ĉ,A0; p, θ − 1, ĉ,A1) = (A0,A1)
K
θ,p,c (6.9)

Henceforward, we write 
θ(p0, θ, ĉ0,A0; p1, θ − 1, ĉ1,A1) = (Y0,A1)θ,p0,p1,c0,c1
and

state

Proposition 6.2 For pi = p, ci = c, i ∈ {0, 1}, θ ∈ (0, 1), the following conditions are
equivalent:
1. a ∈ (A0,A1)θ,p,p,c,c (denoted (A0,A1)

∗
θ,p,c)

2. a ∈ (A0,A1)
J
θ,p,c,

3. t−θc#K (t, a) ∈ L p∗ .

(That means: (A0,A1)
∗
θ,p,c = (A0,A1)

J
θ,p,c = (A0,A1)

K
θ,p,c with equivalent norms).

Proof (1) ⇐⇒ (2) and (1) ⇐⇒ (3) are obvious from definitions.
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Proposition 6.3 We assume 0 < θ < 1, 1 ≤ p ≤ q ≤ +∞, and c−1 ∈ H(p′) [so that
∀T > 0,

∫ T
0 [c(t)]pdt < +∞, (see (2.1)] then,

(A0,A1)
∗
θ,p,π ⊂ (A0,A1)

∗
θ,q,π (6.10)

with continuous imbedding.

Proof From Proposition 6.2 we can define (A0,A1)
∗
θ,p,π by the K .W -method and on noting

for all τ ≥ 0, that6

t > τ�⇒K (t, a) > K (τ, a)

then

|a|p ≥ [K (τ, a)]p
∫ +∞

τ

[t−θc#(t)]p dt
t

, (6.11)

implying that

∀τ > 0, c#(τ )τ−θ K (τ, a) ≤ κ |a|θ,p,c

Although, from (6.11) the integral must make sense, but there is a contradiction when the
function log(τ−θc#(τ )) is of order −1 (resp. ∞) with respect to Logτ . Thus from Bourbaki
[11], the integral in (6.11) is equivalent to τ−θpcp# (τ ) (up to a multiplicative constant). In
consequence ∣∣t−θ K (t, a)

∣∣
L∞
ĉ#

≤ γ |a|θ,p,c , (6.12)

and (6.10) follows for q = ∞, implying that

∀t > 0, K (t, a) ≤ κtθ |a|θ,p,c . (6.13)

Now if 1 ≤ p ≤ q < ∞, on letting h(t) = t−θ ĉ#(t)K (t, a) and using (6.12), we may check
that

|a|qθ,q,c =
∫ +∞

0
[h(t)]p[h(t)]q−pdt ≤ γ1 |a|qθ,p,c .

and the proof is complete.

6.2 Some lemmas

Lemma 6.4 (Inequality of Carlson’s type) Let λ ∈ (0, 1), 1 ≤ pi ≤ +∞, πi ∈ H(pi ), i =
0, 1, � a positive function and assume

tφi ∈ L p′
i (0, 1), φi ∈ L p′

i (1,+∞) where tφi = t−1/p′
i [t−(1−λ)πi (t)]−1. (6.14)

Then one has the inequality

∫ +∞

0
�(t)

dt

t
≤ γ

(∫ +∞

0
[t−λπ0#(t)�(t)]p0

dt

t

) 1−λ
p0

(∫ +∞

0
[t1−λπ1#(t)�(t)]p1

dt

t

) λ
p1

(6.15)

where γ is a constant depending on λ, π0, π1.

6 See also [31] for unweighted spaces.
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Remark 6.5 A similar inequality proved in [10] (with only “weights” constructed with gen-
eral terms of the form tα), is also given in [23,24] with πi ≡ 1, i = 0, 1. Conditions (6.14)
are always fulfilled in this case. The choice of the weight πi (1/t) = πi#(t) is useful in what
follows.

Proof of Lemma 6.4 7 We start from
∫ +∞

0
�(t)

dt

t
=

∫ +∞

0

�(t)

t (1 + t)
dt +

∫ +∞

0

�(t)

(1 + t)
dt = I0 + I1

and using Hölder’s inequality, one obtain

I0 ≤ ∣∣t−λπ0#�
∣∣
L
p0∗ (J0)

1/p′
0 , where J0 =

∫ +∞

0

[
t−1/p′

0

t−λπ0(1/t)(1 + t)

]p′
0

dt.

