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Abstract
Purpose of Review  Epigenetic changes can be highly influenced by environmental factors and have in turn been proposed 
to influence chronic disease. Being able to quantify to which extent epigenomic processes are mediators of the association 
between environmental exposures and diseases is of interest for epidemiologic research. In this review, we summarize the 
proposed mediation analysis methods with applications to epigenomic data.
Recent Findings  The ultra-high dimensionality and high correlations that characterize omics data have hindered the precise 
quantification of mediated effects. Several methods have been proposed to deal with mediation in high-dimensional settings, 
including methods that incorporate dimensionality reduction techniques to the mediation algorithm.
Summary  Although important methodological advances have been conducted in the previous years, key challenges such 
as the development of sensitivity analyses, dealing with mediator-mediator interactions, including environmental mixtures 
as exposures, or the integration of different omic data should be the focus of future methodological developments for epig-
enomic mediation analysis.
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Introduction

Omics data analysis has moved to the spotlight of scientific 
research in the last years. Genomics, epigenomics, transcrip-
tomics, proteomics and metabolomics complete the study 
of an organism from its genetic code to the metabolites it 
generates [1]. The potential shown by these data for early 
detection of disease and precision medicine, as well as for 
the understanding of the complex biological processes 
underlying disease, has attracted interest of many biomedi-
cal researchers.

Epigenetic changes, or heritable phenotype changes that 
do not alter the DNA sequence, have shown to be highly 
influenced by environmental factors [2], and they might as 
well influence the subsequent biological processes including 
gene expression, protein biosynthesis and metabolite forma-
tion. Epigenetic modifications have in turn been proposed to 
influence chronic disease [3, 4]. Thus, being able to quantify 
to which extent epigenomic processes are mediators of the 
association between environmental exposures and diseases 
can provide mechanistic insights into environment-related 
disease etiology. Mediation analysis aims to disentangle how 
an intermediate variable, referred to as a mediator, explains 
the mechanism or pathway through which an exposure or 
treatment influences an outcome.

The complexity of epigenomic data and the lack of appro-
priate statistical methods, though, have hindered the precise 
quantification of the association between epigenetic marks 
and chronic disease, including the potential intermediate 
role of epigenetic changes on the well-known association 
between environmental factors and chronic disease [5]. 
Several characteristics of omics data challenge the devel-
opment of appropriate statistical methods for mediation 
analysis. First, the ultra-high dimensional nature of omics 
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data requires effective dimensionality reduction techniques 
in order to select the features that are related to the out-
come of interest, and focus subsequent extensive statistical 
analyses in those features. Second, high correlations between 
features challenge the performance of traditional methods 
due to multicollinearity. For example, DNA methylation in 
nearby CpG sites tends to be similar, therefore, spatial corre-
lations are common [6]. Shrinkage methods such as elastic-
net [7], or sure screening methods such as Sure Independ-
ence Screening (SIS) [8••], have become popular choices 
for dimensionality reduction in omics data, as they are able 
to deal with multicollinearity while effectively selecting fea-
tures that are associated with the outcome. In addition, SIS 
has shown to mitigate the bias in post-selection inference 
in mediation analysis introduced when features associated 
with the exposure, but not with the outcome, are included 
in the models [9].

Once the optimal set of omics features associated with 
the outcome is found, subsequent targeted mediation analy-
ses can be conducted. A directed acyclic graph showing the 
potential structure of an omics data mediation analysis is 
shown in Fig. 1. Several multiple mediation analysis meth-
ods have been proposed, however, most of them have limita-
tions for applications to epigenomic data. A previous review 
summarized some of the methods proposed for mediation 
analysis using high-dimensional data [10••]. However, the 
high-dimensional mediation analysis field has grown fast 
and many new methodological developments have been 

proposed in the last years. In this review, we summarize the 
state of the art in multiple mediation for epigenomic data 
analysis, which could be a key statistical tool for the quanti-
fication of the intermediate role of epigenetic marks on the 
association between environmental exposures and disease.

