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Abstract The short pulse equation provides a model for the propagation of ultra-short light
pulses in silica optical fibers. It is a nonlinear evolution equation. In this paper the wellposed-
ness of bounded solutions for the inhomogeneous initial boundary value problem associated
to this equation is studied.
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1 Introduction

The short pulse equation has the form

28xl8¢Ao+X(3)3£¢AS+%AO =0, (1.1

)
where Ag is the light wave amplitude, ¢ = %, X1 = €x, € is a small scale parameter,
and x® is the third order magnetic susceptibility (1.1) was introduced recently by Schifer
and Wayne [22] as a model equation describing the propagation of ultra-short light pulses in
silica optical fibers. It provides also an approximation of nonlinear wave packets in dispersive
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media in the limit of few cycles on the ultra-short pulse scale. Numerical simulations [5] show
that the short pulse equation approximation to Maxwell’s equations in the case when the pulse
spectrum is not narrowly localized around the carrier frequency is better than the one obtained
from the nonlinear Schrodinger equation, which models the evolution of slowly varying wave
trains. Such ultra-short plays a key role in the development of future technologies of ultra-fast
optical transmission of informations.

In [4] the author studied a new hierarchy of equations containing the short pulse equation
(1.1) and the elastic beam equation, which describes nonlinear transverse oscillations of
elastic beams under tension. He showed that the hierarchy of equations is integrable. He
obtained the two compatible Hamiltonian structures and constructed an infinite series of
both local and nonlocal conserved charges. Moreover, he gave the Lax description for both
systems. The integrability and the existence of solitary wave solutions have been studied in
[20,21].

Well-posedness and wave breaking for the short pulse equation have been studied in
[17,22], respectively.

Boyd [3] (Table 4.1.2, p 212) shows that, for some polymers, x@®isa negative constant.
Therefore, (1.1) reads

1
20,09 Ao — k>34 A7 + 340=0, x® =k (1.2)
2

Following [1,12,13,15], we consider the admensional form of (1.2)
Ay (pu + 3u”dsu) = u. (1.3)
Indeed, multiplying (1.2) by —c%, we have
— 2650y, 09 A0 + 3k 05, A7 = Ag (1.4)
Consider the following Robelo transformation (see [1,13,15]):
x1 = Dit, ¢ = Drx, (1.5)
where D and D; are two constants that will be specified later. Therefore,
Oy, = D10y, 09y = D2ox. (1.6)
Taking Ag(x1, ¢) = u(t, x), it follows from (1.1) and (1.6) that
— 263D D23, (3u) + 3c3k> D39, (u?dcu) = u. (1.7)
We choose D;, D, so that
23D \Dy = —1,  3k*D3 =1,

that is
D k D ! 1.8
= 2¢y’ z_czk. (1.8)

Therefore, (1.3) follows from (1.7) and (1.8).

It is interesting to remind that equation (1.3) was proposed earlier in [19] in the context of
plasma physic. Moreover, similar equations describe the dynamics of radiating gases [16,23].

We are interested in the initial-boundary value problem for this equation, so we augment
(1.3) with the boundary condition

u(t,0) = g(), t >0, (1.9)
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and the initial datum

u(0, x) =ugp(x), x >0, (1.10)
on which we assume that
o0
ug € L>(0, 00) N L' (0, o0), / uo(x)dx = 0. (1.11)
0
On the function
X
Ao = [ un(r2dy. (1.12)
0
we assume that
5 %) X 2

On the boundary datum g, we assume that
g(t) € L*(0, 00). (1.14)

Integrating (1.3) in (0, x) we gain the integro-differential formulation of (1.3) (see [20])

du + 3udu = f(f u(t, y)dy, t>0, x>0,
u(t,0) = g(), t >0, (1.15)
u(0, x) = up(x), x>0,

that is equivalent to

o+ 3u28xu =P, t >0, x>0,

0P =u, t>0, x>0,

u(t,0) = g(), t>0, (1.16)
P(t,0)=0, t >0,

u(0, x) = ug(x), x > 0.

One of the main issues in the analysis of (1.16) is that the equation is not preserving
the L' norm, as a consequence the nonlocal source term P and the solution u are a priori
only locally bounded. Indeed, from (1.15) and (1.16) is clear that we cannot have any L*°
bound without an L! bound. Since we are interested in the bounded solutions of (1.3), some
assumptions on the decay at infinity of the initial condition (¢ are needed. The unique useful
conserved quantities are

t—> /u(t,x)dx =0, t—> /uz(t,x)dx.

