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Abstract In this paper we introduce a new fuzzy contraction mapping and prove that such
mappings have fixed point in complete fuzzy metric spaces. We give an illustrative example.
The result generalizes some existing results.
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1 Introduction

In this paper wemake a contribution to the fuzzy fixed point theory by providing a fixed point
theorem for a new type of contraction mapping in fuzzy metric spaces. The new contraction
is defined with the help of two functions. We call it α −ψ-fuzzy contraction. The motivation
for such a definition is derived from a recent work of Samet et al. [14] in the context of metric
spaces and also from other works following it like those noted in [6,7]. The fuzzy metric
we consider here is that which is as defined in [2]. Fixed point theory in such spaces has
developed quite extensively throughworks like [1,4,9–11] amongst otherworks. Particularly,
fuzzy extensions of the Banach’s contraction have appeared in works like [1,5,12,15]. The
reason behind this development is some salient features of this space, one of which is that the
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topology is Hausdorff topology, a feature which is considered very useful for a successful
development of the metric fixed point theory.

2 Mathematical preliminaries

George and Veeramani in their paper [2] introduced the following definition of fuzzy metric
space. We are concerned only with this definition of fuzzy metric space.

Definition 2.1 [2] The 3-tuple (X, M, ∗) is called a fuzzy metric space if X is an arbitrary
non-empty set, M is a fuzzy set on X2 × (0,∞) satisfying the following conditions for each
x, y, z ∈ X and t, s > 0:

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗ M(y, z, s) ≤ M(x, z, t + s) and
(v) M(x, y, .) : (0,∞) −→ (0, 1] is continuous,
where ∗ is a continuous t-norm, that is, a continuous function ∗: [0, 1]2 −→ [0, 1] such
that (i)∗ is associative and commutative, (ii) a ∗ 1 = a for all a ∈ [0, 1], (iii) a ∗ b ≤ c ∗ d
whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Let (X, M, ∗) be a fuzzy metric space. For t > 0 and r with 0 < r < 1, the open ball
B(x, t, r) with center x ∈ X is defined by

B(x, t, r) = {y ∈ X : M(x, y, t) > 1 − r}.
A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and r with 0 < r < 1
such that B(x, t, r) ⊂ A. Let τ denote the family of all open subsets of X . Then τ is a
topology and is called the topology on X induced by the fuzzy metric M . The topology τ is
a Hausdorff topology [2]. In fact the Definition 2.1 is a modification of the definition given
in [8] for ensuring Hausdorff topology of the space.

Definition 2.2 [2] Let (X, M, ∗) be a fuzzy metric space.

(i) A sequence {xn} in X is said to be convergent to a point x ∈ X if limn→∞M(xn, x, t) = 1
for all t > 0.

(ii) A sequence {xn} in X is called a Cauchy sequence if for each ε with 0 < ε < 1
and t > 0, there exists a positive integer n0 such that M(xn, xm, t) > 1 − ε for each
n,m ≥ n0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be
complete.

The following lemma was proved by Grabiec [3] for fuzzy metric spaces defined by
Kramosil and Michalek [8]. The proof is also applicable to the fuzzy metric space given in
Definition 2.1.

Lemma 2.3 [3] Let (X, M, ∗) be a fuzzy metric space. Then M(x, y, .) is non-decreasing
for all x, y ∈ X.

Lemma 2.4 [13] M is a continuous function on X2 × (0,∞).
We use the following class of functions in our theorem.
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Definition 2.5 (ψ-function) A function ψ : [0,∞) → [0,∞) is said to be a ψ- function if

(i) ψ is nondecreasing and continuous,
(ii) �∞

n=1ψ
n(t) < ∞ for all t > 0, where ψn+1(t) = ψ(ψn(t)), n ≥ 1.

We denote the family of such functions by �. It is clear that if ψ ∈ �, then ψ(t) < t for all
t > 0.

The following function is an example of a ψ-function:

ψ(t) =
{
t − t2

2 , if t ∈ [0, 1],
1
2 , t > 1.

Definition 2.6 Let (X, M, ∗) be a fuzzy metric space. Let f : X → X and α : X × X ×
(0,∞) → (0,∞) be two mappings. The mapping f is α-admissible if

α(x, y, t) ≥ 1 ⇒ α( f x, f y, t) ≥ 1 for all t > 0 and x, y ∈ X.