Simple and Multiple Mediation Analysis

Although the product of coefficients and the difference 
of coefficients methods [11] were the most widely used 
approaches for mediation analysis in the past, they cannot 
easily incorporate exposure-mediator interactions. In addi-
tion, they might lead to biased estimates for certain effect 
measures from multiplicative models (such as hazard ratios 
or odds ratios) due to the non-collapsibility issue, as the 
measures that are non-collapsible can lead to non-compara-
ble magnitudes when being adjusted for certain variables, 
even if those variables are unrelated to the outcome [12, 
13]. The counterfactual approach is currently the gold stand-
ard for mediation analysis [14, 15•]. Let us denote E as an 
exposure and Y  as the outcome of interest. Counterfactual 
outcomes refer to the values Y  would take under each of the 
potential values of E . Please note that some of those values 
of Y  will be unobservable, which is the reason why they 
are called counterfactuals (contrary-to-fact). For example, 
if the exposure E is dichotomous (exposed / unexposed), an 
individual will either be exposed or unexposed, thus, one of 
the counterfactual outcomes will not be observed. From now 
on, we will consider dichotomous exposures for simplicity. 
However, this notation could be easily extended to continu-
ous exposures. Below we summarize the effects of interest 
for mediation analysis under the counterfactual framework.

Simple Mediation Analysis

Let us denote M as the mediator, which is dependent on the 
exposure E ; X as a set of covariates and Y  as the outcome of 
interest. Let us consider two different values of the exposure, 
e and e∗. Following the counterfactual framework [16], we 
consider Y(e∗,M(e)) as the counterfactual outcome, i.e., the 
value the outcome would take had the exposure been set to 
e∗ and the mediator been set to the value it would take when 
the exposure is set to e . We define the average indirect effect 
of changing the exposure from e∗ to e when the covariates 
are set to X = x as follows [17, 18•, 19•]:

Similarly, the average direct effect, which refers to the 
effect of the exposure or treatment on the outcome which 
does not happen through the mediator, is quantified as:

�(e, e∗) = �[Y(e,M(e))|X = x ] − �
[
Y(e,M(e∗))|X = x

]
.

E: Exposure 
Mi: Omic mediators 
Y: Outcome 
Xi: Exposure-mediator, mediator-outcome and exposure-outcome confounders 
U: Common causes leading to non-causal correlations 

Fig. 1   Directed acyclic graph of a mediation analysis with omics 
markers as mediators. E: Exposure. Mi: Omic mediators. Y: Out-
come. Xi: Exposure-mediator, mediator-outcome and exposure-out-
come confounders. U: Common causes leading to non-causal correla-
tions



111Current Environmental Health Reports (2024) 11:109–117	

Last, the average total effect, which denotes the effect of 
the exposure or treatment on the outcome both through the 
mediator pathway and through other pathways, is quantified 
as:

Please also note that, following these definitions, it holds 
that �(e, e∗) = �(e, e∗) + �(e, e∗) , showing that the indirect 
and direct effects represent an exact decomposition of the 
total effect.

Multiple Mediation Analysis

Imai and Yamamoto [20•, 21] extended the effect definition 
for simple mediation analysis to the multiple mediators set-
ting. Let us assume that Z = (M1, ...,MK

)
T is the vector of 

all mediators, with K ≥ 2 . Considering M
k
 as the mediator 

of interest, k = 1, ...,K , let us define W
k
 as the vector of all 

mediators except M
k
 . We also consider Y(e∗,M

k(e),Wk
(e∗)) 

as the counterfactual outcome. In the multiple mediators 
setting, the average mediated effect of the k-th mediator is 
given by:

�
k(e) is the path-specific effect through M

k
 , and excludes 

paths that involve other mediators in addition to M
k
 . The 

joint indirect effect of all mediators is defined as:

The direct effect is defined as:

Last, the total effect is defined as:

Sequential Ignorability Assumptions

Importantly, in order for the causal mediation effects to be 
identifiable, several assumptions need to hold [22]. These 
assumptions refer to the absence of unmeasured confound-
ing, to having a well-defined treatment or exposure, and to 
having both exposed and unexposed individuals in each 
strata of the confounders. Let us define Y(e,m,w) as the 
value the outcome would take when the exposure is set to e , 
the mediator of interest is set to m and the other mediators 

�(e, e∗) = �
[
Y(e,M(e∗))|X = x

]
− �

[
Y(e∗,M(e∗))|X = x

]
.