In the sense that if u(z, -) has zero mean at time ¢ = 0, then it will have zero mean at any
time ¢ > 0. In addition, the L? norm of u(t, -) is constant with respect to t. Therefore, we
require that initial condition o belongs to L2 N L and has zero mean.

Due to the regularizing effect of the P equation in (1.16) we have that

ue L®0,T) x (0,00) = P e L0, T; W-®(0,00)), T>0. (1.17)
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Therefore, if a map u € L*°((0,T) x (0,00)), T > 0, satisfies, for every convex map
neC3(R),

) +3xqw) —n' WP <0,  qu) =/ 382 (§) dt, (1.18)

in the sense of distributions, then [11, Theorem 1.1] provides the existence of strong trace
ug on the boundary x = 0.
We give the following definition of solution (see [2]):

Definition 1.1 We say thatu € L*°((0, T) x (0, 00)), T > 0, is an entropy solution of the
initial-boundary value problem (1.3), (1.9), and (1.10) if for every nonnegative test function
¢ € C?(R?) with compact support, and ¢ € R

/OO /OO (1 = clorg +sign @ — ) (u* = %) 8,9 ) drdx
0 0

o0 00

+// sign (u — ¢) P¢dtdx
0 Jo
o0

+ /0 sign (g(1) — ) ((u§ () — ) ¢ (¢, 0)dt

+/oo [up(x) — clg (0, x)dx > 0, (1.19)
0

where u5 (1) is the trace of u on the boundary x = 0.

The main result of this paper is the following theorem.

Theorem 1.1 Assume (1.11), (1.13), (1.14). The initial-boundary value problem (1.3), (1.9)
and (1.10) possesses an unique entropy solution u in the sense of Definition 1.1. Moreover,
if u and v are two entropy solutions of (1.3), (1.9), (1.10) in the sense of Definition 1.1 the
following inequality holds

(e, ) = v, i,z < €M@, = 0O, Mo ricay .  (1.20)
for almost every 0 <t < T, R > 0, and some suitable constant C(T) > 0.

The paper is organized as follows. In Sect. 2 we prove several a priori estimates on a vanishing
viscosity approximation of (1.16). Those play a key role in the proof of our main result, that
is given in Sect. 3

2 Vanishing viscosity approximation

Our existence argument is based on passing to the limit in a vanishing viscosity approximation
of (1.16).

Fix a small number ¢ > 0, and let u, = u. (¢, x) be the unique classical solution of the
following mixed problem

de +3u2dyus = Po + e3> u,, t>0, x>0,

0 Pe = ug, t>0, x>0,

ug(t,0) = g (1), t >0, 2.1
P.(t,0) =0, t>0,

ug(0,x) = ug,e(x), x >0,
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where u, o and g, are C*°(0, co) approximations of ug and g such that

up,e — ug, a.e.andin L”(0,00), 1 < p < o0,
Py — Py, in L*(0, 00),
g — g, ae.andin L] (0,00), 1 < p < o0,

||u8’0”L°°(0,oo) = ||u0||L°°(0,00) > HM‘Q*OHL2(O,OO) = ||u0||L2(0,OO) ’
o
||u8,0”L4(0’00) S ||u0||L4(O,oo) ) /() Me,O(x)dx = Oa

“ P€’0||L2(0,oo) < ||P0||L2(0,oo) , ||gs||L00((),oo) < Co, (2.2)

and Cy is a constant independent on ¢.
Clearly, (2.1) is equivalent to the integro-differential problem

dute + 3uldyu, = f(;‘ ug(t, y)ydy + ed>ug, t>0, x>0,
ug(t,0) = g (1), t>0, (2.3)
ue (0, x) = ug 0(x), x> 0.

Let us prove some a priori estimates on u, and P., denoting with C the constants which
depend only on the initial data, and C(T') the constants which depend also on T'.
Arguing as [9, Lemma 1], or [12, Lemma 2.2.1], we have the following result.