Now taking τ = 1/t in J0, we have

J0 ≤
∫ +∞

0

dτ

τ [τλπ0(τ )(1 + 1/τ)]p′
0

≤
∫ 1

0
τφ0(τ )dτ +

∫ +∞

1
φ0(τ )dτ = γ0,

φ0(τ ) = 1

τ(τ−(1−λ)π0(τ ))
,

which is (6.10) for i = 0.

On the other hand,

I1 ≤ ∣∣t1−λπ1#�
∣∣
L
p1∗ (J1)

1/p′
1 where J1 =

∫ +∞

0

[
t1−1/p′

1

t1−λπ1(1/t)(1 + t)

]p′
1

=
∫ +∞

0

τ p′
1

(τλπ1(τ )(1 + τ))p
′
1

dτ

τ

and we can easily check that

J1 ≤
∫ 1

0
(τφ1(τ ))p

′
1dτ +

∫ +∞

1
(φ1(τ ))dτ = γ1, φ1(t) = 1

τ(t−(1−λ)π1(τ ))

which leads to ∫ +∞

0
�(t)

dt

t
≤γ0

∣∣t−λπ0#�
∣∣
L
p0∗ + γ1

∣∣t1−λπ1#�
∣∣
L
p1∗ .

The change of variable t = kτ, k > 0, and a convenient choice of k yields (6.15).
Now we introduce the space L p,α

ĉ = { f ; s−αc f ∈ L p∗ , α ∈ R, c ∈ H(p)}, which
provided with the natural norm becomes a Banach space.

We state

Lemma 6.6 Let θ ∈ (0, 1), 1 ≤ pi ≤ +∞, ci ∈ H(pi ) satisfy (6.14), for i = 0, 1. Then


(−θ, p0, c0#,L
p0,α0
ĉ0

; 1 − θ, p1, c1#, L
p1,α1
ĉ1

) � (L p0,α0
ĉ0

, L p1,α1
ĉ1

)θ,p0,p1,c0,c1 = L pθ ,α
cθ ,

(6.16)

7 For the convenience of the Reader we adapt the proof given in [10].
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with

1

pθ

= 1 − θ

p0
+ θ

p1
, α = (1 − θ)α0 + θα1, , cθ (t) = t−1/pθ [c0(t)]1−θ [c1(t)]θ .

(6.17)

Proof of Lemma 6.6 (1) Assume

a(.) ∈ 
(−θ, p0, ĉ0#, L
p0
ĉ0

; 1 − θ, p1, ĉ1#, L
p1
ĉ1

)

then there is a function u(., t), a(.) = ∫ +∞
0 u(., t) dtt , with

t−θc0#u(., t) ∈ L p0∗ [L p0
ĉ0

], t1−θc1#u(., t) ∈ L p1∗ [L p1
ĉ1

]. (6.18)

which is equivalent to

t−θ s−α0u(s, t) ∈ L p0
ĉ0#

[L p0
ĉ0

], t1−θ s−α1u(s, t) ∈ L p1
ĉ1#

[L p1
ĉ1

].
An application of inequality (6.15), gives

|a(s)| ≤
∫ +∞

0
|u(s, t)| dt

t

≤ γ

(∫ +∞

0
[t−θ ĉ0#(t)u(s, t)]p0dt

) 1−θ
p0

(∫ +∞

0
[t1−θ ĉ1#(t)u(s, t)]p1dt

) θ
p1

from which may be deduced the inequality

∣∣ĉθ s
−αa(s)

∣∣pθ ≤ γ

(∫ +∞

0
[t−θ ĉ0#(t)s

−α0 ĉ0(s)u(s, t)]p0dt

) pθ (1−θ)

p0

×
(∫ +∞

0
[t1−θ ĉ1#(t)s

−α1 ĉ1(s)u(s, t)]p1dt

) pθ θ

p1

But pθ (1−θ)
p0

+ pθ θ
p1

= 1, and Hölder’s inequality gives,
∫ +∞

0 [ĉθ s−α |a(s)|]pθ ds ≤
(
∫ +∞

0

∫ +∞
0 [α(s, t)]p0(ĉ0(s))p0ds(ĉ0#(t))p0dt)

pθ (1−θ)

p0 (
∫ +∞

0

∫ +∞
0 [β(s, t)]p1(ĉ1(s))

p
1 ds

(ĉ1#(t))p1dt)
pθ θ

p1 where

α(s, t) = t−θ s−α0u(s, t), β(s, t) = t1−θ s−α1u(s, t)

and

s−αa(s) ∈ L pθ

ĉθ
, ĉθ = s−1/pθ c1−θ

0 cθ
1 .

