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Abstract The short pulse equation provides a model for the propagation of ultra-short light
pulses in silica optical fibers. It is a nonlinear evolution equation. In this paper the wellposed-
ness of bounded solutions for the inhomogeneous initial boundary value problem associated
to this equation is studied.
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1 Introduction

The short pulse equation has the form

2∂x1∂φ A0 + χ(3)∂2φφ A
3
0 + 1

c22
A0 = 0, (1.1)

where A0 is the light wave amplitude, φ = t−x
ε
, x1 = εx , ε is a small scale parameter,

and χ(3) is the third order magnetic susceptibility (1.1) was introduced recently by Schäfer
and Wayne [22] as a model equation describing the propagation of ultra-short light pulses in
silica optical fibers. It provides also an approximation of nonlinear wave packets in dispersive
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media in the limit of few cycles on the ultra-short pulse scale. Numerical simulations [5] show
that the short pulse equation approximation toMaxwell’s equations in the casewhen the pulse
spectrum is not narrowly localized around the carrier frequency is better than the one obtained
from the nonlinear Schrödinger equation, whichmodels the evolution of slowly varying wave
trains. Such ultra-short plays a key role in the development of future technologies of ultra-fast
optical transmission of informations.

In [4] the author studied a new hierarchy of equations containing the short pulse equation
(1.1) and the elastic beam equation, which describes nonlinear transverse oscillations of
elastic beams under tension. He showed that the hierarchy of equations is integrable. He
obtained the two compatible Hamiltonian structures and constructed an infinite series of
both local and nonlocal conserved charges. Moreover, he gave the Lax description for both
systems. The integrability and the existence of solitary wave solutions have been studied in
[20,21].

Well-posedness and wave breaking for the short pulse equation have been studied in
[17,22], respectively.

Boyd [3] (Table 4.1.2, p 212) shows that, for some polymers, χ(3) is a negative constant.
Therefore, (1.1) reads

2∂x1∂φ A0 − k2∂2φφ A
3
0 + 1

c22
A0 = 0, χ(3) = −k2. (1.2)

Following [1,12,13,15], we consider the admensional form of (1.2)

∂x
(
∂t u + 3u2∂xu

) = u. (1.3)

Indeed, multiplying (1.2) by −c22, we have

− 2c22∂x1∂φ A0 + c22k
2∂2φφ A

3
0 = A0 (1.4)

Consider the following Robelo transformation (see [1,13,15]):

x1 = D1t, φ = D2x, (1.5)

where D1 and D2 are two constants that will be specified later. Therefore,

∂x1 = D1∂t , ∂φ = D2∂x . (1.6)

Taking A0(x1, φ) = u(t, x), it follows from (1.1) and (1.6) that

− 2c22D1D2∂x (∂t u) + 3c22k
2D2

2∂x
(
u2∂xu

) = u. (1.7)

We choose D1, D2 so that

2c22D1D2 = −1, c22k
2D2

2 = 1,

that is

D1 = − k

2c2
, D2 = 1

c2k
. (1.8)

Therefore, (1.3) follows from (1.7) and (1.8).
It is interesting to remind that equation (1.3) was proposed earlier in [19] in the context of

plasma physic.Moreover, similar equations describe the dynamics of radiating gases [16,23].
We are interested in the initial-boundary value problem for this equation, so we augment

(1.3) with the boundary condition

u(t, 0) = g(t), t > 0, (1.9)
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The short pulse equation... 33

and the initial datum

u(0, x) = u0(x), x > 0, (1.10)

on which we assume that

u0 ∈ L∞(0,∞) ∩ L1(0,∞),

∫ ∞

0
u0(x)dx = 0. (1.11)

On the function

P0(x) =
∫ x

0
u0(y)dy, (1.12)

we assume that

‖P0‖2L2(0,∞)
=

∫ ∞

0

(∫ x

0
u0(y)dy

)2

dx < ∞. (1.13)

On the boundary datum g, we assume that

g(t) ∈ L∞(0,∞). (1.14)

Integrating (1.3) in (0, x) we gain the integro-differential formulation of (1.3) (see [20])
⎧
⎪⎨

⎪⎩

∂t u + 3u2∂xu = ∫ x
0 u(t, y)dy, t > 0, x > 0,

u(t, 0) = g(t), t > 0,

u(0, x) = u0(x), x > 0,

(1.15)

that is equivalent to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + 3u2∂xu = P, t > 0, x > 0,

∂x P = u, t > 0, x > 0,

u(t, 0) = g(t), t > 0,

P(t, 0) = 0, t > 0,

u(0, x) = u0(x), x > 0.

