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Abstract In this paper, we introduce the Bèzier variant of the generalized Baskakov
Kantorovich operators. We establish a direct approximation theorem with the aid of the
Ditzian–Totik modulus of smoothness and also study the rate of convergence for the func-
tions having a derivative of bounded variation for these operators.
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1 Introduction

In 1998, Mihesan [1] introduced the generalized Baskakov operators B∗
n,a defined as

B∗
n,a( f ; x) =

∞∑

k=0

Wa
n,k(x) f

(
k

n + 1

)
,

whereWa
n,k(x) = e

−ax
1+x pk (n,a)

k!
xk

(1+x)n+k , pk(n, a) = ∑k
i=0

(k
i

)
(n)i ak−i , and (n)0 = 1, (n)i =

n(n + 1) · · · (n + i − 1), for i ≥ 1. In Agrawal and Goyal [2], considered the Kantorovich
modification of these operators for the function f defined on Cγ [0,∞) := { f ∈ C[0,∞) :
| f (t)| ≤ M(1 + tγ ), t ≥ 0 for some γ > 0} as follows:
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Ka
n ( f ; x) = (n + 1)

∞∑

k=0

Wa
n,k(x)

∫ k+1
n+1

k
n+1

f (t)dt, a ≥ 0, (1.1)

and discussed some direct results in weighted approximation, simultaneous approximation
and statistical convergence for these operators. They also obtained the rate of convergence
for functions having a derivative equivalent with a function of bounded variation. As a special
case, for a = 0, these operators include the well known Baskakov–Kantorovich operators
(see e.g. [3]).

Bojanic and Cheng [4,5] estimated the rate of convergence with derivatives of bounded
variation for Bernstein and Hermite–Fejer polynomials by using different methods. Guo [6]
studied it for the Bernstein–Durrmeyer polynomials by using Berry Esseen theorem. Subse-
quently, due to the pivotal role of the Bèzier basis functions in computer aided design and
related fields, the researchers started working on the approximation behaviour of the Bèzier
variant of various sequences of linear positive operators. In Zeng and Chen [7], initiated the
study of the rate of convergence for the Bèzier variant of Bernstein Durrmeyer operators.
Zeng and Tao [8] also introduced the Bèzier type Baskakov–Durrmeyer operators and esti-
mated the rate of convergence. They termed these operators as integral type Lupas–Bèzier
operators. Abel and Gupta [9] introduced the Bèzier variant of the Baskakov operators and
then Gupta [10] estimated the convergence of Bèzier type Baskakov–Kantorovich operators
and studied the rate of convergence. Guo et al. [11] proved the direct, inverse and equivalence
approximation theorems with unified Ditzian–Totik modulus ωφλ( f, t)(0 ≤ λ ≤ 1). Several
other Bèzier variants of summation–integral type operators were studied in [12–15] etc.

So, it is worthwhile to study the Bèzier variant of other sequences of operators. Further-
more, the recent work on different Bèzier type operators inspired us to investigate further in
this direction.

The purpose of this paper is to introduce the Bèzier variant of the operators (1.1) and
investigate a direct approximation theorem with the aid of the Ditzian–Totik modulus of
smoothness and the rate of convergence for functions with derivatives of bounded variation.

2 Construction of operators

For θ ≥ 1, we now define the Bèzier variant of the operators (1.1) on [0,∞) as:

Ka
n,θ ( f ; x) = (n + 1)

∑∞
k=0

F (θ)
n,k,a(x)

∫ k+1
n+1

k
n+1

f (t)dt, (2.1)

where F (θ)
n,k,a(x) = [Jan,k(x)]θ − [Jan,k+1(x)]θ and Jan,k(x) = ∑∞

j=k W
a
n, j (x), when k ≤ n

and 0 otherwise.
Some important properties of Jan,k(x) are as follows:

• Jan,k(x) − Jan,k+1(x) = Wa
n,k(x), k = 0, 1, 2, 3...;

• Jan,0(x) > Jan,1(x) > Jan,2(x) > · · · > Jan,n(x) > 0, x ∈ [0,∞).