Lemma 2.1 The following statements are equivalent
oo
/ us(t,x)dx =0, >0, 2.4)
0

d [® o0 3
o / uZdx + 2 / (Bxue)?dx = 5g;‘(z) + 2680 (1)d,uc(1,0), ¢ > 0. (2.5)
0 0

Proof Lett > 0. We begin by proving that (2.4) implies (2.5). Multiplying (2.3) by u,, an
integration on (0, co) gives

d o0 2 oo
o A ugdx = 2/0 UgOlhgdX
o.¢] oo o0 X
= 28/ ugagxugdx—6/ ug’axugdx—l—Z/ Ug (/ ugdy) dx
0 0 0 0
* 2 34
= 260,uc(t,0)g:(t) — 28/ (Oyue)“dx + Egg ()
0
o0 X
+2/ Ug (/ ugdy) dx.
0 0
By (2.1),
o0 X o
2/ Ue (/ u,;dy) dx :2/ P:0, Pedx = P2(t, 00).
0 0 0
Then,
d [ o 3
a 2 2, p2 d 4
dt/ ugdx + 28/ (Oxue)“dx = P (t,00) + 2e0,us(t,0)g:(t) + 2g5 ). (2.6)
0 0
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Thanks to (2.4),

o0 2
lim P2(1,x) = (/ ug(t,x)dx) =0. 2.7)
X—>00 0

(2.6) and (2.7) give (2.5).
Let us show that (2.5) implies (2.4). We assume by contradiction that (2.4) does not hold,
namely:

/00 ug(t, x)dx #0.
0

By (1.16),
2

P2(1, 00) = (/oo ug(t,x)dx) #0.
0

Therefore, (2.6) gives

d [ > 2 34
ar Jo ugdx-l-28/0 (Oxue)dx 7 2educ (. 0)g: (1) + S 8- (),

which is in contradiction with (2.5).
Lemma 2.2 Foreacht > 0, (2.4) holds true. In particular, we have that
t t
0, My + 22 [ 10055, M0y 5 = Cot+ 126 [ 01, 0.
(2.8)

Proof We begin by observing that d;u. (t, 0) = gL (), being u, (¢, 0) = g. (). It follows from
(2.3) that

0
€02 e (1, 0) = due(r, 0) + 3u>(t, 0)d,ue(t, 0)—/ ue (1, x)dx
0

= gL (1) + 32 (1D, (1, 0). (2.9)
Differentiating (2.3) with respect to x, we have
e (dyute + 3udyue — €02 ue) = u,.

From (2.9), and being u, a smooth solution of (2.3), an integration over (0, co) gives (2.4).
Lemma 2.1 says that also (2.5) holds true. Therefore, integrating (2.5) on (0, t), for (2.2), we
have

t
||ug (2, .)”iz(o,oo) + 28\/0 l|0xue(s, ')”%12(0700) ds
2 3" 4 '
< 140l13 20,00, +§/0 gs(s)ds+28/0 8e(5)0xute (s, 0)ds
2 3o t
<lluoll29 00y + 3 llge 700 (0. 00) ¢ + 28 A 8e(5)dyue (s, 0)ds

t
< 01y + Cot 422 [ 0005, 00,

which gives (2.8).
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Lemma 2.3 We have that

oo
lim F.(z, x) :/ P (t, x)dx = edyuc(t,0) — gg(t), (2.10)
X—> 00 0
where
X
Fe(t,x) = / Py (t, y)dy. @.11)
0
Proof We begin by observing that, integrating on (0, x) the second equation of (2.1), we get
X
Pe(t, x) = /O ug(t, y)dy. (2.12)
Differentiating (2.12) with respect to ¢, we have
X d X
o Po(¢, x) :/ rug(t, y)dy = d—/ us(t, y)dy. (2.13)
0 tJo
It follows from (2.4) and (2.13) that
d o0
lim 0;P:(t,x) = —/ ug(t, x)dx = 0. (2.14)
xX—00 dt 0

Integrating on (0, x) the first equation of (2.1), thanks to (2.13), we have
X
O Pe(t, ) +ul(t, x) — g3 (1) — edyute(t, X) + edeue(t,0) = / P.(t, y)dy. (2.15)
0
It follows from the regularity of u, that
lim (ul(t, x)) — edsuc(t, x)) = 0. (2.16)
X—>00

(2.14) and (2.16) give (2.10).

Arguing as in [8, Lemma?2.3], we prove the following lemma.