(1.16)

One of the main issues in the analysis of (1.16) is that the equation is not preserving
the L1 norm, as a consequence the nonlocal source term P and the solution u are a priori
only locally bounded. Indeed, from (1.15) and (1.16) is clear that we cannot have any L∞
bound without an L1 bound. Since we are interested in the bounded solutions of (1.3), some
assumptions on the decay at infinity of the initial condition u0 are needed. The unique useful
conserved quantities are

t �−→
∫

u(t, x)dx = 0, t �−→
∫

u2(t, x)dx .

In the sense that if u(t, ·) has zero mean at time t = 0, then it will have zero mean at any
time t > 0. In addition, the L2 norm of u(t, ·) is constant with respect to t. Therefore, we
require that initial condition u0 belongs to L2 ∩ L∞ and has zero mean.

Due to the regularizing effect of the P equation in (1.16) we have that

u ∈ L∞((0, T ) × (0,∞)) �⇒ P ∈ L∞(0, T ;W 1,∞(0,∞)), T > 0. (1.17)
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Therefore, if a map u ∈ L∞((0, T ) × (0,∞)), T > 0, satisfies, for every convex map
η ∈ C2(R),

∂tη(u) + ∂xq(u) − η′(u)P ≤ 0, q(u) =
∫ u

3ξ2η′(ξ) dξ, (1.18)

in the sense of distributions, then [11, Theorem 1.1] provides the existence of strong trace
uτ
0 on the boundary x = 0.
We give the following definition of solution (see [2]):

Definition 1.1 We say that u ∈ L∞((0, T ) × (0,∞)), T > 0, is an entropy solution of the
initial-boundary value problem (1.3), (1.9), and (1.10) if for every nonnegative test function
φ ∈ C2(R2) with compact support, and c ∈ R

∫ ∞

0

∫ ∞

0

(
|u − c|∂tφ + sign (u − c)

(
u3 − c3

)
∂xφ

)
dtdx

+
∫ ∞

0

∫ ∞

0
sign (u − c) Pφdtdx

+
∫ ∞

0
sign (g(t) − c)

(
(uτ

0(t))
3 − c3

)
φ(t, 0)dt

+
∫ ∞

0
|u0(x) − c|φ(0, x)dx ≥ 0, (1.19)

where uτ
0(t) is the trace of u on the boundary x = 0.

The main result of this paper is the following theorem.

Theorem 1.1 Assume (1.11), (1.13), (1.14). The initial-boundary value problem (1.3), (1.9)
and (1.10) possesses an unique entropy solution u in the sense of Definition 1.1. Moreover,
if u and v are two entropy solutions of (1.3), (1.9), (1.10) in the sense of Definition 1.1 the
following inequality holds

‖u(t, ·) − v(t, ·)‖L1(0,R) ≤ eC(T )t ‖u(0, ·) − v(0, ·)‖L1(0,R+C(T )t) , (1.20)

for almost every 0 < t < T , R > 0, and some suitable constant C(T ) > 0.

The paper is organized as follows. In Sect. 2 we prove several a priori estimates on a vanishing
viscosity approximation of (1.16). Those play a key role in the proof of our main result, that
is given in Sect. 3

2 Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation
of (1.16).