Definition 2.7 Let (X, M, ∗) be a fuzzy metric space and f : X → X be a mapping. The
mapping f is an α−ψ-contractivemapping if there exist two functions α : X×X×(0,∞) →
(0,∞), and ψ ∈ � such that for all t > 0 and x, y ∈ X we have

α(x, y, t)

(
1

M( f x, f y, t)
− 1

)
≤ ψ

(
1

M(x, y, t)
− 1

)
. (2.1)

Remark The above definition is a generalization of the contraction introduced by Gregori
and Sapena [5]. If we take α(x, y, t) = 1 for all x, y ∈ X and ψ(t) = kt for all t > 0 and
k ∈ (0, 1), then we get the following contraction(

1

M( f x, f y, t)
− 1

)
≤ k

(
1

M(x, y, t)
− 1

)
, for all x, y ∈ X and t > 0, (2.2)

which has been studied in [5].

In the following we prove two lemmas which we use in the proof of our main theorem in
the next section.

Lemma 2.8 If ∗ is a continuous t-norm, and {αn}, {βn} and {γn} are sequences such that
αn → α, γn → γ as n → ∞, then limk→∞(αk ∗ βk ∗ γn) = α ∗ limk→∞ βk ∗ γ and

lim
k→∞

(αk ∗ βk ∗ γn) = α ∗ lim
k→∞

βk ∗ γ.

Proof There exists {βn(p)} ⊂ {βn} such that

lim
p→∞βn(p) = lim

k→∞βk = β(say). Then

α ∗ lim
k→∞βk ∗ γ = lim

p→∞αn(p) ∗ lim
p→∞βn(p) ∗ lim

p→∞γn(p)

= lim
p→∞(αn(p) ∗ βn(p) ∗ γn(p)) (by the continuity property of ∗)

≤ lim
k→∞(αk ∗ βk ∗ γk). (2.3)
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We now show that the equality in (2.3) must hold. If not, then there exists a sequence of
natural {n(q)} such that

α ∗ lim
k→∞βk ∗ γ < lim

k→∞(αk ∗ βk ∗ γk) < lim
q→∞(αn(q) ∗ βn(q) ∗ γn(q)),

= lim
q→∞αn(q) ∗ lim

q→∞βn(q) ∗ lim
q→∞γn(q),

= α ∗ lim
q→∞βn(q) ∗ γ.

By the monotone property of ∗ we have that

lim
k→∞βk < lim

q→∞βn(q), which is contradiction.

Therefore, we conclude that α ∗ limk→∞ βk ∗ γ = limk→∞(αk ∗ βk ∗ γk).

The other part of the lemma is similarly proved.

Lemma 2.9 Let { f (k, .) : [0,∞) → [0, 1], k = 0, 1, 2, . . .} be a sequence of functions such
that f (k, .) is continuous and monotone increasing for each k ≥ 0. Then limk→∞ f (k, t) is
a left continuous function in t and limk→∞ f (k, t) is a right continuous function in t.

Proof Let g(n, t) = supp≥n f (p, t). Then

lim
n→∞g(n, t) = lim

k→∞ f (k, t).

By the conditions of the lemma the above limit exists finitely. Let η > 0 be arbitrary. We can
find p ≥ n such that

f (p, t) > sup
p≥n

f (p, t) − η = g(n, t) − η, that is, g(n, t) < η + f (p, t)

Since each f (k, .) is monotone increasing for each k, g(n, .) is also monotone increasing for
each n. Then

g(n, t) − g(n, t − η) ≤ η + f (p, t) − sup
p≥n

f (p, t − η)

≤ η + f (p, t) − f (p, t − η)

≤ η + η. sup
s∈[t−η,t]

f (p, s)

≤ η + η.1 (since the range of f is within [0, 1])
= 2η.

Taking n → ∞ in the above inequality,

lim
n→∞g(n, t) − lim

n→∞g(n, t − η) = lim
k→∞ f (k, t) − lim

k→∞ f (k, t − η)

≤ 2η → 0 as η → ∞.