For every natural number k, Jan,k(x) increases strictly from 0 to 1 on [0,∞).

The operators Ka
n,θ ( f ; x) also admit the integral representation

Ka
n,θ ( f ; x) =

∫ ∞

0
Ma

n,θ (x, t) f (t)dt, (2.2)
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where Ma
n,θ (x, t) := (n + 1)

∑∞
k=0 F

(θ)
n,k,a(x)χn,k(t), where χn,k(t) is the characteristic

function of the interval

[
k

n+1 ,
k+1
n+1

]
with respect to [0,∞).

It is easily verified that for θ = 1, the operators (2.1) reduce to (1.1), i.e. Ka
n,1( f ; x) =

Ka
n ( f ; x).

3 Auxiliary results

Let CB[0,∞) denote the space of all bounded and continuous functions on [0,∞) endowed
with the norm

‖ f ‖ = sup
x∈[0,∞)

| f (t)|.

Lemma 1 [2] For the rth order (r ∈ N ∪ {0}) moment of the operators (1.1), defined as
T a
n,r (x) := Ka

n (tr ; x), we have

T a
n,r (x) = 1

r + 1

r∑

j=0

(
r + 1

j

)
1

(n + 1)r− j
υa
n, j (x),

where υa
n, j (x) is the j th order moment of the operators B∗

n,a .

Consequently, T a
n,0(x) = 1, T a

n,1(x) = 1
n+1

(
nx + ax

1+x + 1
2

)
,

T a
n,2(x) = 1

(n + 1)2

(
n2x2 + n

(
x2 + 2x + 2ax2

1 + x

)
+ a2x2

(1 + x)2
+ 2ax

1 + x
+ 1

3

)
, and for

each x ∈ (0,∞) and r ∈ N, T a
n,r (x) = xr + n−1(pr (x, a) + o(1)), where pr (x, a) is a

rational function of x depending on the parameters a and r.

Lemma 2 [2] For the rth order central moment of K a
n , defined as

uan,r (x) := Ka
n ((t − x)r ; x),

we have

(i) uan,0(x) = 1, uan,1(x) = 1
n+1

(
− x + ax

1+x + 1
2

)

and uan,2(x) = 1

(n + 1)2

{
nx(x + 1) − x(1 − x) + ax

1 + x

(
ax

1 + x
+ 2(1 − x)

)
+ 1

3

}
;

(ii) uan,r (x) is a rational function of x depending on the parameters a and r;

(iii) for each x ∈ (0,∞), uan,r (x) = O

(
1

n[ r+1
2 ]

)
, as n → ∞.

Remark 1 [2] From Lemma 2, for λ > 1, x ∈ (0,∞) and n sufficiently large, we have

Ka
n ((t − x)2; x) = uan,2(x) ≤ λφ2(x)

n + 1
, where φ(x) = √

x(1 + x).

Lemma 3 For f ∈ CB [0,∞), ‖ Ka
n ( f ) ‖≤‖ f ‖ .

Proof From (1.1) and Lemma 2, the proof of this lemma is immediate. Hence the details are
omitted. 
�
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Lemma 4 Let f ∈ CB [0,∞). Then, ‖ Ka
n,θ ( f ) ‖≤ θ ‖ f ‖ .

Proof Using the well known inequality |aβ − bβ | ≤ β|a − b| with 0 ≤ a, b ≤ 1, β ≥ 1 and
the definition of F (θ)

n,k,a(x), we have, for θ ≥ 1

0 < [Jan,k(x)]θ − [Jan,k+1(x)]θ ≤ θ [Jan,k(x) − Jan,k+1(x)] = θ Wa
n,k(x). (3.1)

Hence, from the definition of the operator Ka
n,θ ( f ; x) and Lemma 3, we get

‖ Ka
n,θ ( f ; x) ‖≤ θ ‖ Ka

n ( f ) ‖≤ θ ‖ f ‖ .