�(e, e∗) = �[Y(e,M(e))|X = x ] − �
[
Y(e∗,M(e∗))|X = x

]
.

�
k(e, e

∗) = �
[
Y(e,M

k(e),Wk(e))|X = x
]

− �
[
Y(e,M

k(e
∗),Wk(e))|X = x

]
.

�
Z(e, e

∗) = �[Y(e,Z(e))|X = x ] − �
[
Y(e,Z(e∗))|X = x

]
.

�(e, e∗) = �
[
Y(e,Z(e∗))|X = x

]
− �

[
Y(e∗, Z(e∗))|X = x

]
.

�(e, e∗) = �(e, e∗) + �
Z(e, e

∗) = �[Y(e,Z(e))|X = x ]

− �
[
Y(e∗, Z(e∗))|X = x

]
.

are set to w . Below we summarize the sequential ignorability 
assumptions for multiple mediators:

1.	 {Y(e,m,w),M(e∗),W(e∗∗)} ⟂ E|X = x .

2.	 Y(e∗,m,w) ⟂ (M(e),W(e))|E = e,X = x .

3.	 Y(e,m,w) ⟂ (M(e∗),W(e))|E = e,X = x.

Please note that, for path specific effects, assuming a tem-
poral ordering among mediators such that W precedes M , the 
sequential ignorability assumptions would be the following:

1.	 {Y(e,m,w),M(e∗)} ⟂ E|X = x,W = w .

2.	 Y(e∗,m,w) ⟂ M(e)|E = e,X = x,W = w .

In  addi t ion,  we assume both  the  posi t iv-
i t y  a s s u m p t i o n :  P(E = e|X = x ) > 0  a n d 
P(M = m,W = w|E = e,X = x ) > 0 ∀x, e, e∗,m,w ; and the 
Stable Unit Treatment Value Assumption (SUTVA), or no-
interference assumption, which implies that:

1.	 Potential mediator and outcome values of indi-
vidual i  are not dependent on exposures of 
other  ind iv idua ls ,  i . e .  M

ik(e) = M
ik

(
e
i

)
 and 

Y
i

(
e,M

k(e),Wk(e)
)
= Y

i
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2.	 There are no multiple versions of exposures, 
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i
= e

∗
i
 imp l i e s   M

ik

(
e
i

)
= M

ik

(
e
∗
i

)
 and 

Y
i

(
e
i
,M

ik
(e

i
),W

ik
(e

i

)
) = Y

i

(
e
∗
i
,M

ik
(e∗

i
),W

ik
(e∗

i

)
).

3.	 There are no multiple versions of mediators, i.e. 
if m

ik
= m

∗
ik

 then Y
i
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Methods for Mediation Analysis 
with Epigenomic Data

Several methods have been developed for multiple media-
tion analysis in high-dimensional settings. Some of them 
rely on univariate mediation analysis, subsequently com-
bining the obtained results to account for the composite 
nature of the null hypothesis in mediation analysis [23••]. 
Other more sophisticated methods conduct variable selection 
(either included in the algorithm or as a previous step) and 
then apply multiple mediation methods to the reduced set 
of mediators. Below, we summarize the different methods 
that have been developed for multiple mediation analysis in 
the epigenomic data setting, as well as their strengths and 
limitations. An overview of the described mediation analysis 
methods is presented in Fig. 2.

One‑Marker‑at‑a‑Time Approach for Mediation

The first proposed approach for mediation analysis in the 
epigenomics data context was to run two separate epi-
genome-wide association studies (EWAS), one for the 
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exposure and one for the outcome, and select the epigenetic 
marks that are statistically significant in both sets of models 
after accounting for multiple comparisons. Subsequently, a 
simple mediation analysis would be run for each of the meth-
ylation sites individually (see, for example, [24]). Although 
this approach would work well in the setting of independ-
ent mediators, it is problematic for the context of correlated 
mediators, as the approach does not take into account the 
interrelations between mediators, which leads to the same 
biological pathways being considered part of the indirect 
path through epigenetics several times, and therefore to a 
sum of relative mediated effects greater than 100%, which 
is not possible.