Fix a small number ε > 0, and let uε = uε(t, x) be the unique classical solution of the
following mixed problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t uε + 3u2ε∂xuε = Pε + ε∂2xxuε, t > 0, x > 0,

∂x Pε = uε, t > 0, x > 0,

uε(t, 0) = gε(t), t > 0,

Pε(t, 0) = 0, t > 0,

uε(0, x) = u0,ε(x), x > 0,

(2.1)
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The short pulse equation... 35

where uε,0 and gε are C∞(0,∞) approximations of u0 and g such that

u0,ε → u0, a.e. and in L p(0,∞), 1 ≤ p < ∞, ,

P0,ε → P0, in L2(0,∞),

gε → g, a.e. and in L p
loc(0,∞), 1 ≤ p < ∞,

∥
∥uε,0

∥
∥
L∞(0,∞)

≤ ‖u0‖L∞(0,∞) ,
∥
∥uε,0

∥
∥
L2(0,∞)

≤ ‖u0‖L2(0,∞) ,

∥
∥uε,0

∥
∥
L4(0,∞)

≤ ‖u0‖L4(0,∞) ,

∫ ∞

0
uε,0(x)dx = 0,

∥
∥Pε,0

∥
∥
L2(0,∞)

≤ ‖P0‖L2(0,∞) , ‖gε‖L∞(0,∞) ≤ C0, (2.2)

and C0 is a constant independent on ε.
Clearly, (2.1) is equivalent to the integro-differential problem

⎧
⎪⎨

⎪⎩

∂t uε + 3u2ε∂xuε = ∫ x
0 uε(t, y)dy + ε∂2xxuε, t > 0, x > 0,

uε(t, 0) = gε(t), t > 0,

uε(0, x) = uε,0(x), x > 0.

(2.3)

Let us prove some a priori estimates on uε and Pε, denoting with C0 the constants which
depend only on the initial data, and C(T ) the constants which depend also on T .

Arguing as [9, Lemma 1], or [12, Lemma 2.2.1], we have the following result.

Lemma 2.1 The following statements are equivalent
∫ ∞

0
uε(t, x)dx = 0, t ≥ 0, (2.4)

d

dt

∫ ∞

0
u2εdx + 2ε

∫ ∞

0
(∂xuε)

2dx = 3

2
g4ε (t) + 2εgε(t)∂xuε(t, 0), t > 0. (2.5)

Proof Let t > 0. We begin by proving that (2.4) implies (2.5). Multiplying (2.3) by uε, an
integration on (0,∞) gives

d

dt

∫ ∞

0
u2εdx = 2

∫ ∞

0
uε∂t uεdx

= 2ε
∫ ∞

0
uε∂

2
xxuεdx − 6

∫ ∞

0
u3ε∂xuεdx + 2

∫ ∞

0
uε

(∫ x

0
uεdy

)
dx

= 2ε∂xuε(t, 0)gε(t) − 2ε
∫ ∞

0
(∂xuε)

2dx + 3

2
g4ε (t)

+2
∫ ∞

0
uε

(∫ x

0
uεdy

)
dx .

By (2.1),

2
∫ ∞

0
uε

(∫ x

0
uεdy

)
dx = 2

∫ ∞

0
Pε∂x Pεdx = P2

ε (t,∞).

Then,

d

dt

∫ ∞

0
u2εdx + 2ε

∫ ∞

0
(∂xuε)

2dx = P2
ε (t,∞) + 2ε∂xuε(t, 0)gε(t) + 3

2
g4ε (t). (2.6)
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Thanks to (2.4),

lim
x→∞ P2

ε (t, x) =
(∫ ∞

0
uε(t, x)dx

)2

= 0. (2.7)

(2.6) and (2.7) give (2.5).
Let us show that (2.5) implies (2.4). We assume by contradiction that (2.4) does not hold,

namely:
∫ ∞

0
uε(t, x)dx = 0.

By (1.16),

P2
ε (t,∞) =

(∫ ∞

0
uε(t, x)dx

)2

= 0.

Therefore, (2.6) gives

d

dt

∫ ∞

0
u2εdx + 2ε

∫ ∞

0
(∂xuε)

2dx = 2ε∂xuε(t, 0)gε(t) + 3

2
g4ε (t),

which is in contradiction with (2.5).

Lemma 2.2 For each t ≥ 0, (2.4) holds true. In particular, we have that

‖uε(t, ·)‖2L2(0,∞)
+ 2ε

∫ t

0
‖∂xuε(s, ·)‖2L2(0,∞)

ds ≤ C0(t + 1) + 2ε
∫ t

0
gε(t)∂xuε(t, 0)ds.

