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Abstract Methods developed by Lions and Peetre (Pub Math de I'THES 19:5-68, 1964)
are used to extend results derived in Artola (Bolletino UMI (9) V:125-158, 2012) for traces
of weighted spaces. The weights are required to belong to the Hardy class H(p) defined in
Artola (Bolletino UMI (9) V:125-158, 2012) to ensure that a necessary convolution product
remains valid in weighted spaces. The restriction, apparently new, is necessary for the present
treatment.

1 Introduction

The paper establishes certain trace properties that extend those for weighted spaces studied in
[5]. The approach involves a (6, ¢, p) method originally developed (for unweighted spaces)
by J. Peetre but generalised to include weighted spaces with weights belonging to the Hardy
class H(p), 1 < p < +o00. Anintegral representation for traces of order j is shown to belong
to a type of weighted spaces that correspond to the unweighted spaces introduced by Lions
and Peetre [21] and called “espaces de moyenne” by these authors.

A similar problem solved in [21] deals with the weights c¢(t) = %, witha +1/p € (0, 1)
so that ¢ belongs to H(p) and 1/c to H(p'). See also: [1,13-15,17,18,20].

A convolution product is introduced which in terms of a normed vector space A and weight
c is defined to be

t
p* ¢ (1) :/ p(t —T)p(r)dt, p € L'(0,+00:R), c¢ € LP(0, +o0; A). (I.1)
0

Associated with the convolution product is a Young’s inequality of type

lcCo* P lpray < klplpr-ledlrra) (1.2)
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242 M. Artola

where « is a positive constant. Implications of the inequality described here may be regarded
as a stability result and are believed to be new. In this respect, it is worth noting that the
inequality, called “P-condition” in [7], is obvious when the weight is not increasing.

When ¢ € A(p), the Muckenhoupt class [23], the inequality has been proved in [7]. But it
is also known (cf. [7]) that A(p) C H(p) for all p, which suggests that the inequality is valid
under improved conditions. In fact, it is shown in Theorem 3.1 in Sect. 3 that a sufficient
condition for (1.2) is ¢ € H(p). An implicit proof using the complex derivative D' (i € R)
is presented in [6] while heuristic arguments are announced in [7]. Consequently, we are led
to the problem, which as far as the author is aware is open and not completely resolved here,
which may stated as

Is H(p) the widest class of weight c for which (1.2) holds?

Nevertheless a positive answer is presented in a particular case in Remark 3.4.

For convenience, notation and conclusions previously obtained mainly in [5—7] are recalled
in Sect. 2.

Section 3 defines a trace of a weighted space that is an alternative to the definition studied
in [5] but which leads to an improved definition of a class of intermediate weighted spaces.

Inequality (1.2) then can be used to embed our trace space into another type of weighted
space.

Specifically inequality (1.2) combined with the procedure introduced in [21] is employed
to show that elements of the trace space TEm) are represented by integrals. Consequently T;m)
can be identified as an “espace de moyenne” in the sense of [21] appropriately modified to
accommodate weighted spaces.

Section 4 interrupts the main discussion and introduces certain intermediates spaces and
other relevant definitions required subsequently. Invariance under the change of variable
t—>At, (A > 0), or t—>1/1, with respect to the Haar measure dz /¢ on R*, serves to guide
the choice of weights.

By reference to inequality (1.2) two equivalent definitions are formulated for a space ¥
called here “intermediate mean space”.

A complete account of such spaces, which may found in [8], is omitted. Nevertheless, key
properties and their proofs are recalled partly to enable the space X to be represented as

2 = Xg(po, 0, ¢o. Ag; p1,0 — 1,61, Ay)

for a suitable choice of 6 and of ¢; € H(p;), i =0, 1.

Section 5, which resumes the main discussion, interprets the space T;m) as a particular
“intermediate weighted mean space” Yy, and contrasts this result with those of [21] which
deals with weights r* where « appears as a parameter. Dependence upon the weight requires
clarification.

It remains to investigate the new spaces with respect to the usual parameters and weights.
For this purpose the methods of Peetre [25-27] are extended in the final Sect. 6. The “quasi
invariance” of all definitions of a € X, with respect to the change of variable t—1/1,
together with a new (Jw- or Kw-) method used to prove, following [27], that the space
¥ = ¥y depends here, only upon three parameters: 6 € (0, 1), a power py, and a weight cg.

I wish to dedicate this work to the memory of Jacques-Louis Lions who was my thesis
adviser! during 1964-1968 and who introduced me not only to weighted spaces [2,3] but
also to interpolation theory [4].

1 My thesis on Partial Differential Equations with delay was published in 1969 at the Annals of E.N.Sup.ULM
Paris.
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The publication of the notes completed during this earlier period was prevented by heavy
demands on my time, due not only to growing research interests in applied mathemati-
cal subjects mainly unrelated to weighted spaces, but also to responsibility for leading the
development of the Applied Mathematic Group at the University Bordeaux I. (Indeed my
entire professional career has been spent at the University of Bordeaux I.) Throughout this
burdensome administrative task, J. L. Lions provided unfailing support and encouragement.

Fortunately, it is now possible to prepare and complete the remaining (1964—1968) notes
for publication. So far, this has led to the appearance of articles [ 7] in 1998, and [5, 6], recently.
The present paper is intended as a contribution toward the continuation of the series.

2 Definitions and background

If X', Y are vectorial topological spaces, X C ) means always algebraic inclusion with a
continuous injective mapping and L£(X, )), resp. (L(X) if X = )), denotes the space of
linear continuous mappings from X’ into ).

Let X be a normed space with norm | . |x, and let I = (a, b) C RT™=(0, +00), LP(I; X),
(resp. L?(X) if I = R™) denotes the space of (class of) functions which are strongly
measurable with respect to the Lebesgue measure and p-integrable (1 < p < +o0)on I C
R with values in X.

If X is a Banach space, then provided with the norm u— ||, = ([, lu(x)2dx)"", (1 <
p < +00), L?(I; X) is a Banach space; Similarly for the usual modification when p = +o0.

Finally if X = R (resp. C)) we denote by L” the space L”(R*; R) (resp. LP(R"; C)
and by L (X) (resp. LY) the space L?(X) for the Haar measure % on R*.

Let @ be a positive measurable function locally integrable on / C R = (0, +o00) with
values in R, we can define a measure v such that dv = w(t)dt, where @ > 0 is a density
with respect to the Lebesgue measure. Such a density w is also called a weight and we can
define the weighted space LP(I:X), of (class of) functions u such that

/ (O 12dv(r) < +oo,
1

with usual modification when p = +o00. Provided with the natural norm Lg (I;X) is a
Banach space.
In what follows we let w () = ¢P(t) and we assume that ¢ > O satisfies
/ 1 1
VT >0, ()celPO T:RY), G)c'eL? O T;R", =+ —=1 @D
p

When w = ¢P, the condition u € Lg(l ; X) is equivalent to cu € LP(I; X) provided with
the Lebesgue measure. Accordingly, we still refer to ¢ as a weight. So, in what follows, we

shall denote by L% (I; X) the space of functions u, such that cu € LP(I; X).The letter w is
always reserved for the density w = c?, where c satisfies (2.1).

Remark 2.1 1. Obviously the condition [(2.1), (ii)] for ¢ is reasonable to satisfy by Holder
inequality:

VI e RT, [# (a,400), L2(I;X)cC L'(I;X)

with continuous injective mapping. On the other hand, the condition is necessary for
c € H(p) (see later).
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244 M. Artola

2. Suppose X is reflexive and X' the dual (or antidual) of X. Then the dual of
LY(X) is LY, (X)) with o = ! =7 = =7,

As in [5], we are concerned with weights in the Hardy class H(p), that is weights ¢ for
which the Hardy operator H : : u—>% f(; u(t)d is continuous from LY (X) into itself.
We recall” that ¢ € H(p), 1 < p < oo, ifand only if c satisfies the inequality:

Sup (/H)o |:C(T):|pdr)l/p (/t dv )1//’/ < 400 2.2)
>0 t T 0 [e(@]” ’

with the usual modifications when p = 1 (or p’ = +00), where (2.2) is replaced by

T2 c(1)

there is a constant K, (0 < K < 400) such that Vty > 0,/ Tdt < Kc(ty).