Permutation tests such as the Causal Inference Test (CIT) 
[25], which are based on the combination of individual 
p-values for the associations between each mediator and 
the outcome and exposure, became popular for mediation 
analysis several years ago. Improved versions of CIT have 
lately been proposed. The Multimed R package [26] uses 
tests that evaluate multiple potential mediators and controls 
the family-wise error rate. This approach, however, does not 
provide estimations of indirect, direct and total effects, just 
p-values and test statistics. In addition, it does not evaluate 
all mediators simultaneously in the same model, and to our 
knowledge, it has only been implemented for continuous 
outcomes.

Similarly, the HDMAX2 method [27] combines latent 
factor regression models for EWAS with max-squared tests 

for mediation analysis. Although the latent factor regres-
sion models are useful to account for unmeasured confound-
ing factors such as batch effects, this method still relies on 
the combination of p-values of individual associations to 
estimate mediated effects. After determining the significant 
mediators, the mediated effects are calculated using the 
mediation R package. However, to do so, the causal struc-
ture of the mediators (i.e., the sequential order of mediators) 
needs to be known in advance, which is not generally plausi-
ble in the omics data settings. A recent study found a medi-
ated effect of DNA methylation on the association between 
maternal smoking and birthweight using this method. The 
study found that a lowering of 44.5 g in birthweight might 
be attributable to maternal smoking (versus not smoking) 
mediated by DNA methylation changes in 32 CpGs and 19 
genomic regions [27].

Several mediation analysis methods for high dimensions 
rely on calibrated p-values, which fit one mediator at a time 
and then borrow information from all mediators to calculate 
modified p-values that appropriately control for the type I 
error rate. These methods include JT-comp [28], divide-
aggregate composite-null test (DACT) [29], JS-mixture [30] 
and JTV-comp [31]. Methods based on calibrated p-values 
have been widely used on DNA methylation mediation anal-
ysis. The JT-comp method was used to evaluate the poten-
tial mediating role of DNA methylation on the association 
between socioeconomic status and BMI, with no statistically 
significant mediated effects found at FDR p-value cut-off of 

One marker at a �me approach
• Mul�med
• HDMAX2

• JT-comp
• DACT
• JS-mixture
• JTV-comp 

Two-stage epigenome-wide associa�on studies

Permuta�on tests based approaches

Approaches based on calibrated p-values

• RSqMed
• HIMA
• Pathway LASSO

• gHMA
• PCA-based methods

Mul�ple markers at a �me approach

Methods not incorpora�ng
dimensionality reduc�on

Methods incorpora�ng
dimensionality reduc�on

• Mul�mediate
• MMA
• Media�on
• EMAS

Methods not applying sure
independence screening

Methods applying sure
independence screening

Bayesian approaches
• BAMA
• BAMA-GMM
• BAMA-PTG
• GMM-CorrS

Fig. 2   Summary of methods for mediation analysis in the omics data setting
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0.05 [28]. The DACT method was used to identify medi-
ated effects of DNA methylation on the association between 
smoking and lung function, including the well-known smok-
ing-related genes AHRR and F2RL3 [29]. JS-mixture identi-
fied a mediated effect of DNA methylation on the association 
between genetic regulation of gene expression and prostate 
cancer [30]. However, all these methods rely on the product 
of coefficients method, which, as described before, cannot 
directly accommodate exposure-mediator interactions, and 
has issues with non-collapsibility for multiplicative mod-
els. Also, they are focused on hypothesis testing rather than 
effect estimation, thus, they only provide p-values. In addi-
tion, although these methods borrow information from all 
mediators, most of them are not able to account for corre-
lations. An approach that considers all mediators together 
and leverages the effect of each mediator in presence of the 
others would be desirable for the evaluation of mediated 
effects through omics data.