�

4 Direct approximation theorem

In this section, first we recall the definitions of the Ditizian–Totik modulus of smoothness
ωφτ ( f, t) and Peetre’s K—functional [16]. Let φ(x) = √

x(1 + x) and f ∈ C[0,∞). Here,
we use moduli ωφτ ( f, t) which unify the classical modulus ω( f, t), τ = 0 and the Ditzian–
Totik modulus ωφ( f, t).

For 0 ≤ τ ≤ 1, we define

ωφτ ( f, t) = sup
0≤h≤t

sup
x± hφτ (x)

2 ∈[0,∞)

∣∣∣∣ f
(
x + hφτ (x)

2

)
− f

(
x − hφτ (x)

2

)∣∣∣∣

and the K—functional

Kφτ ( f, t) = inf
g∈Wτ

{‖ f − g ‖ +t ‖ φτ g′ ‖},

where Wτ = {g : g ∈ ACloc; ‖ φτ g′ ‖< ∞} and ‖ . ‖ is the uniform norm on C[0,∞). It
is proved that [16], ωφτ ( f, t) ∼ Kφτ ( f, t), i.e. there exists a constant M > 0 such that

M−1ωφτ ( f, t) ≤ Kφτ ( f, t) ≤ Mωφτ ( f, t). (4.1)

Lemma 5 For f ∈ Wτ , φ(x) = √
x(1 + x), 0 ≤ τ ≤ 1 and t, x > 0, we have

∣∣∣∣
∫ t

x
f ′(u)du

∣∣∣∣ ≤ 2τ
(
x−τ/2(1 + t)−τ/2 + φ−τ (x)

) |t − x | ∥∥φτ f ′∥∥ .

Proof By applying Hölder’s inequality, we get
∣∣∣∣
∫ t

x
f ′(u)du

∣∣∣∣ ≤ ‖φτ f ′‖
∣∣∣∣
∫ t

x

du

φτ (u)

∣∣∣∣ ≤ ∥∥φτ f ′∥∥ |t − x |1−τ

∣∣∣∣
∫ t

x

du

φ(u)

∣∣∣∣
τ

. (4.2)

Now,
∣∣∣∣
∫ t

x

du

φ(u)

∣∣∣∣ ≤
∣∣∣∣
∫ t

x

du√
u

∣∣∣∣

(
1√
1 + x

+ 1√
1 + t

)

and
∣∣∣∣
∫ t

x

du√
u

∣∣∣∣ ≤ 2|t − x |√
x

.
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On using above estimates in (4.2) and then the inequality |a + b|r ≤ |a|r + |b|r , 0 ≤ r ≤ 1,
we obtain

∣∣∣∣
∫ t

x
f ′(u)du

∣∣∣∣ ≤ ∥∥φτ f ′∥∥ |t − x | 2τ

xτ/2

∣∣∣∣
1√
1 + x

+ 1√
1 + t

∣∣∣∣
τ

≤ ∥∥φτ f ′∥∥ |t − x | 2τ

xτ/2

(
(1 + t)−τ/2 + (1 + x)−τ/2) .


�
Lemma 6 For any s ≥ 0 and each x ∈ [0,∞), there holds the inequality

K a
n ((1 + t)−s; x) ≤ C(s)(1 + x)−s, (4.3)

where C(s) is a constant dependent on s.

Proof For x = 0, the result holds from (1.1). For x ∈ (0,∞), using (3.1) we have

Ka
n ((1 + t)−s; x) = (n + 1)

∞∑

k=0

Wa
n,k(x)

∫ k+1
n+1

k
n+1

1

(1 + t)s
dt.

We first observe that

(n + 1)
∫ k+1

n+1

k
n+1

1

(1 + t)s
dt ≤

(
1 + k

n + 1

)−s

.

Thus, we get

Ka
n ((1 + t)−s; x) ≤ 1

(1 + x)s

∞∑

k=0

e
−ax
1+x pk(n, a)xk

k!(1 + x)n+k−s

(
1 + k

n + 1

)−s

. (4.4)

On using the ratio test, we note that for each x > 0, the series on the right hand side (4.4) is
convergent. This proves the desired result. 
�

Let LB [0,∞) denote the space of all bounded and Lebesgue integrable functions on
[0,∞).