)

Remark 2.2 (i) Itis of interest to notice that the condition

+00 P
vt > 0, / [@] < +00, 2.3)
t

is only a necessary condition for ¢ to be in H(p).

(ii) The condition [(2.1), (ii)] is also necessary for ¢ € H(p), but [(2.1), (i)] is not necessary
for (2.2).
Indeed if ¢ € H(p) and if ¢ is non-increasing, then ¢c € H(p): for example the
weight c(t) = t‘l/”(p > 1) (which corresponds to the density w(t) = % for the Haar
measure in L) belongs to H(p) but fot c¢P(r)dt = +00. Thus we could assume only
c € LP(e,t;RY) forall (e,1),0 < € < t, in place of [(2.1) (i)] for ¢, but the last
condition is needed for the existence of traces #0.

Assume now that X is reflexive so that the dual (or antidual) operator H* of H is defined by

H* (1) = f[+°° @dt which is continuous from Lf//C(X/) into itself if and only if c satisfies
2.2) [5].

2.1 Spaces W and spaces of traces

Following [5], let Ag, A; be two Banach spaces continuously imbedded in a topological
vector space A with

X = Ag N Ay equipped with the norm |u|x = max{|u|a, , |ula,} 24
Y = Ao + A1 equipped with the norm |uly = inf (lao| + |a1]). 2.5
u=ap-+ai

Thus X, Y are Banach spacesand X C A; C Y, (i =0, 1). We assume that

A;, ( =0,1) is reflexive (2.6)
XisdenseinA;, i=0,1. 2.7

Fori =0, 1, let ¢; satisfy (2.1), and let p;, 1 < p; < 400. Consider the spaces
X; = LI (A;), with norm denoted N; (.). (2.8)

2 See [16] and the bibliography therein.
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On traces spaces connected with a class of intermediate... 245

and define for m > 1
W(m)(PO, o, Ao; p1.c1, Ay = W(m),

be the space of functions u, locally integrable on R with u € X, such that D" u € X;. The

last condition must be understood as follows: u is m-times differentiable in the distribution

sense with values in Y and D™ u locally integrable, so that the product with ¢ makes sense.
Equipped with the norm

u—> |lullyon = max{No(u), N1(D"u)} 2.9

W is a Banach space.
Let W%”)(X) be the subspace of functions u € W with values in X, with compact
support in [0, +oo[, then from [5] we have

Lemma 2.3 Ifc; € H(p1), then W (X) is dense in W™,

Indeed, since D™ u is locally integrable with values in Y, then D™~y is absolutely con-
tinuous, hence continuous.

Then we can consider that u is (m — 1)-times continuously differentiable on R™ with
values in Y and Dju(t), 1 < j <m —1is well defined for ¢t € (0, +00).

Therefore, when lim,_,+0D/u(t) = aj in Y exists, we shall say that D/u has
a trace of order j, DIu(0) = ajatt =0.

We have proved in [5] that if for j € {0, 1,...,m — 1}, /¢ ¢ LP0(0, 1) then the trace
aj = 0. Consequently we can adapt a result of Poulsen [2,3,28] to obtain

Lemma 2.4 Assume,

theg € LP0(O, 1) (2.10)
then a necessary and sufficient condition for the existence of a trace of order j is
il ,
e LP1(0,1). (2.11)
¢

Denote by T;m) (po, co, Ag; p1,c1, Ap) = T;’") the space spanned in Y by D/u(0) = a;
when u spans W™, Equipped with the norm

lallgen — inf lullwon (2.12)
7 Diu(0)=a

one obtains a Banach space. The spaces T are called spaces of traces.
It follows that (see [5], Proposition 2.6), we have

Lemma 2.5 Let u € W with D/u(0 = a;) thenfor 1 < j <m — 1:

J+1/po

—_—. (2.13)
m+1/po —1/p

|aj| pon = Inf max{No()' Vi Ny (D" )i}, ), =
J u

From [5, Theorem 4.9] we can reduce the study of T;m) for j € {0, 1,...,m—1}, only to

T(l) = T(po, co, Ao; P1,c1, A1) and the condition on the weights in order to possess a trace
u(0) is

VT >0, coeL™0,T), ¢ eLP,T). (2.14)

Then we have from [5]
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246 M. Artola

Proposition 2.6 Assume, (2.10), (2.11) hold for j € {0,1,...,m — 1} (in fact (2.14) is
sufficient) then

T (po. co. Ao: p1.c1. A1) = To(po. t/co. Aos pr.tV ™" Hlep Ay (2.15)
with equivalent norms.

Now let A be a topological vector space such that
XCACY, (2.16)

we shall say that A is an intermediate space (between Ay and Ay).
With this definition A;, i = 0, 1 is itself an intermediate space and we recall (see [15,
p. 145]) that

Vi, 0<js=m—1, XcT/" CY. 2.17)

Thus T are intermediate spaces with the following interpolation property:

let (B, By, B) is a family of spaces with properties analogous to the family (Ag, A1, A).
AssumeX C A C Y, BoNB; C B C By+B;. Letr bealinear mapping fromY into Bo+B
which restricted to A; is linear and continuous from A; into B; (i = 0, 1) (thatis 7 €
L(A;, B;)). Then the restriction of 7 to A belongs to L(A, B) (see [5]).

3 Another representation of the traces in W)

Orientation Let a; € Tﬁm). We want show in Sect. 3.2 that a function, i € W can be
found, eventually with compact support, such that

+o0 ~ dt . . ~
aj =/0 u(t)T, witht'ii € Lf;g(Ao), ™" e Lﬁ: (Ay). 3.1

This will enable us to introduce in Sect. 4 new weighted spaces which extends those of [21].

Since the main tool used in extension of the proofs involves convolution products with
some weighted functions, it is of prime necessity to establish beforehand some essential
results (see especially Theorem 3.1) which appear to be new.

3.1 A stability result for convolution product with weight

Theorem 3.1 Let B a Banach space, ¢ a weight satisfying (2.1), withc € H(p), 1 < p <
+o00, ¢p € L'RT), cu € LP(B) then ¢ « u € LY (B) (where = means the convolution) and
there is a constant k > 0, such that

¢ ulppp) =K lPlLi®e) -1l @) G-

Remark 3.2 As mentioned in the introduction, the result is the (P)-condition of [7] proved,
only for non-increasing weights (that is obvious) and for the weights ¢ € A(p) (the class of
Muckenhoupt see: [24]), where, following [7], it was proved by a method of Stein [30] that
gives one estimate for u using the maximal theorem of Hardy-Littlewood. Thus we have a
sufficient condition for ¢ € A(p). But we know that strictly A(p) C H(p) and accordingly
Theorem 3.1 gives the best result.

Moreover a direct procedure, independent of Stein’s method is used.
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On traces spaces connected with a class of intermediate... 247

Proof of Theorem 3.1 The proof is divided into three steps, repeating the outlines of certain
proofs of [6] in order to correct some misprints.
(i) First step:

We introduce the operator DI = Y_ipx, n€R where?

1
Y_;, =
T T (—in)

1 .
Pf|:x1+”’j| ifn#0, Yo=39
If ® € D(RY) then

, 1 Tt — O(r)e
D®(t) = — Lim / C=0) e - QO 0 Do — @
C(—in)e—ot \Je x!tn —in

For convenience we set DI"® = &. It is of interest for what follows to apply D" to the
characteristic function x4 [ on the interval (a, b), 0 < a < b < +o00. We get

i 1 .

7L (=in) [(z—aw} fa<r=b
i 1 1 .

b (=im) [(r —a —b)f"} =

and we can check that

Rapf@®) =0 ift <a,=

1> b=|Xja1()] = y(n)i sin QLOg (1+ b-a
la,bl ] ) —b s
1 nshn)uz
= = 3.3
YO0 = IE i ( = )

Then the first step is to prove* the

Theorem 3.3 Let B a Banach space, and let c satisfy (2.1) and ¢ € H(p). Then for 1 <
p < 400 one has D' € L(LY (B)).