(2.8)

Proof We begin by observing that ∂t uε(t, 0) = g′
ε(t), being uε(t, 0) = gε(t). It follows from

(2.3) that

ε∂2xxuε(t, 0) = ∂t uε(t, 0) + 3u2ε(t, 0)∂xuε(t, 0) −
∫ 0

0
uε(t, x)dx

= g′
ε(t) + 3g2ε (t)∂xuε(t, 0). (2.9)

Differentiating (2.3) with respect to x , we have

∂x (∂t uε + 3u2ε∂xuε − ε∂2xxuε) = uε.

From (2.9), and being uε a smooth solution of (2.3), an integration over (0,∞) gives (2.4).
Lemma 2.1 says that also (2.5) holds true. Therefore, integrating (2.5) on (0, t), for (2.2), we
have

‖uε(t, ·)‖2L2(0,∞)
+ 2ε

∫ t

0
‖∂xuε(s, ·)‖2L2(0,∞)

ds

≤‖u0‖2L2(0,∞)
+ 3

2

∫ t

0
g4ε (s)ds + 2ε

∫ t

0
gε(s)∂xuε(s, 0)ds

≤‖u0‖2L2(0,∞)
+ 3

2
‖gε‖4L∞(0,∞) t + 2ε

∫ t

0
gε(s)∂xuε(s, 0)ds

≤‖u0‖2L2(0,∞)
+ C0t + 2ε

∫ t

0
gε(s)∂xuε(s, 0)ds,

which gives (2.8).
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Lemma 2.3 We have that

lim
x→∞ Fε(t, x) =

∫ ∞

0
Pε(t, x)dx = ε∂xuε(t, 0) − g3ε (t), (2.10)

where

Fε(t, x) =
∫ x

0
Pε(t, y)dy. (2.11)

Proof We begin by observing that, integrating on (0, x) the second equation of (2.1), we get

Pε(t, x) =
∫ x

0
uε(t, y)dy. (2.12)

Differentiating (2.12) with respect to t , we have

∂t Pε(t, x) =
∫ x

0
∂t uε(t, y)dy = d

dt

∫ x

0
uε(t, y)dy. (2.13)

It follows from (2.4) and (2.13) that

lim
x→∞ ∂t Pε(t, x) = d

dt

∫ ∞

0
uε(t, x)dx = 0. (2.14)

Integrating on (0, x) the first equation of (2.1), thanks to (2.13), we have

∂t Pε(t, x) + u3ε(t, x) − g3ε (t) − ε∂xuε(t, x) + ε∂xuε(t, 0) =
∫ x

0
Pε(t, y)dy. (2.15)

It follows from the regularity of uε that

lim
x→∞

(
u3ε(t, x)) − ε∂xuε(t, x)

) = 0. (2.16)

(2.14) and (2.16) give (2.10).

Arguing as in [8, Lemma2.3], we prove the following lemma.

Lemma 2.4 Let T > 0. There exists a constant C(T ) > 0, independent on ε, such that

‖uε(t, ·)‖4L4(0,∞)
+ 2 ‖Pε(t, ·)‖2L2(0,∞)

+ 12ε
∫ t

0
‖uε(s, ·)∂xuε(s, ·)‖2L2(0,∞)

ds

+ 4ε
∫ t

0
‖uε(s, ·)‖2L2(0,∞)

ds + ε2
∫ t

0
(∂xuε(s, 0))

2 ds ≤ C(T ), (2.17)

for every 0 ≤ t ≤ T .

Proof Let 0 ≤ t ≤ T . We begin by observing that (2.11) and (2.15) imply

∂t Pε(t, x) = Fε(t, x) − u3ε(t, x) + g3ε (t) + εuε(t, x) − ε∂xuε(t, 0). (2.18)

Multiplying (2.18) by Pε, an integration on (0,∞) gives

d

dt

∫ ∞

0
P2

ε dx = 2
∫ ∞

0
Pε∂t Pεdx

= 2
∫ ∞

0
PεFεdx − 2

∫ ∞

0
u3εPεdx + 2g3ε (t)

∫ ∞

0
Pεdx

+ 2ε
∫ ∞

0
∂xuεPεdx − 2ε∂xuε(t, 0)