Lemma 2.4 Let T > 0. There exists a constant C(T) > 0, independent on €, such that

lete (2, M7 0,00) + 2Pt 172 0

t
+ 128/0 llue (s, -)0xue s, ')”iz(o,oo) ds

+ 4e /Ot lite (5, ) 12200 o0 45 +82/0t (ue(s, 0))2 ds < C(T), (2.17)
forevery) <t <T.
Proof Let0 <t < T. We begin by observing that (2.11) and (2.15) imply
0 Pe(t,x) = Fe(t,x) — ug’(t, x) + g?(t) + eug(t, x) — edyug(t, 0). (2.18)
Multiplying (2.18) by P, an integration on (0, co) gives

d

o0 o0
— [ Plix =2 / P9, Podx
dt 0 0

X oo oo
:2/ Pngdx—Z/ ungdx+2gS(l)/ Pedx
0 0 0

o0 o0
+28/ Oxug Pedx —288xu8(t,0)/ Pedx. (2.19)
0 0
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38
By (2.1),
o0 o0 5
2/0 Oyite Pedx = —25/0 e dy Pedx = =26 [lu (1, )1 720 o) - (2.20)
while, in light of (2.11) and (2.10),
o0 o0
2/ P.F.dx = 2/ F.0, Fedx
0 0
2
= F2(t,00) = (edue (1, 0) — g2 (1))
= &% (deue (1,0))% — 2ed,u.(t, 0)g2 (1) + gS(1). @21
Using again (2.10),
o0
—2&0up(t, 0)/ Pedx = =26 (yu, (1, 0))* + 2ed,u. (1, 0)g2 (1),
0
o0
2g2(1) / Pedx = 2e0,u,(t,0)g2 (1) — 2g%(1). (2.22)
0
(2.19), (2.20), (2.21) and (2.22) give
d P 2 =-2 2 2 - 3p.d
E ” S(tv .)”LQ(O,OO) =—z¢ ”Mé‘(tv .)”LZ(O,OO) - o us edX
— & By (t,0))* — g0(t) + 268, u. (2, 0)g (1),
that is,
d
T IPe(t D2 o0y + 28 ute (8 Mg, o) + 7 Dutte (1, 0))
(2.23)

o
=— 2/ ul Pedx — g8(1) + 2ed,u.(t, 0)g2 ().

0
Multiplying (2.1) by 2u?, an integration on (0, 00) gives
d (1 [* o
— 7/ ug'dx = 2/ uzatuedx
dr \2 0 0

o0 o0 o0
= —6/0 ugaxugdx—l—Z/o ungdx—i—Zs/O ugafxuedx

o0 o0
=¢850+ 2/ ul Pedx + 2d,u.(t, 0)g2 (1) — 68/ uZ (D ue)’dx,
0 0

that is

d 1 4 2
5 ”ué‘(tv ')||L4(0,OO) + 6¢ ||M5(t, ')axué‘(lv ')”L2(O,oo)

dt
o0
=S+ 2/ ul Pedx + 280,u.(t, 0)g2 (1), (2.24)
0
Adding (2.23), (2.24), we get
d (1
E (E ”ng(t, )”14(0,00) + ||P5(l, )”12(0,00))
+ 66 llug (2, )xtte (1, Mo g o) + 26 e (5 )17 o)
(2.25)

+ &% (Bxue (1, 0))? = dedyus(r,0)g2(1).
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Due to the Young inequality,
3 3 & 2 6
4e0,uc(t, 0087 (1) < |edyuc(t, 0)] [4g) ()] < ) (Oxus(r,0)” +8g.(1).  (2.26)
It follows from (2.25), (2.26) that

d (1
- (5 lute (2, 740 00y + I1Pe (1, ->||iz(0,oo))

+ 66 llug (2, )dxtte (1, M2 g o) + 26 e (1, )17 o)
& 2 6
+ 5 Beue(t, 0))° = 8g2(0). (2.27)

Integrating (2.27) on (0,¢), by (2.2), we have
1 t
5 Nt a0,y + I1Pe(ts (g, o) + 62 /0 lute (s, )Drtte (s, 17 00 4
t 82 t
+ 28/0 llue (s, ')“izm,oo) ds + 7/0 (Oyue(s, 0) ds

t
< loll44 g a0y + 1 PoI2 0 o0y + 8 /0 ¢8(s)ds
< Co+ 8118/l 0,00yt < Co(1+80),

which gives (2.17).
Lemma 2.5 Let T > 0. There exists a constant C(T) > 0, independent on ¢, such that
e 2, )220 oy + 2 /0 oo, 22000y d5 = CT). (2.28)
forevery 0 <t < T. In particular, we have
Il P ll oo (0,7 % (0,00)) < C(T). (2.29)
Proof We begin by observing that, using the Young inequality,

2ege(1)dxue(t,0) < 21ge(1)] |edyue(r,0)| < g2(1) + &2 (dyus (1, 0))* .