Remark 3.4 (1) For unweighted spaces (i.e.: ¢ = 1) the resultis known only for 1 < p < oo
with B = R or =C (see: [22,30]). It is also true when B is a Hilbert or Banach spaces (see:
[2—4,7]) but again for 1 < p < oo.

(2) The conditions on ¢ are here sufficient conditions, nevertheless if Logc is of finite
order with respect to Logt as t—> + 0, or t—> 00, then (using Bourbaki [11]), we can
show that those conditions are also necessary.

Actually, for B € B, if we want X150 @ B € L?(B), then from (3.3), we see that the
norm in B of the function is equivalent (up to a multiplicative constant) to 1/¢ as t—> 00, so
that (2.3) must hold.

Now if the order of Logc withrespectto Logt is —1 then (2.1) is not true. If the order is oo,
then (2.3) fails. So from aresult of [11], the integral in (2.3) is equivalent (up to a multiplicative
constant) to t ”T!¢P (r) and f(; ¢ P (t)dt =~ (constant)tc™P (t) as t—> + 00 or —> +0,
we easily check that (2.2) is true.

In this case the condition (2.2) is necessary for Theorem 3.3 and one has an answer for
the problem posed in the Sect. 1.

(3) When ¢ = 1, the integral of (2.3) is divergent, then D" does not act in L.

3 Pf = Finite Part at the sense of Laurent Schwartz [29].
4 See Theorem 3.3 of [6].
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248 M. Artola

(1) To prove Theorem 3.3 we need the

Lemma 3.5 Let ¢ a locally measurable function with compact support C (o, T) taking
values in B. Then there is a constant y such that

. 1 /T
VT > 0, \¢<2T>\35y;/0 (Dl dr. (3.4)

To prove the lemma, consider a step function ¢, supp(¢r) C (0, T), given by ¢ =
Z;zgfl Bi ® Xlai.ais1l.» Where B; € B, ap > O and @y = T. From (3.3) we obtain forr > T

i=k—1
~ ai+1 — 4;
t‘ < —— |Bilg, Vt>T
o] = v > S

(where we have used |sinu| < |u|, and Log(1 +v) <v, 0 <v < 1).
Now choosing t = 2T, sincet —a;+1 > T, 0 <i <k —1,onehas forall 7 > 0

i=k—1

. 1 1T
Ben| <vog X @i -a) bl =yog [ nohdr,
i=0

which is (3.4) and the lemma is proved for ¢y.

Now if ¢ € L'(0, T); B) with compact support contained in (0, T), we may always find
a step function ¢, with compact support in (0, 7') such that: ¢y —> ¢ a.e. and in L0, T:B)
norm as k—>00. Then, observing that the kernel of (f)k (2T) is bounded because 2T — x >
T, 0 <x < T, we can pass to the limit by Lebesgue’s theorem and Lemma 3.5 is proved.

(2) Now to complete the first step in the proof of Theorem 3.3, consider ¢ €
L), .R")andfixt > 0.

Introduce, for n € N, the truncating sequence 6,,:

O(t) =1, 0<t<t—1/n,
0,(t)=2n(t—1/2n—1), t—1/n<7t<t—1/2n,
O,(t) =0, T>1t—-1/2n.

then ¢, = 6,¢ has a compact support C (0, — 1/2n), so we may apply Lemma 3.5 and
pass to the limit by Lebesgue’s theorem as n—> + oco. One obtains

’&(2;)‘13 < yH(plg) (1) forallt > 0. (3.5)

If we assume ¢ € L¥ (B), then from [(2.1) (ii)], one has ¢ € L}OC(R+; B) and (3.5) holds.
Noticing that if f > 0, we infer that H(f)(t) < 2H(f)(2¢) and on multiplying the two
members of (3.5) by c(2t), we integrate over R the power p to each side of (3.5) and
because Hardy’s operator belongs to L(L? (B)) Theorem 3.3 is proved.
(if) Second step:

Now we prove another result obtained in the same way:

Theorem 3.6 Assume ¢ € H(p),1 < p < +oo, ¢ € L'RT), u € LI(B) and let
V=Y_jy*v.Then ¢ x i € L2 (B) and there is a constant k1 > 0, such that

’d’*ﬁ‘Lf(B) =K |¢|L1(R+)-|“|L£(B) (3.6)
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Proof We introduce for fixed t > 0 the truncating sequence 6, and let u,, = 6,u. We may
write g, = ¢ * i, = ¢ * u,, so that

1—1/2n
18020 < /O

from the definition of u,,.

$2t = o) lun(0)] s dor.

Now from the proof of Lemma 3.5 we have ’(2;(25‘) < % f(; |¢p(£)| dé and from the last

inequality we deduce

t—1/2n |un(0)|B t—o/2
lgn(20)|g < 2)// [27/ |¢(f;‘)|d%‘}d0
0 t—ao Jo

1 1—1/2n
<2y |¢|L1(R+) m/o lu,(o)lgdo,

becauseo € (0,t —1/2n)andt + 1/2n <2t — o <2t.
As at the end of the proof of Theorem 3.3, we can pass to the limit as n—> + 00, to get

Vi >0, |g@20)lp =2y bl -H|ulp)@). (3.7

(iii) Third step:
Since Yiy x Y_jy = 8, Vi € R, we may write u = Y;y, * i, so that

VneR, ¢xu=¢x*[Y;,=xil,

and gathering the results of steps 1-2 Theorem 3.1 is proved.
On observing that the weight: t=Pe(t) € H(p)ifc € H(p) and that |CM|L5(B) =
|t_1/Pcu|Lp(B), we obtain:

Corollary 3.7 Assume c € H(p), 1 < p <oo, ¢ € L', cu € LY (B). Then one has
lc(¢ * M)|Lf(]3) <klplpr. |C”|Lf(]3) . (3.8)

Proof From (3.5) we obtain obviously a version of Theorem 3.3 stating that ¢D'" &
L[L?(B)] because /¢ € H(p) (like also +~1/P), while from (3.6) a version of Theo-
rem 3.6 for the same reason implies that there exists a constant 1 > 0, such that

[e@ %) gy < w1 1@lL - leul p g

The proof is completed as in the third step.

Remark 3.8 1. With a convenient extension to R of the functions only defined on R, for
example by the relation r = ¢*, we can deduce some variants of previous results in particular
in the important case where ¢ has a compact support.

2. Generally if we start from g(t) = (¢ *x u)(t) = fR¢>(t —s)u(s)ds and take t =
Logt,s = Logo, then on setting f(é) = f(Logx), we have that g is expressed by g(7) =
f0+°° P(r/0)ii(o) ‘{7" ; that is the convolution product on the multiplicative group R* provided

with Haar’s measure ‘i—”. Notice that Iulez(B) ~ |tl/pcu|Lp and Theorem 3.1 may be
. c *

(B)
extended to a convolution as g(t) with respect to Haar’s measure (see also Corollary 3.7).
In consequence we have

gl p gy = [0 117l ) - (3.9)

L}
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250 M. Artola

3.2 An integral représentation for the trace of order j

Henceforward, to simplify notation, we set u") for D" u and use the procedure of [21] (even
though it involves adaptation to our structure), which is justified by Theorem 3.1.
First, we state,

Lemma 3.9 Leta; € T;m) and v € W™ pe such that v (0) = a - Then we can construct
a function u € W with compact support in Rt such that

*Dfu e LY (Ag), ke{l,2,....m...}, withu)(0)=a;. (3.10)

Proof Define a function f on Rby f(0) = v(e?), o € R. Because

d'f _N,, 40
do |yrpe =" Tar

when p € D(R), [pe /7 p(o)do = 1, we obtain

k

e (fxp D) o) = e IO(f p)(j)(a)—>yjjv(j)(0) inY as o —> — o0.