We have therefore proved that

(L p0,α0
ĉ0

, L p1,α1
ĉ1

)θ,p0,p1,c0,c1 ⊂ L pθ ,α

ĉθ
(6.19)

with continuous injection.
(2) To prove the converse of (6.19) assume a(s) ∈ L pθ ,α

cθ . We must show that there is a
function u(s, t) satisfying (6.18) such that a(s) = ∫ +∞

0 u(s, t) dtt .
For this purpose,we adopt a strategy by J. Peetre in [24] and consider a function �, such

that
∫ +∞

0 �(t) dtt = 1. We define

u(s, t) = �(χ(s)t)a(s)
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where χ(s) is a function defined later. Then we have
∫ +∞

0
u(s, t)

dt

t
= a(s)

Moreover, we note that

K0 =
∫ ∫

R+2
|t−θ s−α0u(s, t)|p0(ĉ0(s))

p0ds(ĉ1#(t))
p0dt

=
∫ +∞

0

(∫ +∞

0
[t−θ�(χ(s)t)]p0(c0#(χ(s)t))p0

dt

t

)
s−α0 p0 |a(s)|p0 (ĉ0(s))

p0ds

=
∫ +∞

0
[t−θ�(t)]p0(ĉ0#(t))

p0dt
∫ +∞

0
x(s)θp0s−α0 p0 |a(s)|p0(ĉ0(s))

p0ds.

and similarly obtain

K1 =
∫ ∫

R+2

∣∣t1−θ s−α1u(s, t)
∣∣p1

(ĉ1(s))
p1ds(ĉ1#(t))

p1dt

=
∫ +∞

0
[t1−θ�(t)]p1(ĉ1#(t))

p1dt
∫ +∞

0
χ(s)−(1−θ)p1s−α1 p1 |a(s)|p1 (ĉ1(s))

p1ds

Now following [24, pp. 254–255] we set χ(s) = f ([c0, c1](s))s−y |a(s)|−x and determine
x, y, and f such that

[ f (s)]θp0 [c0(s)]p0 = [ f (s)]−(1−θ)p1 [c1(s)]p1 = [cθ (s)]pθ

to obtain

χ(s)θp0
∣∣c0(s)s

−α0a(s)
∣∣p0 ≡χ(s)−(1−θ)p1 |c1(s)s

−α1a(s)|p1 ≡(cθ (s)s
−α |a(s)|)pθ . (6.20)

In consequence, we have

K0 =
∫ +∞

0
[ĉ0#(t)t

−θ�(t)]p0dt
∫ +∞

0
[ĉθ (s)s

−αa(s)]pθ ds,

K1 =
∫ +∞

0
[ĉ1#(t)t

1−θ�(t)]p1dt
∫ +∞

0
[ĉθ (s)s

−αa(s)]pθ ds,

and therefore

L pθ ,α

ĉθ
⊂ (L p0,α0

ĉ0
, L p1,α1

ĉ1
)θ,p0,p1,c0,c1 (6.21)

with continuous injective mapping. The lemma is proved.
Now we need a result which is (partly) an extension to weighted spaces of the reiteration

theorem of Lions and Peetre [21].
We introduce the space

Xi = (A0,A1)
∗
θi ,ri ,πi

, θi ∈ (0, 1), 1 < ri < +∞, πi ∈ H(ri ), i = 0, 1.

defined by one of the methods of Proposition 6.2. We may claim

Proposition 6.7 Assume 0 < θ0 < θ < θ1 < 1. Then the following equality holds with
equivalent norms

(A0,A1)θ,p0,p1,c0,c1 = (X0,X1)λ,r0,r1,π0,π1 , (6.22)
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where