∫ ∞

0
Pεdx . (2.19)
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By (2.1),

2
∫ ∞

0
∂xuεPεdx = −2ε

∫ ∞

0
uε∂x Pεdx = −2ε ‖uε(t, ·)‖2L2(0,∞)

, (2.20)

while, in light of (2.11) and (2.10),

2
∫ ∞

0
PεFεdx = 2

∫ ∞

0
Fε∂x Fεdx

= F2
ε (t,∞) = (

ε∂xuε(t, 0) − g3ε (t)
)2

= ε2 (∂xuε(t, 0))
2 − 2ε∂xuε(t, 0)g

3
ε (t) + g6ε (t). (2.21)

Using again (2.10),

−2ε∂xuε(t, 0)
∫ ∞

0
Pεdx = −2ε2 (∂xuε(t, 0))

2 + 2ε∂xuε(t, 0)g
3
ε (t),

2g3ε (t)
∫ ∞

0
Pεdx = 2ε∂xuε(t, 0)g

3
ε (t) − 2g6ε (t). (2.22)

(2.19), (2.20), (2.21) and (2.22) give

d

dt
‖Pε(t, ·)‖2L2(0,∞)

= − 2ε ‖uε(t, ·)‖2L2(0,∞)
− 2

∫ ∞

0
u3εPεdx

− ε2 (∂xuε(t, 0))
2 − g6ε (t) + 2ε∂xuε(t, 0)g

3
ε (t),

that is,

d

dt
‖Pε(t, ·)‖2L2(0,∞)

+ 2ε ‖uε(t, ·)‖2L2(0,∞)
+ ε2 (∂xuε(t, 0))

2

= − 2
∫ ∞

0
u3εPεdx − g6ε (t) + 2ε∂xuε(t, 0)g

3
ε (t). (2.23)

Multiplying (2.1) by 2u3ε , an integration on (0,∞) gives

d

dt

(
1

2

∫ ∞

0
u4εdx

)
= 2

∫ ∞

0
u3ε∂t uεdx

= −6
∫ ∞

0
u5ε∂xuεdx + 2

∫ ∞

0
u3εPεdx + 2ε

∫ ∞

0
u3ε∂

2
xxuεdx

= g6ε (t) + 2
∫ ∞

0
u3εPεdx + 2ε∂xuε(t, 0)g

3
ε (t) − 6ε

∫ ∞

0
u2ε(∂xuε)

2dx,

that is

d

dt

(
1

2
‖uε(t, ·)‖4L4(0,∞)

)
+ 6ε ‖uε(t, ·)∂xuε(t, ·)‖2L2(0,∞)

= g6ε (t) + 2
∫ ∞

0
u3εPεdx + 2ε∂xuε(t, 0)g

3
ε (t). (2.24)

Adding (2.23), (2.24), we get

d

dt

(
1

2
‖uε(t, ·)‖4L4(0,∞)

+ ‖Pε(t, ·)‖2L2(0,∞)

)

+ 6ε ‖uε(t, ·)∂xuε(t, ·)‖2L2(0,∞)
+ 2ε ‖uε(t, ·)‖2L2(0,∞)

+ ε2 (∂xuε(t, 0))
2 = 4ε∂xuε(t, 0)g

3
ε (t). (2.25)
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Due to the Young inequality,

4ε∂xuε(t, 0)g
3
ε (t) ≤ |ε∂xuε(t, 0)|

∣
∣4g3ε (t)

∣
∣ ≤ ε2

2
(∂xuε(t, 0))

2 + 8g6ε (t). (2.26)

It follows from (2.25), (2.26) that

d

dt

(
1

2
‖uε(t, ·)‖4L4(0,∞)

+ ‖Pε(t, ·)‖2L2(0,∞)

)

+ 6ε ‖uε(t, ·)∂xuε(t, ·)‖2L2(0,∞)
+ 2ε ‖uε(t, ·)‖2L2(0,∞)

+ ε2

2
(∂xuε(t, 0))

2 ≤ 8g6ε (t). (2.27)

Integrating (2.27) on (0,t), by (2.2), we have

1

2
‖uε(t, ·)‖4L4(0,∞)