Since v € W is equivalent to {t'/Pocqu € LE°(Ag), t'/Piciv € LE' (A1)}, and conse-
quently

tl/p060f|0=logt € Lf:o(AO) = f|0:logt € LLI‘J(;)(AO)
so that from Theorem 3.1, we deduce
(f % p)® (logt) € L (A).

Because we want traces at ¢ = 0, only functions in a neighborhood of # = 0 are required, so
that choosing ® € D(R™) with @) (0) = 1 we can take

u(t) = @@)(f * p)logt)
which satisfies
u0) =aj, *D*u e LI (Ao)
and (3.10) holds.

Remark 3.10 Lemma 2.3 implies that W%”)(X) is dense in W) so that there exists v €
W%") (X) withv¥(0) = a jin'Y. Thenu as previously constructed can be chosenin W(,?‘) X).

Secondly one has

Lemma 3.11 Assume that [(2.1), (i1)], (2.10), (2.11) hold true and let u satisfy (3.10). Then

(=p"-D

. +oo .
u(])(O) — yj/o tmffflu(m)(t)dt, v =

Proof Four steps are required
Step 1: T > 0, fOT "Iy Mmar < too.

From (2.11) we have % € LPI(0T; R™), andu™ ¢ LP'(A}). Theresult then follows
from Holder ’s inequality.
Step 2: [ =i =1u (1)dt < +oo.
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Assume u has a compact support (say [0, Tp]) in R From (3.10) with k = m, Holder’s

inequality gives
(] i)
Ao \UT 17 +eo(0)]7 '

+00
/ iy (har < ‘t’"u(””
T

and similarly, we have

/To dt - 1 /To dt
T [titleg(n]P0 T [T o [eo(n)]Ph
and the result follows by [(2.10), (ii)].

Remark 3.12 The choice of u with compact support was partly to derive the last inequality.
Otherwise it is necessary to assume that: J = f;f * di___ < 400. This is done in
[

17+ co(1)]70
[21] when co(r) = t* and gives a condition on the weight: 1/pyg + @ + j > 0. Actually
since j € {0, 1,...,m — 1} it is sufficient to assume VT > O, [rco]™! € Lfg(T, +o0; RY)
1 +00 _ dt

(because J < ~) which is a necessary condition for 1/cy € H( p(’)). Then in

le’(/) T [ZL‘()]pO
this case it seems that the additional assumption

1
— e H(pp) (3.12)
co

is sufficient to establish step 2 when « does not have compact support.
Furthermore, on setting ¢ (t) = [rcol™ Y, taking into account [(2.1), (ii)], we recover a set
of functions

(®) = {¢: ¢ € LPO(1, 400: R "), 1¢p € LP0(0, ;R "} (3.13)

introduced by Lions in [19] for a problem of interpolation that has only recently been solved.
The reader is referred to [9,19].

Step 3:
Next we prove:

+o00 . +o00 .
/ MM (dE = —(m — - 1)/ M2 =D (1 ay . (3.14)
0 0

For € > 0, we start from ! = f; =il (£)d7 and after an integration by parts,
obtain

t
[‘L’m_'/_]um_l(f)]i — _(m — ] — 1)/ 'I;M—j—zu(m—l)(‘l)dt.
€

Since u has compact support, we deduce that
im0 50 in Y as t—>o0.

On the other hand, the identity

1
u(mfl)(e) — u(mfl)(l) _/ u(m)(‘[)dl

€

1/p1 1 1/p
u(m)(f)"” dt) (/ L)
Y 0 [c1 (D)
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and the right side is bounded because D" u € Xi, and [(2.1), (ii)] holds. In consequence
"I ()0 inY as e—>0,

and (3.14) holds true.
Step 4:
Repeating the process leads to

+00 ) ) too
/ "I de =(=1)" T — - 1)!/ ult (0)dt,
0

0
but 4 (1)—>0in Y as t—> + oo. Consequently we get (3.11).

Resume of Sect. 3.2 .
Ifa; T;m) we have constructed a function u*(r) = "7 u (¢), such that

+00 dt . .
a; :/0 u*(t)T, {t'u* € Xo, /7"u* € X1} (3.15)

The interpretation of this result requires some definitions and properties of some spaces.

4 Some intermediate weighted spaces

Here we extend to weighted spaces the spaces that in [21] called “Espaces de moyennes”
while preserving some properties of invariance with respect to Haar’s measure % subject to
the change of the variable 7 into t + T, At, or 1/t.

4.1 A first definition

Assume, for the moment, thati € {0, 1}, ¢; € H(p;i), 1 < p;i < 400, &, with §&; < 0
and define the space

V=V(po, &, co, Ao; p1, &1, c1, A1) ={v; 10cov € LY (Ag), cit¥lv e LY (A} (4.1)

which being equipped with the natural norm is a Banach Space.
When ¢; € H(pi), i =0, 1, itis of interest to set

Gy =1""rei(0), Xi=LL(A) (and also &(t) = t~/Pic(1)). (4.2)
By virtue of
veX;~cveLl(A),
one has
V=V={vveXfveXi}, withé € H(pi), i ={0,1}. 4.3)

and we denote by 1(’,-(11) the norm of v € )A(i = Lg" (A).

We can check that
+00 dt
/ v(t)— 4.4)
0 t

exists under some conditions on (c;, &), i = {0, 1}.
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For example, assume &; < 0. Then Holder’s inequality

1 1 1/p1 1 1/p}
/ lv(t)ly < (/ [51é1(t) o) [} dt) (/ L,) < 400
0 ~\o o [t1tEie) ()]

holds provided
[tt618,17 e L0, 1; R, (4.5)

that is assumed for —&; > 1, if (e ' e LPi (0, 1) (that is [(2.1, (ii)] for ¢1).
On the other hand, we further employ

+00 +oo : 1/po +00 dt 1/py
"
[ o= (T eaomona) ([T ) e

which is valid provided
[177508] ™" € LPO(1, +00; R), (4.6)

assumed for &y > 0, if [tép]™' € LP(/J(I, +00) which holds if [¢y]7! € H(p(’)) (see also
Corollary 3.7) and vice versa if &y < O.

Now, in what follows, to fix ideas we assume &; < O.

Accordingly we assume (4.4) holds (when, (£q, &£1) are chosen to satisfy (4.5)—(4.6)), and
we consider a function v with values a.e. in X. Set

¥ = X(po, &, Co, Ao; p1, &1, €1, Av),
which is the space spanned by a = 0+°° v(t)% in Y as v spans the space V =~ V.
Equipped with the norm
laly = Inf, {max (No(rfov), Ny v))] 4.7

(where Inf, means the Inf taken on v such that a = 0+OO v(t)#), ¥ is a Banach space.
To understand better the properties of the spaces (V, ) we make the change of variable
t=¢e", x eRjnV.
On setting f(x) = f(e*) we have an isomorphism between the space V and the space
V = {v; 05 € LI (R; Ao), S5 € LI (R; A1)} (4.8)
We denote

¥ = 2(po. &0, €0, Ao; p1, &1, E1, Ap) 4.9)

the associated space spanned by a = fj;o 3(x)dx in 'Y when ¥ spans the space V, which
is naturally a Banach space equipped with the norm induced by (4.3) upon the change of
variable t—>e”.

The space ¥ is analogous to those studied in [21] by Lions and Peetre and called “Espaces
de Moyennes™ and accordingly we call ¥ is a “weighted mean space”.

4.2 A second definition

We continue to assume &y > 0,&; < 0, Vi € {0, 1}, ¢; € H(pi), 1 < pi < 400, and we
consider v; measurable with values in A; such that, the derivatives being taken in the sense
of distributions in Y

i(UO(JC) +vi(x)) =0, aeinY
0x
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which implies
vo(x) + vi(x) = constant, (a.e)inY =a €Y. (4.10)

In what follows, we set N; () = |&i f|pri ®R:A)> 1 =(0,1).
Consider the space (temporarily) denoted by S = f},(po, &o, €0, Ao; p1, &1, C1, A1)
which is spanned by a = vg(x) + v1(x) when the v; spans the space

Vo = {0 € L(R; Ag), ¢¥31 € L' (R; A1) 4.11)
when equipped with the norm

laly, = Inf  max[No(e* %), N(5* )] (4.12)

vo(x)+v1 (x)=a

this space is a Banach space.
Note that we have also

a€X_={a=vy(x)+v(x), such that tvy € X, 1'v; € X;}. (4.13)

Remark 4.1 We can observe, thanks Theorem 3.1, that the spaces > (resp. fl_) are not
changed if we replace the conditions (4.8) for v, (resp. (4.11) for v;, i = (0, 1)), by

Vi>1, &*Dipe LY (R;A)),  (resp. DIy € LY (R;A), i =(0,1).