θ = (1 − λ)θ0 + λθ1,
1

ri
= 1 − θi

p0
+ θi

p1
, πi = c1−θi

0 cθi
1 , i = 0, 1. (6.23)

Remark 6.8 Actually for the relation between θ and λ in (6.23), one has −λ = θ0−θ
θ1−θ0

, 1−λ =
θ1−θ
θ1−θ0

, then it is more convenient, thanks to Lemma 4.6 (homogeneity) to eventually works
with the space 
(r0, η0, π0,X0; r1, η1, π1,X1) where η0 = θ0 − θ = −(θ1 − θ0)λ, η1 =
θ1 − θ = (1 − λ)(θ1 − θ0).

Proof of the Proposition 6.7 (1) Let a ∈ (A0,A1)θ,r0,r1,c0,c1 then we may find, u(t) ∈
X a.e. in t, such that a = ∫ +∞

0 u(t) dtt in Y, with t−θu(t) ∈ L p0
ĉ0#

, t1−θu(t) ∈ L p1
ĉ1#

and
from Corollary 4.5 (4.22) gives

|u(t)|Xi
≤ κi |u(t)|1−θi

A1
|u(t)|θiA1

so that, using Remark 6.8 and because ηi = −θ0(1 − θi ) + (1 − θ)θi , with πi = c1−θi
0 cθi

1 ,
one has∣∣tηi π̂i#(t)u(t)

∣∣ri
Xi

≤ κ
ri
i (|t−θ ĉ0#(t)u(t)|p0

A0)
ri (1−θi )/p0(|t (1−θi ĉ1#(t)u(t)|p1

A1
)ri θi /p1

and Hölder’s inequality gives

tηi u(t) ∈ Lri
π̂i

(Xi ), i = 0, 1, (6.24)

thus, thanks to Remark 6.8, one obtains

(A0,A1)θ,p0,p1,c0,c1
⊂ (X0,X1)λ,r0,r1,π0,π1

(6.25)

(2) To prove the converse of (6.25) and to avoid any measurability problem,8 a discrete
representation may be considered, based on space that involves a sum instead of an integral9:
∀n ∈ Z, since on a interval en ≤ s ≤ en+1, one has K (en; a) ≤ K (s; a) ≤ eK (en; a),
and since the measure of (en, en+1) for Haar’s measure ds

s is 1, on setting cn = c(e−n), we
conclude

a ∈ (A0,A1)
∗
θ,p,c is equivalent to cne

−nθ K (en; a) ∈ l p(Z)

and ∣∣cne−nθ K (en; a)
∣∣
l p(Z)

is an equivalent norm on (A0,A1)a,p,c . (6.26)

The following proof uses a procedure similar to the discretisation method developed in [21].
Assume a ∈ (X0,X1)λ,r0,r1,π0,π1 . Remark 6.8 permits v0, v1 to be found such that

a = v0(s) + v1(s), sηi vi ∈ Lri
π̂i#

(Xi ), i = 0, 1.

and in general

a = v0n + v1n, | πine
ηi nvin |Xi ∈ lri (Z). (6.27)

But Xi ⊂ (A0,A1)θ,∞,πi , and from (6.13), ∀tin > 0, vi0n, vi1n can be found with vin =
vi0n + vi1n such that

|vi0n |A0 ≤ κi t
θi
in |vin |A0, |vi1n |A1 ≤ κi t

−(1−θi )
in |vin |A1 (6.28)

8 As noticed by J. Peetre.
9 See also Tartar [31].
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and consequently ∣∣c0ne
−θnvi0n

∣∣p0

A0
≤ κ

p0
i (τin)

θi p0 |ṽin |p0
Xi∣∣∣c1ne

(1−θ)nvi1n

∣∣∣p1

A1
≤ κ

p1
i (τin)

(θi−1)p1 |ṽin |p1
Xi

where

τin = tine
−n c0n

c1n
, ṽin = eηi nπinvin .