Therefore, in light of (2.2) and (2.17),
t t
28/ 8e(s)0xue (s, 0)ds < 2/ lge ()] 1edxue(r, 0)| dx
0 0
t t
< / g (s)ds + &* / (Dxue(s, 0))* ds
0 0
t
< el B0y + €2 /0 (Byue (s, 0)) ds
t
< Cot + .92/ (0yus (s, 0))2 ds < C(T). (2.30)
0
(2.28) follows from (2.8) and (2.30).
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Finally, we prove (2.29). Due to (2.1), (2.17), (2.28) and the Holder inequality,

oo

P2(t,x) = 2/0X Pedy Pedy < 2/0 | P |8y P |dx

< 201Ps (2, )l 120,009 185 P (8, )l 120,000

= 211 P(t, )l 120,00 146t )1 120.00) < C(T).
Therefore,

|Pe(r, x)| = C(T),
which gives (2.29).
Lemma 2.6 Let T > 0. We have

lell oo (0.7 % (0,00)) = N0l o0 (0,00) + C(T). (2.31)
Proof Due to (2.1) and (2.29),
dute 4 3uldus — 9% ue. < C(T).
Since the map
F (@) = lluollLoo 0,00y + C(T)12,

solves the equation
dF
T C(T)
and
max{u, (0, x), 0} < F(1), (t,x) € (0,T) x (0, 00),
the comparison principle for parabolic equations implies that
ug(t,x) < F(@), (t,x) € (0,T) x (0, 00).
In a similar way we can prove that
ug(t,x) > =F(1), (t,x) € (0,T) x (0, 00).
Therefore,
lue(t, x)| < lluoll Lo 0,00) + C(T)t < |luoll L0, 00) + C(THT,
which gives (2.31).

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
Let us begin by proving the existence of a distributional solution to (1.3), (1.9), (1.10)
satisfying (1.19).

Lemma 3.1 Let T > 0. There exists a function u € L*°((0, T) x (0, 00)) that is a distrib-
utional solution of (1.16) and satisfies (1.19).
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We construct a solution by passing to the limit in a sequence {u,},.( of viscosity approxi-
mations (2.1). We use the compensated compactness method [24].

Lemma 3.2 Let T > 0. There exists a subsequence {ug, }ren of {s }e~0 and a limit function
u € L®°((0,T) x (0, 00)) such that

ug, —> u a.e.and in LZC((O, T) x (0,00)),1 < p < o0. 3.1)
Moreover, we have
Py — Pae andin L] (0,T; W57 (0,00)),1 < p < oo, (32)
where
X
P(t,x) :/ u(t, y)dy, t>0, x>0, 3.3)
0

and (1.19) holds true.

Proof Letn : R — Rbe any convex C2 entropy function, and ¢ : R — R be the correspond-
ing entropy flux defined by ¢’ (1) = 3u2#’ (1). By multiplying the first equation in (2.1) with
n'(ue) and using the chain rule, we get

i (ue) + 0xq () = 97, n(ue) —en” (ue) (Byue)® +1' (ue) Pe,
—_—
:Z£]46 :3»62,5 =:L3,
where L ¢, L2 ¢, L3¢ are distributions. Let us show that

Lie—0 in HY(0,T) x (0,00)), T > 0.

Since
£07 1 (ue) = Oy (en (ue)dyite),
from (2.28) and Lemma 2.6,
T
2 2 2 2
HEU/(“s)axus ”Lz(((),T)X(0,00)) S & H 77/ HLOC(JT) /() ”axu&‘(sv .)||L2(O,OO) dS
2
<e ||, €T =0,
where

Jr = (= luoll Lo 0,00y — C(T). lluoll oo (0.00) + C(T)) .
We claim that
{L2,¢}e>0 1s uniformly bounded in Ll((O, T) x (0,00)), T > 0.
Again by (2.28) and Lemma 2.6,

T
“87]//(1’!8)(3)6“8)2 ”Ll((o,T)X(0,00)) S ||77”||L00(1T) & A ”axus(sv )”%12(0’00) dS
= ”n//”LOO(JT) (D).
We have that

{£3,¢}¢>0 1s uniformly bounded in L}OC((O, T) x (0,00)), T > 0.