Multiple‑Markers‑at‑a‑Time Approach for Mediation

The development of statistical methods able to deal with 
hundreds of thousands or millions of mediators might be 
challenging. Therefore, most approaches for multiple media-
tion in the context of omics data still rely on the screening 
step mentioned in the previous section, which will filter out 
the variables that are not associated with the exposure or the 
outcome, as a first step. After this dimensionality reduction, 
methods that are able to deal with multiple mediators in 
lower dimensions might be used.

The multimediate R package [19•] fits a quasi-bayesian 
algorithm that relies on the counterfactual framework. 
It deals with multiple correlated mediators and is able to 
accommodate continuous, binary, and survival outcomes 
[32]. In addition, this method is able to accommodate 
both exposure-mediator and mediator-mediator interac-
tions. Multimediate was used to identify mediated effects 
of DNA methylation in three CpG sites on the associa-
tion between smoking and lung cancer [33]. However, this 
method assumes that correlations between mediators are 
independent of the exposure. This could be feasible in the 
omics data setting, as spatial correlations that do not nec-
essarily depend on the exposure are common. However, it 
constitutes a strong assumption that is not easy to verify in 
practice. The mma R package [34] also deals with multiple 
correlated mediators, however, according to the documenta-
tion, this model is only able to deal with exposure-mediator 
or mediator-mediator interactions in linear models. Even the 
well-known mediation R package [35], which has been con-
sidered the gold standard for simple mediation analysis in 
the last years and works under many different distributions 
for both the outcome and the mediator, has been extended 
to conduct multiple mediation analysis and can deal with 

interactions. However, this method does not specifically 
account for the correlated structure of the mediators. The 
EMAS R package, which uses the methodology of the media-
tion R package to conduct epigenome-wide mediation analy-
sis, has also been proposed. However, this package performs 
mediation analysis for each CpG one by one [36].

Some mediation analysis methods even perform vari-
able selection using SIS and mediation analysis in the same 
algorithm. The R-squared effect size method [9] uses either 
SIS or the false discovery rate method (FDR) to reduce the 
dimensionality, and then uses the R2 effect size measure to 
calculate the joint mediated effect for multiple mediators. 
By using this method, the authors showed that 38% of the 
age-related differences in systolic blood pressure might be 
mediated by gene expression in the Framingham Heart Study 
[9]. However, this method does not account for exposure-
mediator interactions, and the RSqMed R package, which 
fitted this algorithm, was removed from the CRAN reposi-
tory several months ago. The high-dimensional mediation 
analysis (HIMA) method has been used to identify medi-
ated effects of DNA methylation on the association between 
smoking and lung function. Of 484,548 CpGs tested, two 
were identified as mediators [37]. This method also uses 
SIS to select mediators that are associated with the outcome. 
Subsequently, it uses the Minimax Concave Penalty, a vari-
ation of the LASSO that satisfies the oracle property [38], 
to estimate the coefficients of the mediator and outcome 
models. The oracle property mathematically ensures that the 
right subset of variables is selected, and that the estimation 
rate is optimal. The pathway LASSO [39], another penaliza-
tion-based high-dimensional mediation method, applies the 
LASSO penalty, which has shown to be biased in coefficient 
estimation. In addition, both HIMA and pathway LASSO 
rely on the product of coefficients method, which presents 
the previously described drawbacks.

Other mediation methods that perform variable selection 
and mediation without using SIS have been proposed. The 
gene-based high-dimensional mediation analysis (gHMA) 
method [40], for example, has been used in epigenomic data 
analysis. This method applies kernel principal components 
analysis, which is a non-linear extension of the regular prin-
cipal components analysis, to one gene at a time, evaluat-
ing all CpG sites annotated to that gene. Then, it performs 
mediation analysis separately in each gene. However, this 
method does not consider potential correlations between 
genomic sites that are annotated to different genes, and it 
still relies on univariate mediation analysis for each gene. 
gHMA was proposed to conduct mediation analysis consid-
ering DNA methylation marks as mediators, however, the 
authors did not identify any mediated effects for the asso-
ciations between alcohol consumption and ovarian cancer 
risk or between childhood maltreatment and comorbid post-
traumatic stress disorder and depression. On the other hand, 
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several PCA-based mediation analysis methods have also 
been proposed [23••]. PCA methods effectively deal with 
the problem of correlations between mediators. However, 
they add the challenge of interpretability, as transformed 
variables are combinations of the original variables that 
might not be easy to interpret.