This establishes that limk→∞ f (k, t) is left continuous in t.

The other part of the lemma, that is, limk→∞ f (k, t) a right continuous function is similarly
established.

We denote O(x) = {x, f x, f 2x, . . .}
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3 Main results

Theorem 3.1 Let (X, M, ∗) be a complete fuzzy metric space and let f : X → X be a
α − ψ-contractive mapping which satisfies the following conditions:

(i) f is α- admissible,
(ii) there exists x0 ∈ X such that α(x, y, t) ≥ 1 for all t > 0 whenever x, y ∈ O(x0),
(iii) if {xn} is a sequence in X such that α(xn, xn+1, t) ≥ 1 for all n ≥ 1 and for all t > 0,

and xn → x as n → ∞, then α(xn, x, t) ≥ 1 for all n ≥ 1 and for all t > 0.

Then the mapping f has a fixed point.

Proof By an assumption of the theorem there exists x0 ∈ X such that α(x0, f x0, t) ≥ 1 for
all t > 0. We now construct a sequence {xn} in X as follows:

x1 = f x0, x2 = f x1, x3 = f x2, . . . , and, in general, for all n ≥ 1,

xn = f xn−1. (3.1)

Since f is α- admissible, for all t > 0, we have

α(x0, f x0, t) = α(x0, x1, t) ≥ 1 ⇒ α( f x0, f x1, t) = α(x1, x2, t) ≥ 1.

Again, for all t > 0, we have

α(x1, f x1, t) = α(x1, x2, t) ≥ 1 ⇒ α( f x1, f x2, t) = α(x2, x3, t) ≥ 1.

By continuing this above process, for all t > 0, we have

α(xn, xn+1, t) ≥ 1 for all n ≥ 1.

Now, for all t > 0, we have(
1

M(x1, x2, t)
− 1

)
=

(
1

M( f x0, f x1, t)
− 1

)

≤ α(x0, x1, t)

(
1

M( f x0, f x1, t)
− 1

)
, since [α(x0, x1, t) ≥ 1]

≤ ψ

(
1

M(x0, x1, t)
− 1

)
[by (2.1)].

Again, for all t > 0, we obtain(
1

M(x2, x3, t)
− 1

)
=

(
1

M( f x1, f x2, t)
− 1

)

≤ α(x1, x2, t)

(
1

M( f x1, f x2, t)
− 1

)
, since [α(x1, x2, t) ≥ 1]

≤ ψ

(
1

M(x1, x2, t)
− 1

)
[by (2.1)]

≤ ψ2
(

1

M(x0, x1, t)
− 1

)
(since ψ in non-decreasing).

Repeating the above procedure, for all t > 0, we have(
1

M(xn, xn+1, t)
− 1

)
≤ ψn

(
1

M(x0, x1, t)
− 1

)
.
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Taking n → ∞ in the above inequality, for all t > 0, we obtain

lim
n→∞

(
1

M(xn, xn+1, t)
− 1

)
≤ lim

n→∞ψn
(

1

M(x0, x1, t)
− 1

)
→ 0

as n → ∞ (by a property of ψ).

That is,

lim
n→∞

(
1

M(xn, xn+1, t)
− 1

)
= 0.

Then, for all t > 0, we obtain

lim
n→∞M(xn, xn+1, t) = 1. (3.2)

Next we show that {xn} is a Cauchy sequence in X. We suppose, if possible, that {xn} is not
a Cauchy sequence in X. Then there exists some ε > 0 and some λ with 0 < λ < 1, for
which we can find two subsequences {xm(k)} and {xn(k)} of {xn} with

n(k) > m(k) > k (3.3)

such that

M(xm(k), xn(k), ε) ≤ (1 − λ), (3.4)

for all positive integer k.
We may choose the n(k) as the smallest integer exceeding m(k) for which (3.4) holds.