(Indeed we can generally replace v by the convolution v x p, where p € D(R), with
fR p(x)dx =1, so that D/ = ¥ % DJp and because D/p € L', Theorem 3.1 leads to
the result).

‘We claim

Theorem 4.2 The following equalities hold:
E_(po, &0, G0, Ao; p1, &1, 1, A1) = Z(po, &0, S0, Ao pi, £1, E1, A1)
= X(po, &0, Co, Ao; p1, &1, 1, A1) (4.14)

with equivalent norms.

Proof Assume, a € ¥; and note that a = fR v(t)dt = 1 % v, with v satisfying (4.8). Let
X— be the characteristic function of the interval ] — oo, O[ and y that of ]0, +oo[. Because
1 = x_+ x+ wecantake vo = x— % v, V] = x4+ * v, to give vgp + v| = a, so that

g = (¢ ) # (€N v), vy = (€51 xy) % (€M),

where 50% y_ and e¥1* x, belong to L' with the norms % and ﬁ On applying Theorem 3.1
we obtain

2 (po. &0, G0, Ao; p1, &1, 1, A1) C S_(po, &0, €0, Ao; p1, &1, €1, A1), 4.15)

More precisely from Theorem 3.1, we infer that

- - 1 - 1 -
lals._ < max(No(e% 5o, N1(¢*01)) < max (S—No@fox&), T (eflxr)))
B 0 1
< ( L. ) la| (4.16)
<max | —,— ) lals .
§o €11 =
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To prove the converse embedding, Remark 4.1 enables us to put a = vg + vy, with esfxv{ €
Lg_i R; Ay, i ={0,1}. As v, + v; = 0, we can let v = v, = —vj, to conclude that
v satisfies (4.8). Moreover, we can write

1v= x4 *V+ x_*v= x4y *V)— x— *V] = Dxq *vo — Dx_ *v;

andsince Dx4+ = —Dx_= §, we obtain fR v(x)dx = a.Thusa € f)(po, &o, Co, Ao; p1, &1,
€1, A1) and the theorem is proved. ~
By the method of [5], we can easily demonstrate that X is dense in X and use

XcEcCy,

to deduce that ¥ is an intermediate space and one can check (see: Sect. 4.2 here after) that
3 has the interpolation property (analogous to the spaces in [21]).

Nevertheless it is of interest to establish beforehand some others properties related with
symmetry (this is obvious by the definition) or with the invariance of the integral 1 (v) =
fj;o v(x)dx with respect to the changes of variable x—>x + T, or x —>Ax, A # 0.

Lemma 4.3 Leta € 3. Then

lalg = Inf [No(e®*9)]'" [Ny (5 5) 17, 4.17)
1(9)=a
where
o
0 = . (4.18)
& — &
Proof IfT € R, set fT(x) = f(x + T); then
~ +00
T e VT(po, e&o(x+T)Eg’ Ao; pi, eS'(“'T)ElT, A, / U(x +T)dx = a.
—00

It can be checked that
NSO 5Ty = e 5T N5 G), i = (0, 1)
and consequently
lals, < max (€707 No(eG07), =57 Ny (¢517217))

Choosing T such that each term in the bracket, on the right in the last formula, takes the same
value, we obtain (4.17), (4.18).

Remark 4.4 The second definition leads to

laly = Inf  max[No(e ) =7, N(5*9))?], (4.19)

vo(x)+v) (x)=a

with 8 given by (4.18).

Corollary 4.5 There is a constant k = k (&y, po, co; €1, P1, ¢1) such that
lalg <k laly,” laly, , (4.20)

SJoralla € X.
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Proof of Corollary 4.5 Consider p € D(R) such thatfR p(x)dx = 1. Then taking v(x) =
¢ (x)a in (4.17) gives the result.

Naturally the result is valid for all other definitions of 3 (for example $_) with equivalent
norms but with different constants «.

Now on setting f3(x) = f(Ax), A > 0, we obtain a homogeneity result:

Lemma 4.6 One has
VA>0. (po. Moco. Ao: p1. AE1. E1. A1) = E(po. &0.¢0. Ao: p1.&1.¢1. A1) (4.21)
with equivalent norms. Moreover
lalg, =2'""7 |l (4.22)

and

1 1-6 6
— = + —, where 6 is given by (4.18). (4.23)
Po Po P1

Proof 1t is obvious that the function v, (x) = Av(Ax) belongs to the space

Vi.(po, Ao, Coxs Ao; p1, A&l €1, A1)

and that

+o0 +00
/ vy (x)dx :/ v(x)dx = a,

—00 —0o0

Consequently, we obtain

VA >0, 3 = X(po, Ao, Cor. Ao p1. A1 EAL) = E(po, €0, Co. Ao p1, €1, C1, Al).
More precisely, we have

= A1-1/pi |e&x5,~ (4.24)

Aix~  ~ ~
|e C”Lv)"Ll’i (R:A;) v|w (R;A})

On taking into account (4.17)—(4.20) for |a|5, and (4.22). The result of the Lemma 4.6 follows.

Remark 4.7 As in the case of unweighted space [21], the estimate (4.22) shows that the result
seems to depend upon the parameters (6, pg) but provided no information about dependence
on the weights.

From Lemma 4.6, we deduce the main formula:

2 (po. &0. Co. Ao; p1. &1, C1, A1) = T
= f)(po, 0, co, Ao; p1, 1 —6,¢1,A1), 6 given by (4.18), (4.25)

with equivalent norms.
4.3 Interpolation property
Consider a family of spaces {Bg, B, B} analogous to {Ag, A, A}.Denote Y, =Y, Y;, =

By + By and let =, = 2 (po, &, ¢o, Ao; p1, £1,C1, A1), Zp = Z(po, o, G0, Bo; p1, &1,
¢1,B1). We have
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Theorem 4.8 Let 7w be a linear mapping from Y, into Y, which restricted to A; is linear
and continuous from A; into B; (said m € L(A;,B;)) (i = 0, 1). Then the restriction of
7 to A belongs to L(A,B).

Moreover, let w; the norm of L(A;, B;), w that of L(A, B), one has

w < a)(lfew?, (4.26)
where 0 is given by (4.18).

Proof Let a € A. There exists a function i € ~V with [; 7(x)dx = a, the last integral
being convergent into Y,. From the assumptions upon 7, we deduce that # € L(Y,, Yp)

and thus
na:/nﬁ(x)dx.
R

Imalg < wy @ [No (€ 0)1' [N (517 5)1°.

From Lemma 4.3, we obtain

Again with Lemma 4.3, we have
1-0 6
lralg < wy "y lala
and Theorem 4.8 is proved.

Remark 4.9 From Remark 4.4 Theorem 4.8 stay again valid if we replace by by .

5 Intermediate mean spaces and spaces to traces

Let us return to the definitions and observe that the space X is spanned by a = O+°° v(n) 4,
as v spans the space Vg = {v : v e Xo; =1y e Xl} with 6 € (0, 1) given by (4.18).