Theorem 1 For f ∈ LB[0,∞), we have

∣∣Ka
n,θ ( f ; x) − f (x)

∣∣ ≤ Cωφτ

(
f,

φ1−τ (x)√
n + 1

)
. (4.5)

Proof By the definition of Kφτ ( f, t), for a fixed n, x and τ, we can choose g = gn,x,τ such
that

|| f − g|| + φ1−τ (x)√
n + 1

||φτ g′|| ≤ 2Kφτ

(
f,

φ1−τ (x)√
n + 1

)
. (4.6)

Applying Lemma 3, we may write
∣∣Ka

n,θ ( f ; x) − f (x)
∣∣ ≤ 2|| f − g|| + |Ka

n,θ (g; x) − g(x)|. (4.7)

Using the representation g(t) = g(x) + ∫ t
x g

′(u)du and Lemma 5, we obtain

123
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∣∣Ka
n,θ (g; x) − g(x)

∣∣ =
∣∣∣∣K

a
n,θ

(∫ t

x
g′(u)du; x

)∣∣∣∣

≤ 2τ ||φτ g′||
{
φ−τ (x)Ka

n,θ (|t − x |; x) + x−τ/2Ka
n,θ

( |t − x |
(1 + t)τ/2 ; x

)}
.

(4.8)

By using Cauchy-Schwarz inequality, (3.1) and Remark 1, we have

Ka
n,θ (|t − x |; x) ≤ (

Ka
n,θ ((t − x)2; x))1/2 ≤

√
θλφ(x)√
n + 1

. (4.9)

Similarly, from Lemma 6, we get

Ka
n,θ

( |t − x |
(1 + t)τ/2 ; x

)
≤ θKa

n

( |t − x |
(1 + t)τ/2 ; x

)

≤ θ
(
Ka
n ((t − x)2; x))1/2 (

Ka
n ((1 + t)−τ ; x))1/2

≤ C1θ

√
λφ(x)√
n + 1

(1 + x)−τ/2. (4.10)

By combining (4.8)–(4.10), we get

∣∣Ka
n,θ (g; x) − g(x)

∣∣ ≤ C2||φτ g′||φ
1−τ (x)√
n + 1

. (4.11)

Using (4.1), (4.6)–(4.7) and (4.11), we obtain the required relation (4.5). 
�

5 Rate of convergence

Let f ∈ DBVγ (0,∞), γ ≥ 0, be the class of all functions defined on (0,∞), having a
derivative of bounded variation on every finite subinterval of (0,∞) and | f (t)| ≤ Mtγ ,

∀ t > 0.
We notice that the functions f ∈ DBVγ (0,∞) possess a representation

f (x) =
∫ x

0
g(t)dt + f (0),

where g(t) is a function of bounded variation on each finite subinterval of (0,∞).

Lemma 7 Let x ∈ (0,∞), then for θ ≥ 1, λ > 2 and sufficiently large n, we have

(i) ξan,θ (x, y) = ∫ y
0 Ma

n,θ (x, t)dt ≤ θλ

n + 1

φ2(x)

(x − y)2
, 0 ≤ y < x,

(ii) 1 − ξan,θ (x, z) = ∫ ∞
z Ma

n,θ (x, t)dt ≤ θλ

n + 1

φ2(x)

(z − x)2
, x < z < ∞.

Proof (i) From (3.1) and Remark 1, we get

ξan,θ (x, y) =
y∫

0

Ma
n,θ (x, t)dt ≤

y∫

0

(
x − t

x − y

)2

Ma
n,θ (x, t)dt

≤ Ka
n,θ ((t − x)2; x) (x − y)−2 ≤ θKa

n ((t − x)2; x)(x − y)−2

≤ θ
λ

n + 1

φ2(x)

(x − y)2
.
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The proof of (ii) is similar hence it is omitted.