Then, for all positive integer k,

M(xm(k), xn(k)−1, ε) > (1 − λ) (3.5)

Then, for all k ≥ 1, 0 < s < ε
2 , we obtain,

(1 − λ) ≥ M(xm(k), xn(k), ε)

≥ M(xm(k), xm(k)−1, s) ∗ M(xm(k)−1, xn(k)−1, ε − 2s)

∗M(xn(k)−1, xn(k), s). (3.6)

Let,

h1(t) = lim
k→∞M(xm(k)−1, xn(k)−1, t), t > 0. (3.7)

Taking limit supremum on both sides of (3.6), using (3.2), and the properties of M and ∗, by
Lemma 2.8, we obtain

(1 − λ) ≥ 1 ∗ lim
k→∞M(xm(k)−1, xn(k)−1, ε − 2s) ∗ 1 = h1(ε − 2s). (3.8)

SinceM is boundedwith range in [0, 1], continuous and, by Lemma 2.3, monotone increasing
in the third variable t, it follows by an application of Lemma 2.9 that h1, as given in (3.7) is
continuous from the left.

Letting s → 0 in (3.8), we obtain

lim
k→∞M(xm(k)−1, xn(k)−1, ε) ≤ (1 − λ). (3.9)

Let,

h2(t) = lim
k→∞

M(xm(k)−1, xn(k)−1, t), t > 0. (3.10)
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Again, for all k ≥ 1, s > 0,

M(xm(k)−1, xn(k)−1, ε + s) ≥ M(xm(k)−1, xm(k), s) ∗ M(xm(k), xn(k)−1, ε)

≥ M(xm(k)−1, xm(k), s) ∗ (1 − λ), [by (3.5)]. (3.11)

Taking limit infimum as k → ∞ in (3.11), by virtue of (3.2), we obtain

h2(ε + s) = lim
k→∞

M(xm(k)−1, xn(k)−1, ε + s)

≥ lim
k→∞

M(xm(k)−1, xm(k), s) ∗ (1 − λ)

= 1 ∗ (1 − λ) = (1 − λ). (3.12)

SinceM is bounded with range in [0,1], continuous and, by Lemma 2.3, monotone increasing
in the third variable t, it follows by an application of Lemma 2.9 that h2, as given in (3.10)
is continuous from the right.

Taking s → 0 in the above inequality (3.12), we obtain

lim
k→∞

M(xm(k)−1, xn(k)−1, ε) ≥ (1 − λ). (3.13)

The inequalities (3.9) and (3.13) jointly imply that

lim
k→∞M(xm(k)−1, xn(k)−1, ε) = (1 − λ). (3.14)

Again by (3.4),

lim
k→∞M(xm(k), xn(k), ε) ≤ (1 − λ). (3.15)

Also for all k ≥ 1, s > 0, we obtain

M(xm(k), xn(k), ε + 2s) ≥ M(xm(k), xm(k)−1, s) ∗ M(xm(k)−1, xn(k)−1, ε)

∗M(xn(k)−1, xn(k), s)

Taking limit infimum as k → ∞ in the above inequality, using (3.2), (3.14) and the properties
of M and ∗, by Lemma 2.8, we obtain

lim
k→∞

M(xm(k), xn(k), ε + 2s) ≥ 1 ∗ lim
k→∞

M(xm(k)−1, xn(k)−1, ε) ∗ 1 = 1 − λ.

Since M is bounded with range in [0, 1], continuous and, by Lemma 2.3, monotone
increasing in the third variable t, it follows by an application of Lemma 2.9 that
limk→∞ M(xm(k), xn(k), t) is continuous function of t from the right.

Taking s → 0 in the above inequality, and using Lemma 2.9, we obtain

lim
k→∞

M(xm(k), xn(k), ε) ≥ (1 − λ), (3.16)
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Combining (3.15) and (3.16), we obtain

lim
k→∞M(xm(k), xn(k), ε) = (1 − λ) (3.17)(

1

M(xm(k), xn(k), ε)
− 1

)
=

(
1

M( f xm(k)−1, f xn(k)−1, ε)
− 1

)

≤ α(xm(k)−1, xn(k)−1, ε)

(
1

M( f xm(k)−1, f xn(k)−1, ε)
− 1

)
(by condition (ii) of Theorem 3.1)

≤ ψ

(
1

M( f xm(k)−1, f xn(k)−1, ε)
− 1

)
, by (2.1).