Accordingly, with the result obtained in the summary of Sect. 3.2, we conclude that the
function

w* ="y e Vi={v; t/Poti e Xo: fYPtm=iy e XY, je{0,1,...,m— 1}
(5.1
But f0+°° u*(t) % =aj € T and thus we obtain the algebraic and topological inclusion
T € 5j = T(po. 1/po + J» G0, Ao p1. 1/pr + j — m, &1, A,
jefo,1,....,m—1} (5.2)
a; <t |aj|pm - 53
lajlz,, = elajlym (5.3)
Furthermore from (4.23), we have
T C %o, = S(po, 0, G0, Aos 1,0 — 1,61, AD, jel01,....m—1)  (54)
(5.5)

lajls, = |aj!T3m) :

where 0; (=Y;jm, (see (2.13)) is given by

1/po+J

=TI s, je{0 ... m—1). (5.6)
7= po— 1p1+m /
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Remark 5.1 As in [5] for W) (see also [8]), the fact that the space Vi (X) of functions v,
with values in X, and compact support, for v € V, is dense in V, can be used to obtain the
previous results.

Next we want to establish the identity with equivalent norms between the space
T;'") and X; (or Xy : ). It then remains to prove a converse of the inclusion (5.2).

Assume that @ € X;, then we can find a function u, € V; = {uy; tV/potiy, e
)A(O, tl/piti—my ¢ }A(l} such that a = 0+°° u*(t)%. We require however a function
u € W such that D/u(0) = a.

From the direct proof of (3.15) we must have that u is an integral of order m of the function
¢t/ "u,, (c a constant) then because t/ ~"u, € X we have obviously:

D™u € X (5.7)

According to Laurent Schwartz [24] (see also [12]), an integral of order m of a distribution
T with support restricted on the left, is defined by the convolution

I'(T) =Y} T,
where

m—1
iy — ot
Y, (x) = T’

When S has a support restricted on the right, then

I"(S) = (-)"Y, %S,

m

where

(=)

T =

Since we can choose u, with compact support, both definitions are valid. Consequently, it
is the derivative of order j for # which leads us to take

_1\m “+o00 .
u(t) = %/ (t — )" My (v)d (5.8)
(m—1!J;
so that
_1\m—j +o00 . .
Diu(r) = M/ (r — y"=i=lgi =My (t)dr. (5.9)
(m—j—DJ,

Then on choosing ¢ such that % =

that

1, and tacking r— + 0 we deduce from (5.9)
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. —+00 dt
u(0) :/ U (1) — = a, (5.10)
0 T

which is the required result.
It remains to prove that

u € Xop. (5.11)

To this end, we observe that the integral in (5.8) is /(t) = ft+°° (1— %)m_lrju*(t)d%,
which is the convolution on R* with respect to Haar’s measure df—f, of two functions with
compact support one, f (1) = (1 — )" 1 if0 <t <1, f(t) =0if t > 1, (whichis in Li)
while the other is #/u,. We know that /7%y, € Xy, i.e. t/u, € Xo. From Theorem 3.1
and Corollary 3.7, or Remark 3.8(2), as cotluy € L°(Ap) then we can deduce that there is
a constant . > 0, such that

luly, < ‘tju
Xo 123 *XO

which gives (5.11).
Thus we have proved that

%)~ ¥, C T{™ (5.12)

with equivalent norms. The conclusion is the converse of the embeddings (5.2)—(5.3), the
topological part following from the inequalities.
The study of Sect. 5 can be summarised by

Theorem 5.2 Assume ¢; € H(p;i), i = (0,1), (2.10)—(2.11), and that [col”! € H(p(/))
holds. Then we obtain

Tj(m)(po, o, Ao; p1,c1, A1) = Z(po, 1/po + J, Co, Ao; p1, 1/p1 + j —m, ¢1, Ay),
jel{o,1,...,m—1} (5.13)

with equivalent norms.

We also have

Corollary 5.3 In particular, there holds
T (po, co. Ao; p1, ¢1, A1) = Z(po, b, G, Ao; p1,6; — 1, &1, AD - (5.14)

where

__ J+1/po
Y po—1/p1+m’

with equivalent norms.

m>1,jef{0,1,....,m—1) (5.15)

If we take into account Proposition 2.6, we deduce from Theorem 5.2 that
T = Tj(po, t/co, Ao; p1, /" er, Ay
= X(po, 1/po+ Jj,Co, Ao; p1, 1/p1+ j —m, ¢, Ay) (5.16)
and from Corollary 5.3

% (pos 0}, €0, Ao; p1,0; — 1,¢1, A1) = T(po, x0, Ao p1, X1, A1) (5.17)
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where
Xi() =1%&, i=1{0.1}. (5.18)
To compare with the trace spaces studied in [21], we have

Remark 5.4 In [21] the weights ¢; () = %, o; + 1/p; €]0, 1[ are considered and the
exponents ¢; appear in the expression for 6;. Indeed, if we set n; = a; + 1p;, then 6; =
nozor:i —, and the exponents of the weights can be considered as parameters §&;. Here, the
weights are different to these parameters.

Notice that the condition «; + 1/ p; €]0, 1[ implies that the weights belong to H(p;) with,
in particular the Poulsen condition (2.11) given by 1/p| + o1 + j < m while the condition
1/po+ag+j > 0gives = (1H/+@0) ¢ 170 (1, +-00; RY) which is implied by 1% € H(p}),
that is true in [21] (see Theorem 3.1).

6 On dependence of the spaces upon parameters

In what follows, we want to prove that Xg(po, 6, ¢o, Ao; p1,6 — 1, ¢1, A1) depends only on
three parameters: 6, pg (see Corollary 4.5) and a weight .

As a preliminary, we note
Remark 6.1 Let fy(t) = f(1/0), then a = [ v(n)4 = [F® ()2, so that
Jo e @) @) a1Pidt = [T [ew() lug(D) 4,17 LF =[5 [r 77 cy(r) |va (D)o, 1P d T
and the weight &;(r) = t~'/Pic;(¢) is changed to ¢#(t) = v-'/Pi¢; 4(r), with respect to
Lebesgue measure when ¢ is changed to 1/¢.

This property, of “quasi invariance” when ¢ is changed to 1/t, led us to the definitions
{(4.1), (4.2)} for the space V. We obtain

Yo =X (po, 0, Co, Ag; p1,6 —1,¢1, A1) =%_g =X(po, =0, Cos, Ao; p1, 1 — 6, C#, A1)
6.1)

with equivalent norms.
Naturally since ¥_ = ¥ = ¥, from {(4.19), (6.1)}, we have also

Yog={a;a=vo+vi €Y, Inf {!tiecO#UO|LFO(AO) + |0 crpv ‘Lm (Al)} (6.2)
vo+v=a * *

with equivalent norms.

6.1 Some definitions

Now we want to present the technique used by J. Peetre in the case of unweighted spaces’ to
define adapted J and K methods in the particular case where Vi = (0, 1) p; = p, ¢; = 7.

(1) J.W-method: Define a measurable function u = u(t) on R™, taking values in X, such
that

+0o0 dt
a=1(u) =/ M(Z)T’ (inY), t_en#J(t, u) e LY, e H(p),1 < p < +o0,
0
(6.3)

5 See [22-24].
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where the quantity
Vi >0, J(t,a)=max(lals,,?lals,) (6.4)

for a fixed ¢, is a norm on X equivalent to the norm J (1, a) of .X.
Let (Ap, A1) gq p.x» the space spanned by a equipped with the norm

= Inf 700, u(®))|,»
laagant,, = 100 0T 0w@)
(where #4(¢) = t~/P74(¢)) which is a Banach space.
When p; = p, ¢; = ¢, (6.1) implies
So(p.0.¢, A p.0 — 1,6, A1) = (Ao, ADj . (6.5)

with equivalence of norms.
(2) K.W-Method: Let v; be two measurable functions with values in A; (i = 0, 1) and
a € Y such that

a=uv(t)+vit), tmK(t,a) €L, (6.6)
where K (¢, a) defined by

K(t,a)= Inf (laola, +1lails,), (6.7)

a=ap+aj
is, for a fixed 7, a norm on Y equivalent to the norm K (1, a) of Y.
Let (Ao, A)é(,p,ﬂ be the space spanned by a = vo(t) + v1(¢) a.e. in Y with
1m0 € LY (Ag), 1" 7myvr € LE(AY),
and equipped with the norm
+o00 P pdl‘ I/p
alggang, .~ inf ( /0 (=0 mh (OLvo(1)]ay + 1 10101, ) 7) (6.8)

a=vp(t)+v(t),a.e.