Theorem 2 Let f ∈ DBVγ (0,∞), θ ≥ 1 and let
∨d

c ( f
′
x ) be the total variation of f ′

x on
[c, d] ⊂ (0,∞). Then, for every x ∈ (0,∞) and sufficiently large n, we have

|Ka
n,θ ( f ; x) − f (x)| ≤ θ1/2

θ + 1

√
λx(1 + x)

n + 1
| f ′(x+) + θ f ′(x−)|

+ θ3/2

θ + 1

√
λx(1 + x)

n + 1
| f ′(x+) − f ′(x−)|

+ θ
λ(1 + x)

n + 1

[√n]∑

k=1

x∨

x−(x/k)

( f ′
x ) + x√

n

x∨

x−(x/
√
n)

( f ′
x )

+ θ
λ(1 + x)

n + 1

[√n]∑

k=0

x+(x/k)∨

x

( f ′
x ) + x√

n

x+(x/
√
n)∨

x

( f ′
x ),

where λ > 2, and the auxiliary function f ′
x is defined by

f ′
x (t) =

⎧
⎨

⎩

f ′(t) − f ′(x−), 0 ≤ t < x
0, t = x

f ′(t) − f ′(x+), x < t < ∞
.

Proof From the definition of the function f ′
x (t), for any f ∈ DBVγ (0,∞), we may write

f ′(t) = 1

θ + 1

(
f ′(x+) + θ f ′(x−)

)
+ f ′

x (t)

+ 1

2

(
f ′(x+) − f ′(x−)

)(
sgn(t − x) + θ − 1

θ + 1

)

+ δx (t)

(
f ′(x) − 1

2

(
f ′(x+) + f ′(x−)

))
, (5.1)

where

δx (t) =
{
1 x = t
0 x �= t

.

From (2.2) and the fact that
∫ ∞
0 Ma

n,θ (x, t)dt = Ka
n,θ (e0; x) = 1, we get

Ka
n,θ ( f ; x) − f (x) =

∫ ∞

0

( ∫ t

x
f ′(u)du

)
Ma

n,θ (x, t)dt. (5.2)

It is clear that

∫ ∞

0
Ma

n,θ (x, t)

t∫

x

[
f ′(x) − 1

2

(
f ′(x+) + f ′(x−)

)]
δx (u)dudt = 0.

Thus, from (5.1), (5.2) and the Schwarz inequality for sufficiently large n, we have∣∣∣∣
∫ ∞

0

( ∫ t

x

1

θ + 1

(
f ′(x+) + θ f ′(x−)

)
du

)
Ma

n,θ (x, t)dt

∣∣∣∣

≤
√

θ

θ + 1

∣∣∣∣ f
′(x+) + θ f ′(x−)

∣∣∣∣

√
λ

n + 1
φ(x) (5.3)
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and by applying Cauchy–Schwarz inequality, we obtain∣∣∣∣
∫ ∞

0

( ∫ t

x

1

2

(
f ′(x+) − f ′(x−)

)(
sgn(u − x) + θ − 1

θ + 1

)
du

)
Ma

n,θ (x, t)dt

∣∣∣∣

≤ θ

θ + 1

∣∣∣∣ f
′(x+) − f ′(x−)

∣∣∣∣K
a
n,θ

(
|t − x | ; x

)

≤ θ3/2

θ + 1

∣∣∣∣ f
′(x+) − f ′(x−)

∣∣∣∣

√
λ

n + 1
φ(x). (5.4)

By using Lemma 2, Remark 1 and considering (5.2)–(5.4) we obtain the following estimate
∣∣Ka

n,θ ( f ; x) − f (x)
∣∣ ≤ ∣∣Ua

n,θ ( f
′
x , x) + V a

n,θ ( f
′
x , x)

∣∣

+
√

θ

θ + 1

∣∣∣∣ f
′(x+) + θ f ′(x−)

∣∣∣∣

√
λ

n + 1
φ(x)

+ θ3/2

θ + 1

∣∣ f ′(x+) − f ′(x−)
∣∣
√

λ

n + 1
φ(x), (5.5)

where

Ua
n,θ ( f

′
x , x) =

∫ x

0

( ∫ t

x
f ′
x (u)du

)
Ma

n,θ (x, t)dt,

and

V a
n,θ ( f

′
x , x) =

∫ ∞

x

( ∫ t

x
f ′
x (u)du

)
Ma

n,θ (x, t)dt.