Then, one can choose τin such that (τin)
θi p0 = |ṽin |ri−p0

Xi
and we can check that

(τin)
(θi−1)p1 = |ṽin | ri−p1

Xi
, so that, one has
∣∣c0ne

−θnv0in
∣∣p0

A0
≤ κ

p0
i

∣∣eη1nπinvin)
∣∣ri
Xi∣∣∣c1ne

(1−θ)nv1in

∣∣∣p1

A1
≤ κ

p1
i |ṽi (s)|riXi

thus, setting

w0n = v00n + v10n, w1n = v10n + v11n

we have ∣∣c0ne
−θnw0n

∣∣
A0

∈ l p0(Z),

∣∣∣c1ne
(1−θ)nw1n

∣∣∣
A1

∈ l p1(Z) (6.29)

and because w0n + w1n = v0n + v1n = a, we conclude that

a ∈ (A0,A1)θ,p0,p1,c0,c1
. (6.30)

The result follows from Remark 6.8 and the definition for λ.

6.3 The main theorem

Finally we can claim

Theorem 6.9 We assume: 0 < θ < 1, 1 < pi < ∞, ci ∈ H(pi ), for i = 0, 1, satisfy
(6.14). Then

(A0,A1)θ,p0,p1,c0,c1
= (A0,A1)θ,pθ ,pθ ,cθ ,cθ = (A0,A1)

∗
θ,pθ ,cθ (6.31)

1

pθ

= 1 − θ

p0
+ θ

p1
, cθ = c1−θ

0 cθ
1 . (6.32)

Proof of Theorem 6.9 (1) Assume a ∈ (A0,A1)θ,p0,p1,c0,c1
. Then, thanks to Proposi-

tions 6.2 and 6.7, there is a function u(t) with values a.e. in X such that

a =
∫ +∞

0
u(t)

dt

t
, t−λ

∣∣s−θi K (s; u(t)
∣∣
L
ri
π̂i#

∈ Lri
π̂i#

i = 0, 1.

Since one has

K (s; a) ≤
∫ +∞

0
K (s;u(t))

dt

t

one deduces that

K (s; a) ∈ (Lr0,θ0
π̂0#

, Lr1,θ1
p1#

)λ,r0,r1,p0,p1
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which from Lemma 6.6 implies

s−θ K (s; a) ∈ L pλ

π̂λ#
≡ L pθ

ĉθ#
,

because from the definition (6.23) of λ:

1

pλ

= 1 − λ

r0
+ λ

r1
= 1 − θ

p0
+ θ

p1
= 1

pθ

, πλ = π1−λ
0 πλ

1 = c1−θ
0 cθ

1 = cθ .

Thus a ∈ (A0,A1)
K
θ,pθ ,cθ

and its follows from Proposition 6.2 that

(A0,A1)θ,p0,p1,c0,c1 ⊂ (A0,A1)
∗
θ,pθ ,cθ . (6.33)

(2) Assume that a ∈ (A0,A1)
∗, and consider now the J.W-method. Then with the help of

proposition (6.2), there exists a function u taking values in X satisfying

a =
∫ +∞

0
u()

dt

t
, in Y, s−θ J (s; u(s) ∈ L pθ

ĉθ#
.

On using Lemma 6.6, we can find two positive functions jo(s, t), j1 (s, t) with j0(s, t) +
j1(s, t) = J (s; u(s)) , t−λ

∣∣s−θ0 j0(s, t)
∣∣
L
r0
π̂0#

∈ Lr0
π̂0#

, t1−λ
∣∣s−θ1 j1(s, t)

∣∣
L
r1
π̂1#

∈ Lr1
π̂1#

. so that

the functions vi , i = 0, 1, defined by

vi (t) =
∫ +∞

0

ji (s, t)

J (s; u(s))
u(s)

ds

s
=

∫ +∞

0
gi (s, t)

ds

s
,

satisfy

v0(t) + v1(t) =
∫ +∞

0
u(s)

ds

s
= a. (6.34)

Consider now the spaces Xi = (A0,A1)
J
θi ,ri ,πi

i = 0, 1. From the definition and the hypoth-
esis we can easily check that

J (s; gi (s, t)) = ji (s, t)

and therefore

t−λ|v0(t)|X0 ∈ Lr0
π̂0#

, t1−λ |v1(t)|X1 ∈ Lr1
π̂1#

.

Then Proposition 6.7 gives

(A0,A1)
∗
θ,pθ ,cθ ⊂ (A0,A1)θ,p0,p1,c0,c1

, (6.35)

and Theorem 6.9 is proved.
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