(Ao, Al)g,p,n is a Banach space.
Now when pg = p1 = p, co = ¢1 = ¢, we easily include from (6.2) that

To(p.0.¢, A p.0 — 1,6, A1) = (Ao, AD (6.9)

Henceforward, we write ¢ (po, 0, ¢o, Ao; p1,0 — 1,¢1, A1) = (Y0, Ao, po. p1,co.c @nd
state

Proposition 6.2 For p; = p,c; = c,i € {0,1},0 € (0, 1), the following conditions are
equivalent:

1. a € (Ao, A1)g,p, p,c,c (denoted (Ao, Al)g,p.c)
2. a€ (Ao,Al)gj,,,,C,
3. t7%4K(t,a) e LE.

(That means: (Ag, A])z’p!c = (Ag, A])g’p’c = (Ag, A])g’p’c with equivalent norms).

Proof (1) <= (2) and (1) <= (3) are obvious from definitions.
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Proposition 6.3 We assume 0 < 0 < 1,1 < p < q < 400, and cle H(p') [so that
VT > 0, fOT [c(t)]Pdt < +o0, (see (2.1)] then,

(Ao, A)G pr C (A0, ADG 4 o (6.10)

with continuous imbedding.

Proof From Proposition 6.2 we can define (Ao, A1) p,x bY the K.W-method and on noting
forall T > 0, that®

t>1=—=K(t,a) > K(t,a)

then
+o00 dt
lal? > [K (z. a))? / e, 6.11)
T
implying that
V>0, @)t K@, a) <k lalg, p,c

Although, from (6.11) the integral must make sense, but there is a contradiction when the
function log(t’gc#(r)) is of order — 1 (resp. 0o) with respect to Logt. Thus from Bourbaki
[11], the integral in (6.11) is equivalent to =0p cf: (7) (up to a multiplicative constant). In
consequence

Kt a)| 0 < ¥ lalg pe (6.12)

H

and (6.10) follows for g = oo, implying that
Vi > 0,K(t,a) <t lalg . (6.13)

Nowif 1 < p < g < oo, onletting h(t) = 1~ 9¢4(1)K (¢, @) and using (6.12), we may check

that
+o0
lalg 40 = /0 (RO R~ Pdt < yilalf , .-
and the proof is complete.

6.2 Some lemmas

Lemma 6.4 (Inequality of Carlson’s type) Let A € (0, 1), 1 < p; < +o0, m; € H(p;),i =
0, 1, ® a positive function and assume

tdi € LPi(0,1), ¢; € LV (1, +00) where td; =t~ /Pi[t= 0Py, )]7L. (6.14)

Then one has the inequality

+00 +00 = +00 =
/ CINt)ﬂ <vy (/ [t‘AHO#(t)CD(t)]””ﬂ) ’ (/ [t“*m#(t)@(z)]mﬂ) ‘
0 t 0 t 0 t

(6.15)

where y is a constant depending on A, g, 7.

6 See also [31] for unweighted spaces.
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Remark 6.5 A similar inequality proved in [10] (with only “weights” constructed with gen-
eral terms of the form ¢%), is also given in [23,24] with r; = 1,7 = 0, 1. Conditions (6.14)
are always fulfilled in this case. The choice of the weight 7r; (1/¢) = m;#(t) is useful in what
follows.

Proof of Lemma 6.4 7 We start from

+00 dt _ +o00 D (1) +o00 @ (1) _
/0 ¢(t)7_/0 t(1+z)dt+/o (I_H)dt_lo—l-ll

and using Holder’s inequality, one obtain

In < t*)» | (_/ )l/p(/) h J /+OO t '1/]76 Po ”
T #CD , wnere = —
0= ¢ [i’() 0 0 t A (l/t)(l t)

Now taking T = 1/¢ in Jp, we have

+o00 dt 1 +o00
Jo S/ ; 5/ Tdo(T)dT + ¢o(r)dt = Y0,
0 tltrmo()d +1/1)]P0  Jo 1
1
¢o(r) = e’
which is (6.10) for i = 0.
On the other hand,
12 /7 +oo 1=1/p) 7
L <|t™ ® JOYPU where J; =
=l e T ’Lf' J1) where Ji /0 DA 1)

/
P dt

+00
_/o (i) (1 + )P T

and we can easily check that

1

1 , +o0
Ji S/O (zg1(v)Prdr +/] (P1(x)dt =y, ¢1(t) = m

which leads to
e dt - 1-2,
CD(I)T <wo |t mos®| 0 + 1 [t TP
0 * *

The change of variable t = k7, k > 0, and a convenient choice of k yields (6.15).
Now we introduce the space Lf’a = {f; s %f e LY, o € R, ¢ € H(p)}, which
provided with the natural norm becomes a Banach space.

We state

Lemma 6.6 Let0 € (0,1), 1 < p; < +00, ¢; € H(p;) satisfy (6.14), fori =0, 1. Then

P0,%0 , N P1L,YLN P0,%0 P11, __ 71 DPox
X (=0, po, CO#,LEO ;1 =6, pr1, ey, LEI )~ (Lé() s Lél )G,po,pl,co,cl = ch s
(6.16)

7 For the convenience of the Reader we adapt the proof given in [10].
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with

1 1-6 0
= +—, a=(1—-80ag+0ai, ,cot) =1t [co()] ™ [er(OT.
Po Po P1

(6.17)
Proof of Lemma 6.6 (1) Assume
a(.) € (=0, po, Cos, Lg’“; 16, p1, ¢, L)
then there is a function u(., 1), a() = [, u(., t) , with
1~ copu(., 1) € LfO[Lg?], "Ocipu(, 1) € LYLE. (6.18)
which is equivalent to
05 u(s, 1) € LETLEL, o' 05T u(s, 1) e L2 L2,
An application of inequality (6.15), gives
+00 dt
awi= [ ueols
0 t
1-6 [

+oo 70 +oo 7
<y ( / [t~ ¢on(t)us, r)]"ﬂdz) ( / (11014 (Oucs, r)]l’ldz)
0 0

from which may be deduced the inequality
oo Po1-6)
Cos™a()|” <y (/ [t~ 204 (1)s~ 80 (s)u s, t)]POdz)
0

Pof

+o00 ?
x (/ (014 () s~ é ()uls, t)]”‘dt)
0

But % + M = 1, and Hélder’s inequality gives, f0+°° [Cos™% |a(s)|]Pds <

pg(1-0)
o™ Ji a5, 0170 Go(s))Pds Gos)PdD) 70 (57 o LB, D17 1 ()] ds
(Cl#(t))p'dt) 5 where

als,t) =t s u(s, 1), Bs,t) =15 u(s, 1)
and
— N -1 1-6 0
s “a(s)eij, Co=s /f”"c0 cf.
We have therefore proved that

(Lé’(;)vao, P1 Otl)e po.p1.co.ct C Lé’;y“ (6.19)

with continuous injection.
(2) To prove the converse of (6.19) assume a(s) e Lp 9% We must show that there is a

function u(s, t) satisfying (6.18) such that a(s) = 0 u(s, 1) d’.
For this purpose,we adopt a strategy by J. Peetre in [24] and consider a function @, such
that f0+°° CID(I)% = 1. We define

u(s, 1) = ®(x(s)t)a(s)
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where x (s) is a function defined later. Then we have
+00 dt
/ u(s,t)— =a(s)
0 1
Moreover, we note that
Ko = // 17057 u(s, 1)]70 (80(5))70ds (C14(1)) PO dt
R+2
+00

+00
= / (/ [~ @ (x (s)N)]" (60#(X(S)t))p"$) s a(s)|P0 (Co(s))P0ds
0 0

+o0

+o00
= / (10 @ (1)]70 (Cou (1)) P0dt / x(5)P05 TP | (5) [P0 (Go(s))P0ds.
0 0
and similarly obtain

. :// s s, " @) ds @ (0)) 7 de
Rt

—+00
= / o )1P (Cru (1)) dt /
0 0

Now following [24, pp. 254-255] we set x (s) = f([co, c1]1(s))s > |a(s)|™* and determine
x,y,and f such that

£ ($)1%P°[co ()17 = [£ ()]~ TP ey ()1P! = [cp(s)]7*

+o00
x ()~ U=OPLg=P1 g (5)|P1 (1 (s5)) "' ds

to obtain
X()°7 |co(s)s™a(s)| " = x ()" TOP1 ey (s)s ™M a(s)|P = (ca(s)s ™ lals))P’. (6.20)

In consequence, we have
+o00 +00
Ko = / [eos (Dt~ @ ()]0 d1 / [Co(s)s™“a(s)]ds,
0 0

o0 +00
Ki :/ [51#0)”79‘1)(0]“6”/ [Co(s)s™a(s)]ds,
0 0
and therefore
ngﬂ c (Lg(?,ao’ Lg.l’al)&po,pl,co,m (6.21)

with continuous injective mapping. The lemma is proved.