+ ‖Pε(t, ·)‖2L2(0,∞)
+ 6ε

∫ t

0
‖uε(s, ·)∂xuε(s, ·)‖2L2(0,∞)

ds

+ 2ε
∫ t

0
‖uε(s, ·)‖2L2(0,∞)

ds + ε2

2

∫ t

0
(∂xuε(s, 0))

2 ds

≤ ‖u0‖4L4(0,∞)
+ ‖P0‖2L2(0,∞)

+ 8
∫ t

0
g6ε (s)ds

≤ C0 + 8 ‖gε‖6L∞(0,∞) t ≤ C0 (1 + 8t) ,

which gives (2.17).

Lemma 2.5 Let T > 0. There exists a constant C(T ) > 0, independent on ε, such that

‖uε(t, ·)‖2L2(0,∞)
+ 2ε

∫ t

0
‖∂xuε(s, ·)‖2L2(0,∞)

ds ≤ C(T ), (2.28)

for every 0 ≤ t ≤ T . In particular, we have

‖Pε‖L∞((0,T )×(0,∞)) ≤ C(T ). (2.29)

Proof We begin by observing that, using the Young inequality,

2εgε(t)∂xuε(t, 0) ≤ 2 |gε(t)| |ε∂xuε(t, 0)| ≤ g2ε (t) + ε2 (∂xuε(t, 0))
2 .

Therefore, in light of (2.2) and (2.17),

2ε
∫ t

0
gε(s)∂xuε(s, 0)ds ≤ 2

∫ t

0
|gε(t)| |ε∂xuε(t, 0)| dx

≤
∫ t

0
g2ε (s)ds + ε2

∫ t

0
(∂xuε(s, 0))

2 ds

≤ ‖gε‖2L∞(0,∞) t + ε2
∫ t

0
(∂xuε(s, 0))

2 ds

≤ C0t + ε2
∫ t

0
(∂xuε(s, 0))

2 ds ≤ C(T ). (2.30)

(2.28) follows from (2.8) and (2.30).
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Finally, we prove (2.29). Due to (2.1), (2.17), (2.28) and the Hölder inequality,

P2
ε (t, x) = 2

∫ x

0
Pε∂x Pεdy ≤ 2

∫ ∞

0
|Pε||∂x Pε|dx

≤ 2 ‖Pε(t, ·)‖L2(0,∞) ‖∂x Pε(t, ·)‖L2(0,∞)

= 2 ‖Pε(t, ·)‖L2(0,∞) ‖uε(t, ·)‖L2(0,∞) ≤ C(T ).

Therefore,

|Pε(t, x)| ≤ C(T ),

which gives (2.29).

Lemma 2.6 Let T > 0. We have

‖uε‖L∞((0,T )×(0,∞)) ≤ ‖u0‖L∞(0,∞) + C(T ). (2.31)

Proof Due to (2.1) and (2.29),

∂t uε + 3u2ε∂xuε − ε∂2xxuε ≤ C(T ).

Since the map

F(t) := ‖u0‖L∞(0,∞) + C(T )t,

solves the equation

dF
dt

= C(T )

and

max{uε(0, x), 0} ≤ F(t), (t, x) ∈ (0, T ) × (0,∞),

the comparison principle for parabolic equations implies that

uε(t, x) ≤ F(t), (t, x) ∈ (0, T ) × (0,∞).

In a similar way we can prove that

uε(t, x) ≥ −F(t), (t, x) ∈ (0, T ) × (0,∞).

Therefore,

|uε(t, x)| ≤ ‖u0‖L∞(0,∞) + C(T )t ≤ ‖u0‖L∞(0,∞) + C(T )T,

which gives (2.31).

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let us begin by proving the existence of a distributional solution to (1.3), (1.9), (1.10)

satisfying (1.19).

Lemma 3.1 Let T > 0. There exists a function u ∈ L∞((0, T ) × (0,∞)) that is a distrib-
utional solution of (1.16) and satisfies (1.19).
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We construct a solution by passing to the limit in a sequence {uε}ε>0 of viscosity approxi-
mations (2.1). We use the compensated compactness method [24].