Taking k → ∞ in the above inequality, we have⎛
⎝ 1

lim
k→∞M(xm(k), xn(k), ε)

− 1

⎞
⎠ ≤ ψ

⎛
⎝ 1

lim
k→∞M( f xm(k)−1, f xn(k)−1, ε)

− 1

⎞
⎠ .

(since ψ is continuous)

Using (3.14) and (3.17), we have(
1

1 − λ
− 1

)
≤ ψ

(
1

1 − λ
− 1

)
<

(
1

1 − λ
− 1

)
,

which is a contradiction.
Thus it is established that {xn} is a Cauchy sequence. Since (X, M, ∗) is complete, there

exists x ∈ X such that

lim
n→∞xn = x . (3.18)

Next, we show that x is a fixed point of f . Now, for all t > 0(
1

M(xn+1, f x, t)
− 1

)
=

(
1

M( f xn, f x, t)
− 1

)

≤ α(xn, x, t)

(
1

M( f xn, f x, t)
− 1

)
[by condition (iii) of Theorem 3.1]

≤ ψ

(
1

M(xn, x, t)
− 1

)
[by (2.1)].

Taking n → ∞ in the above inequality, for all t > 0, we have⎛
⎝ 1

lim
n→∞M(xn+1, f x, t)

− 1

⎞
⎠ ≤ ψ

⎛
⎝ 1

lim
k→∞M(xn, x, t)

− 1

⎞
⎠

= ψ(1 − 1)

= ψ(0)

= 0 (by the properties of ψ),

which implies that limn→∞ M(xn+1, f x, t) = 1. Since M is continuous, in view of (3.18),
we have M(x, f x, t) = 1, which implies that f x = x, that is, f has fixed point.
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Example 3.2 Let X = [0,∞), for all t > 0, M(x, y, t) = e− |x−y|
t where x, y ∈ X and

a ∗ b = min{a, b}. Then (X, M, ∗) is a complete fuzzy metric space. Let the mapping
f : X → X be defined as follows:

f x =
{ x

4 , if x ∈ [0, 1],
4, otherwise,

and the mapping α : X × X × (0,∞) → (0,∞) by

α(x, y, t) =
{
1, if x, y ∈ [0, 1],
0, otherwise,

for all x, y ∈ X and ψ(t) = 3
4 t .

Now let x, y ∈ X be such thatα(x, y, t) ≥ 1 for all t > 0. It then follows that x, y ∈ [0, 1].
Then by using the definition of f and α, we have f x = x

4 ∈ [0, 1], f y = y
4 ∈ [0, 1] and

then α( f x, f y, t) = 1 for all t > 0, which implies that f is α- admissible.
With any x0 ∈ [0, 1] we see that condition (ii) of Theorem 3.1 is satisfied. Also it is

obvious that condition (iii) is also satisfied.
Now let at least one of x and y is not in [0, 1], then α( f x, f y, t) = 0 and holds trivially.

If x and y both are in [0, 1], then α( f x, f y, t) = 1 and the inequality (2.1) holds. Then, by
an application of Theorem 3.1, f has at least one fixed point. Here f has two fixed points 0
and 4.

Note It may be noted that the contraction of Gregori and Sapena (2.2) is not satisfied for
given 0 < k < 1. To see this we take x = 1 and y = 1 + 1

n . Then for all t > 0, we have

M(x, y, t) = e− 1
nt , that is,

1

M(x, y, t)
− 1 = e

1
nt − 1

and

M( f x, f y, t) = e−
1
4 −4
t , that is,

1

M( f x, f y, t) − 1
= e

3.75
t − 1.

In order that (2.2) is satisfied for fixed 0 < k < 1, we must have, for t > 0,

e
3.75
t − 1

e
1
nt − 1

≤ k.

But taking n sufficiently large, we see that the above inequality is violated. This shows that
the contraction in the Theorem 3.1 is more generalized than the contraction of Gregori and
Sapena [5]. Our theorem thus in an actual improvement over the result in [5].

Conclusion and open problem The inequality (2.1) can lead to a new metric inequality if
we consider the fuzzy metric space as induced by a metric in the usual way. In that case we
can have new fixed point results if we proceed similarly as in our theorems. The idea of the
contraction introduced here can be extended to the case of more than one mappings. Also
coupled contractions can be introduced following the same line.
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