Now we need a result which is (partly) an extension to weighted spaces of the reiteration
theorem of Lions and Peetre [21].

We introduce the space

Xi = (A0, A1j o mp» i €0, 1), 1 <ri <400, m € H(ry), i =0, 1.
defined by one of the methods of Proposition 6.2. We may claim

Proposition 6.7 Assume 0 < 6y < 6 < 01 < 1. Then the following equality holds with
equivalent norms

(A(), Al)@,po,p] ,c0,C1 — (XO, Xl)k,ro,rl JTT0,7T1 (622)
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where
1 1-6 6 o o
=(0—-0+1r0, —=—2+4—" m=cy il i=01. (623
T pPo P1

Remark 6.8 Actually for the relation between 6 and A in (6.23), one has —A = %, 1-1 =
61—6

7,9, » then it is more convenient, thanks to Lemma 4.6 (homogeneity) to eventually works
with the space X (ro, no, o, Xo; r1, 11, 71, X1) Where no = 6p — 6 = —(61 — ), n1 =
01 —6 =(1—x1)(0 —6p).

Proof of the Proposition 6.7 (1) Let a € (Ao, A1)6.rg,r,c0,c; then we may find, u(t) €
X ae int, such thata = ["u(®)4 in Y, with 1=%u() € L2, 1'~%u(t) € LY and
from Corollary 4.5 (4.22) gives

1-6; 0;
u®lx, < i lu@)y," @,

so that, using Remark 6.8 and because 1; = —fg(1 — 6;) + (1 — 6)6;, with 7; = ¢y "¢,
one has
" o]y, < s (70 on(Ou )| 50) P (I Gy (u ()] )P
and Holder’s inequality gives
tMu(t) e LY (X;), i=0,1, (6.24)
thus, thanks to Remark 6.8, one obtains

(AOa Al)@,po,pl,co,cl - (XOa Xl))\,ro,rl,no,nl (625)

(2) To prove the converse of (6.25) and to avoid any measurability problem,® a discrete
representation may be considered, based on space that involves a sum instead of an integral®:
Vn € Z, since on a interval ¢" < s < "1 one has K(e";a) < K(s;a) < eK(e";a),
and since the measure of (e”, e"‘H) for Haar’s measure % is 1, on setting ¢, = c(e™"), we
conclude

a € (Ao, A])g’p,c is equivalent to cpe " K (¢"; a) € 1P (Z)
and

|c,,e_"9K(e” is an equivalent norm on (Ao, A1)y p.c - (6.26)

;a)|lP(Z)

The following proof uses a procedure similar to the discretisation method developed in [21].
Assume a € (Xo, X1)x,rg,r,70,7 - Remark 6.8 permits vo, v to be found such that

a=vo(s) +vi(s), sTv; e Lg_#(Xi), i=0,1.
and in general
a = von + Vin, | Tine" " vin|x; € " (Z). (6.27)

But X; C (Ao, A1)g,00,7;» and from (6.13), Vt;,, > 0, viou, vi1» can be found with v;, =
Vion + Vi1n such that

6 —(1-6;)
[vionlag < Kity, [Vinlag,  Vitnla, < kit 7 |Vinla, (6.28)

8 As noticed by J. Peetre.
9 See also Tartar [31].

@ Springer



On traces spaces connected with a class of intermediate... 267

and consequently
-0 Po Po 0; ~. 1PO
|COne nvi0n|A0 < k; (Tin)"P0 |vin|xi

P1
1-6 pP1 0;—1 ~ Pl
‘me( >”vi1n‘A < i @) B OP (Gl
1

where
_nCon ~ .
n n
Tin = lin€ . Uin = "' T vy,
Cln
A ~ e
Then, one can choose 7, such that (1;,)%7° = [i;]y. ™ and we can check that
1
(tin) % =VP1 = |5;,| % 7", so that, one has
1

‘COne’O”vOin‘if) <« |€mn7TinUin)|§i

pi .
1-60)n Pl =~ T
}Cme( ) Ulin‘ <K 109y,
A i
thus, setting
Won = Voon + Vions Win = V10n + V1ln

we have

cone” " woy| A, €17(2), cine™Mw 1, L € 1P(Z) (6.29)
1

and because wq,, + wi, = Vo, + Vin = a, we conclude that
a € (Ag, Al)@’po’pl,c(),c.] . (6.30)

The result follows from Remark 6.8 and the definition for A.

6.3 The main theorem

Finally we can claim

Theorem 6.9 We assume: 0 < 6 < 1,1 < p; < 00, ¢; € H(p;), fori = 0,1, satisfy
(6.14). Then

(A07 AI)HVPO,PI,CO»CI = (A07 Al)(),pg,pg,c‘g,cg = (A07 Al);7p9,09 (631)
1 1—-6 0

— = +—, cg=c}0d. (6.32)
Po Po P1

Proof of Theorem 6.9 (1) Assume a € (Ao, A1)g py.pi.co.c; - Lhen, thanks to Proposi-
tions 6.2 and 6.7, there is a function u(¢) with values a.e. in X such that

) i
i ELﬁi# i=0,1.

Rig

+oo dt N
a= u()—, s K (s;u(r)
0 t
Since one has
+o00 dt
K(s:a) 5/ K(S;u(t))T
0
one deduces that
. L0, .6
K(s’ a) € (L:A;)O#O’ L) I)A,ro,rl,po,pl

P
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which from Lemma 6.6 implies
s9K(s;a) € Lfri# = Lg;#,

because from the definition (6.23) of A:

1 1—-x A 1-6 0 1 _ _
— = + — = +—=—, nA:né )‘nf:c(l) gc?:ce.
Px ro ry po P1 po

Thus a € (Ag, A} )gm’ce and its follows from Proposition 6.2 that

(A07 Al)@,po,pl,co,cl C (AO7 AI)Z,PG»CG . (633)
(2) Assume that a € (Ao, A1)*, and consider now the J. W-method. Then with the help of
proposition (6.2), there exists a function u taking values in X satisfying
+00 dt

a :/ uO—, inY, s %J(s;u(s)elLl.

0 t Co#
On using Lemma 6.6, we can find two positive functions j,(s, 1), ji (s, ) with jo(s, ) +
JiGs, ) = J(ssu(s)), t7]s7% jo(s, 1) iy Ly, 1 s (s, 1) , € L7 .sothat
the functions v;, i = 0, 1, defined by

W= [ D [T s
: _/o J(s;u(s»“s_/o e

L

k|

satisfy
+00
vo(r) +v1(1) = / u(s)? =a. (6.34)
0

Consider now the spaces X; = (Ag, A 1)5{ e b= 0, 1. From the definition and the hypoth-
esis we can easily check that

J(s; gi(s, 1)) = ji(s, 1)
and therefore

—A T 1-A r
T o@lxe € Ly ot ui®lx, € LY

Then Proposition 6.7 gives

(A0s ADg py ey € (A0 Ao, po.pr.cover o (6.35)

and Theorem 6.9 is proved.
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