@ Springer



42 G. M. Coclite, L. di Ruvo

Let K be a compact subset of (0, T') x (0, co). Using (2.29) and Lemma 2.6,

[P 1y = [ 10 @l Peldr

= ”n/”Loo(]T) || P8||L°°(IT) |K|
Therefore, Murat’s lemma [18] implies that

{0/m(ue) + 0xq(ug)}o~ lies in a compact subset of ngl((O, T) x (0,00)). (3.4

C

The L bound stated in Lemma 2.6, (3.4), and the Tartar’s compensated compactness method
[24] give the existence of a subsequence {ug, Jxeny and a limit function u € L*°((0, T) x
(0,00)), T > 0, such that (3.1) holds.

(3.2) follows from (3.1), the Holder inequality and the identity

X
P&‘k :/ u&‘kdy5 axPEk = uEk-
0

Finally, we prove (1.19).
Letk € N, ¢ € R be a constant, and ¢ € C oo(Rz) be a nonnegative test function with
compact support. Multiplying the first equation of (2.1) by sign (u. — ¢), we have

O lug, — ¢l + dx (sign (ug, — c) (ugk — c3))

: 2
— sign (ug, — ) Poy — £405, Jug, — | < 0.

Multiplying by ¢ and integrating over (0, 00)?, we get

/ / (Iuee — clod + (sign (uey — ¢) (i, — c*)) d,) drdx
0J0
+// sign (ug, — ) ngdtdx—ek// Ay |ue, — c|dypdtdx
0J0 0J0
+ /O |uo(x) — ¢l (0, x)dx + /0 sign (e, (1) — ¢) (g3, (1) — ) ¢ (¢, 0)dt

(e ¢]
- ek/ Oxlug (1,0) — clo(t,0)dr > 0.
0

Thanks to (2.2) and Lemmas 2.5 and 2.6, when k — 0o, we have
o0 00
/ / (lu — cld;p + (sign (u — ¢) (u® — %)) ) dtdx
0 Jo
o0 OO [e.¢]
—I—/ / sign (u — ¢) Pdtdx —I—/ lug(x) — cl¢ (0, x)dx
0J0 0
oo
+ / sign (g(t) — ©) (87 (1) — ) p (¢, 0)dt
0

o0
—limek/ By lue, (1, 0) — clgp (2, 0)dt > 0.
Ek O

We have to prove that (see [2])
o0
lim Ek/ Ox g, (t,0) — clo(t, 0)dt
Ek 0

= /0 sign (g(t) — ¢) (87 (1) — wf(1))?) ¢ (1, 0)dt. 3.5)
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Let {py}ven C C*(R) be such that

= pp(x)=0. (3.6)

< | =

0<py =1, p(0)=1, |:0|/;|§1» X =

Using (t, x) — p, (x)¢ (¢, x) as test function for the first equation of (2.1) we get

00 00 00 00
/ / (uekat(bpv +Mgkax¢pv + MSM’PQ) ditdx +/ / P ppydtdx
0J0o 0J0
00 00 00
e [ [ e (00, + dpl) didx + [ o8 0,500, (0
0J0 0

o0 o0
+ / g2 (1. 0)d1 — g / drtte, (1. 0)p (1, 0)d1t = 0.
0 0
As k — oo, we obtain that

o0 00 o0 00
// (u3,¢pv+u3ax¢pv+u3¢p]’))dtdx+// Pop,dtdx
0J0 0J0
o0

+ / o (X) (0, x)pyddx + / S, 0)dt
0 0

[e.¢]
= limsk/ Oxitg, (t, 0)p (2, 0)dt.
&k 0
Sending v — oo, we get

limsk/oo Byt (1, 0)p (1, 0)dt =/oo (g% (1) — ({(1)?) (2, 0)dt.
&k 0 0

Therefore, due to the strong convergence of g, and the continuity of g we have

o0
limsk/ By lug, (£, 0) — clgp (¢, 0)dt
&k 0

o0

=1lim [  Oyug (1, 0)sign (ug (1, 0) — ) (¢, 0)dt
0

€k
o0

= lim dxttgy (1, 0)sign (ge, (1) — ) P (1, 0)dt
0

€k

= /0 sign (g(1) — ) (&7 (1) — wf())?) ¢ (1, 0)dt,

that is (3.5).

Proof of Theorem 1.1 Lemma (3.2) gives the existence of an entropy solution « for (1.15),
or equivalently (1.16).

We observe that, fixed T > 0, the solutions of (1.15), or equivalently (1.16), are bounded
in (0, 7)) x R. Therefore, using [6, Theorem 1.1], u is unique and (1.20) holds true. O
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