Lemma 3.2 Let T > 0. There exists a subsequence {uεk }k∈N of {uε}ε>0 and a limit function
u ∈ L∞((0, T ) × (0,∞)) such that

uεk → u a.e. and in L p
loc((0, T ) × (0,∞)), 1 ≤ p < ∞. (3.1)

Moreover, we have

Pεk → P a.e. and in L p
loc(0, T ;W 1,p

loc (0,∞)), 1 ≤ p < ∞, (3.2)

where

P(t, x) =
∫ x

0
u(t, y)dy, t ≥ 0, x ≥ 0, (3.3)

and (1.19) holds true.

Proof Let η : R → R be any convexC2 entropy function, and q : R → R be the correspond-
ing entropy flux defined by q ′(u) = 3u2η′(u). By multiplying the first equation in (2.1) with
η′(uε) and using the chain rule, we get

∂tη(uε) + ∂xq(uε) = ε∂2xxη(uε)︸ ︷︷ ︸
=:L1,ε

−εη′′(uε) (∂xuε)
2

︸ ︷︷ ︸
=:L2,ε

+η′(uε)Pε︸ ︷︷ ︸
=:L3,ε

,

where L1,ε, L2,ε, L3,ε are distributions. Let us show that

L1,ε → 0 in H−1((0, T ) × (0,∞)), T > 0.

Since

ε∂2xxη(uε) = ∂x (εη
′(uε)∂xuε),

from (2.28) and Lemma 2.6,

∥∥εη′(uε)∂xuε

∥∥2
L2((0,T )×(0,∞))

≤ ε2
∥∥η′∥∥2

L∞(JT )

∫ T

0
‖∂xuε(s, ·)‖2L2(0,∞)

ds

≤ ε
∥∥η′∥∥2

L∞(JT )
C(T ) → 0,

where

JT = (−‖u0‖L∞(0,∞) − C(T ), ‖u0‖L∞(0,∞) + C(T )
)
.

We claim that

{L2,ε}ε>0 is uniformly bounded in L1((0, T ) × (0,∞)), T > 0.

Again by (2.28) and Lemma 2.6,

∥∥εη′′(uε)(∂xuε)
2
∥∥
L1((0,T )×(0,∞))

≤ ∥∥η′′∥∥
L∞(JT )

ε

∫ T

0
‖∂xuε(s, ·)‖2L2(0,∞)

ds

≤ ∥∥η′′∥∥
L∞(JT )

C(T ).

We have that

{L3,ε}ε>0 is uniformly bounded in L1
loc((0, T ) × (0,∞)), T > 0.
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Let K be a compact subset of (0, T ) × (0,∞). Using (2.29) and Lemma 2.6,

∥
∥η′(uε)Pε

∥
∥
L1(K )

=
∫

K
|η′(uε)||Pε|dtdx

≤ ∥
∥η′∥∥

L∞(JT )
‖Pε‖L∞(IT ) |K |.

Therefore, Murat’s lemma [18] implies that

{∂tη(uε) + ∂xq(uε)}ε>0 lies in a compact subset of H−1
loc ((0, T ) × (0,∞)). (3.4)

The L∞ bound stated in Lemma 2.6, (3.4), and the Tartar’s compensated compactnessmethod
[24] give the existence of a subsequence {uεk }k∈N and a limit function u ∈ L∞((0, T ) ×
(0,∞)), T > 0, such that (3.1) holds.

(3.2) follows from (3.1), the Hölder inequality and the identity

Pεk =
∫ x

0
uεk dy, ∂x Pεk = uεk .

Finally, we prove (1.19).
Let k ∈ N, c ∈ R be a constant, and φ ∈ C∞(R2) be a nonnegative test function with

compact support. Multiplying the first equation of(2.1) by sign (uε − c), we have

∂t |uεk − c| + ∂x
(
sign

(
uεk − c

) (
u3εk − c3

))

− sign
(
uεk − c

)
Pεk − εk∂

2
xx |uεk − c| ≤ 0.