Now, let us estimate the termsUa
n,θ ( f

′
x , x) and V

a
n,θ ( f

′
x , x). Since

∫ d
c dtξan,θ (x, t) ≤ 1, for

all [c, d] ⊆ (0,∞), using integration by parts and applying Lemma 7 with y = x − (x/
√
n),

we have
∣∣Ua

n,θ ( f
′
x , x)

∣∣ =
∣∣∣∣
∫ x

0

∫ t

x

(
f ′
x (u)du

)
dtξ

a
n,θ (x, t)

∣∣∣∣

=
∣∣∣∣
∫ x

0
ξan,θ (x, t) f

′
x (t)dt

∣∣∣∣

≤ θ
λφ2(x)

n + 1

∫ y

0

x∨

t

( f ′
x )(x − t)−2dt +

∫ x

y

x∨

t

( f ′
x )dt

≤ θ
λφ2(x)

n + 1

∫ y

0

x∨

t

( f ′
x )(x − t)−2dt + x√

n

x∨

x−(x/
√
n)

( f ′
x ).

By the substitution of u = x/(x − t), we obtain

θ
λφ2(x)

n + 1

∫ x−(x/
√
n)

0
(x − t)−2

x∨

t

( f ′
x )dt = θ

λ(1 + x)

n + 1

∫ √
n

1

x∨

x−(x/u)

( f ′
x )du

≤ θ
λ(1 + x)

n + 1

[√n ]∑

k=1

∫ k+1

k

x∨

x−(x/u)

( f ′
x )du

≤ θ
λ(1 + x)

n + 1

[√n ]∑

k=1

x∨

x−(x/k)

( f ′
x ).
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Hence we reach the following result

∣∣Ua
n,θ ( f

′
x , x)

∣∣ ≤ θ
λ(1 + x)

n + 1

[√n ]∑

k=1

x∨

x−(x/k)

(
f ′
x

)
+ x√

n

x∨

x−(x/
√
n)

( f ′
x ). (5.6)

Again, using integration by parts and applying Lemma 7 with z = x + (x/
√
n), we have

|V a
n,θ ( f

′
x , x)| =

∣∣∣∣
∫ ∞

x

(∫ t

x
f ′
x (u)du

)
dt (1 − ξan,θ (x, t))

∣∣∣∣

=
∣∣∣∣
∫ z

x
f ′
x (t)(1 − ξan,θ (x, t))dt +

∫ ∞

z
f ′
x (t)(1 − ξan,θ (x, t))dt

∣∣∣∣

< θ
λφ2(x)

n + 1

∫ ∞

z

t∨

x

( f ′
x )(t − x)−2dt +

∫ z

x

t∨

x

( f ′
x )dt

≤ θ
λφ2(x)

n + 1

∫ ∞

x+(x/
√
n)

t∨

x

( f ′
x )(t − x)−2dt + x√

n

x+(x/
√
n)∨

x

( f ′
x ). (5.7)

By the substitution of u = x/(t − x) as in the estimate of Ua
n,θ ( f

′
x , x), we get

θ
λφ2(x)

n + 1

∫ ∞

x+(x/
√
n)

t∨

x

( f ′
x )(t − x)−2dt = θ

λφ2(x)

x(n + 1)

∫ √
n

0

x+(x/u)∨

x

( f ′
x )du

≤ θ
λ(1 + x)

n + 1

[√n ]∑

k=1

x+(x/k)∨

x

( f ′
x ). (5.8)

Now, combining (5.7)–(5.8), we obtain

|V a
n,θ ( f

′
x , x)| ≤ θ

λ(1 + x)

n + 1

[√n ]∑

k=1

x+(x/k)∨

x

( f ′
x ) + x√

n

x+(x/
√
n)∨

x

( f ′
x ). (5.9)

By collecting the estimates (5.5), (5.6) and (5.9), we get the required result. This completes
the proof of theorem. 
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