Multiplying by φ and integrating over (0,∞)2, we get
∫ ∞

0

∫ ∞

0

(|uεk − c|∂tφ + (
sign

(
uεk − c

) (
u3εk − c3

))
∂xφ

)
dtdx

+
∫ ∞

0

∫ ∞

0
sign

(
uεk − c

)
Pεk dtdx − εk

∫ ∞

0

∫ ∞

0
∂x |uεk − c|∂xφdtdx

+
∫ ∞

0
|u0(x) − c|φ(0, x)dx +

∫ ∞

0
sign

(
gεk (t) − c

) (
g3εk (t) − c3

)
φ(t, 0)dt

− εk

∫ ∞

0
∂x |uεk (t, 0) − c|φ(t, 0)dt ≥ 0.

Thanks to (2.2) and Lemmas 2.5 and 2.6, when k → ∞, we have
∫ ∞

0

∫ ∞

0

(|u − c|∂tφ + (
sign (u − c)

(
u3 − c3

))
∂xφ

)
dtdx

+
∫ ∞

0

∫ ∞

0
sign (u − c) Pdtdx +

∫ ∞

0
|u0(x) − c|φ(0, x)dx

+
∫ ∞

0
sign (g(t) − c)

(
g3(t) − c3

)
φ(t, 0)dt

− lim
εk

εk

∫ ∞

0
∂x |uεk (t, 0) − c|φ(t, 0)dt ≥ 0.

We have to prove that (see [2])

lim
εk

εk

∫ ∞

0
∂x |uεk (t, 0) − c|φ(t, 0)dt

=
∫ ∞

0
sign (g(t) − c)

(
g3(t) − (uτ

0(t))
3) φ(t, 0)dt. (3.5)
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Let {ρν}ν∈N ⊂ C∞(R) be such that

0 ≤ ρν ≤ 1, ρν(0) = 1, |ρ′
ν | ≤ 1, x ≥ 1

ν
�⇒ ρν(x) = 0. (3.6)

Using (t, x) �→ ρν(x)φ(t, x) as test function for the first equation of (2.1) we get
∫ ∞

0

∫ ∞

0

(
uεk ∂tφρν + u3εk ∂xφρν + u3εkφρ′

ν

)
dtdx +

∫ ∞

0

∫ ∞

0
Pεkφρνdtdx

− εk

∫ ∞

0

∫ ∞

0
∂xuεk

(
∂xφρν + φρ′

ν

)
dtdx +

∫ ∞

0
u0(x)φ(0, x)ρν(x)dx

+
∫ ∞

0
g3εk (t)φ(t, 0)dt − εk

∫ ∞

0
∂xuεk (t, 0)φ(t, 0)dt = 0.

As k → ∞, we obtain that
∫ ∞

0

∫ ∞

0

(
u∂tφρν + u3∂xφρν + u3φρ′

ν

)
dtdx +

∫ ∞

0

∫ ∞

0
Pφρνdtdx

+
∫ ∞

0
u0(x)φ(0, x)ρνdx +

∫ ∞

0
g3(t)φ(t, 0)dt

= lim
εk

εk

∫ ∞

0
∂xuεk (t, 0)φ(t, 0)dt.

Sending ν → ∞, we get

lim
εk

εk

∫ ∞

0
∂xuεk (t, 0)φ(t, 0)dt =

∫ ∞

0

(
g3(t) − (uτ

0(t))
3) φ(t, 0)dt.

Therefore, due to the strong convergence of gεk and the continuity of g we have

lim
εk

εk

∫ ∞

0
∂x |uεk (t, 0) − c|φ(t, 0)dt

= lim
εk

∫ ∞

0
∂xuεk (t, 0)sign

(
uεk (t, 0) − c

)
φ(t, 0)dt

= lim
εk

∫ ∞

0
∂xuεk (t, 0)sign

(
gεk (t) − c

)
φ(t, 0)dt

=
∫ ∞

0
sign (g(t) − c)

(
g3(t) − (uτ

0(t))
3) φ(t, 0)dt,

that is (3.5).

Proof of Theorem 1.1 Lemma (3.2) gives the existence of an entropy solution u for (1.15),
or equivalently (1.16).

We observe that, fixed T > 0, the solutions of (1.15), or equivalently (1.16), are bounded
in (0, T ) × R. Therefore, using [6, Theorem 1.1], u is unique and (1.20) holds true. ��
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