Bayesian Approaches for Mediation

Several Bayesian mediation methods have also been devel-
oped. These methods have the advantage that, as in all 
Bayesian methods, prior information on mediators can be 
introduced. The BAMA approach, developed in the hdbm 
R package [41], uses Bayesian variable selection models 
with sparsity-inducing priors on mediator effects, assuming 
that only a small proportion of the proposed mediators may 
mediate the effect of the exposure on the outcome. It applies 
the Markov chain Monte Carlo (MCMC) algorithm and uses 
posterior inclusion probabilities (PIP) to select mediators. 
This method was used to identify DNA methylation sites 
that might be mediators of the effect of socioeconomic sta-
tus on cardiometabolic outcomes in the Multi-Ethnic Study 
of Atherosclerosis [41]. Two improvements of the BAMA 
method have been proposed, one using four-component 
Gaussian mixture model (GMM) and the other one based 
on a product threshold Gaussian (PTG) prior [42]. These 
methods, however, do not directly incorporate correlations 
between mediators. The GMM-CorrS method uses Gaussian 
mixture models while accounting for the composite structure 
of the null hypothesis [43]. However, all these methods and, 
in general, most of the Bayesian methods are fitted using 
MCMC methods, which cannot easily be parallelized as each 
iteration directly depends on the result of the previous one. 
Therefore, they present many computational issues.

Discussion

In this article, we present an overview of the different media-
tion analysis methods that have been developed and could be 
applied to epigenomic data, highlighting their strengths and 
limitations. Although extensive research has been conducted 
to develop mediation methods that account for the particu-
larities of omics data, most of the methods have limitations 
that should be approached in future work.

Epigenetic marks, and in particular DNA methylation, 
have shown good predictive ability for several health out-
comes [44–48] and have shown evidence of a mediating 
role between environmental exposures and disease [49–51]. 
However, establishing whether DNA methylation is a bio-
logical mediator or, conversely, a biomarker of other dis-
rupted biological processes, is challenging. The no unmeas-
ured confounding assumption, which is essential to identify 

mediated effects, is impossible to verify in practice for 
observational studies [52•]. Thus, sensitivity analyses are 
needed to measure the impact of those potential unmeas-
ured confounders in the mediated effects. Many sensitiv-
ity analysis techniques have been developed for mediation 
analysis, including for survival outcomes [17, 20•, 52•, 53, 
54]. Relevant future work should include the adaptation of 
these sensitivity analysis techniques to the high-dimensional 
mediation setting. In addition, some methods are able to 
deal with exposure-mediator interactions, but in most of the 
methods, mediator-mediator interactions are not addressed.

One important feature when evaluating epigenetic marks 
as mediators is that, generally, we assume that the correla-
tions between them are non-causal, i.e., that they are not 
causally ordered. As many epigenetic marks present spatial 
correlations or correlations due to common influences of 
environmental factors, this hypothesis might be plausible. 
However, we cannot discard that some epigenetic marks 
might influence the activity of others. Even if there was a 
causal order, it would be very hard to disentangle which 
epigenetic modifications precede others with current tech-
nology. Increasing biological knowledge will hopefully help 
to shed light on the correlation structure and causal order of 
epigenetic marks, and will also potentially help with inter-
pretability of results found in mediation analysis of epige-
netic data. On the other hand, in cross-sectional studies, the 
exposure and DNA methylation are often measured at the 
same time, therefore, it is unclear whether some reverse cau-
sation might exist, or whether the exposure actually precedes 
DNA methylation dysregulations. Collecting longitudinal 
data on both the exposure and the mediators will help to 
identify the causal structure and to ensure the correct tempo-
ral order. In the meantime, caution needs to be taken to draw 
conclusions from mediation analysis involving epigenetic 
marks as mediators.

In principle, many of the described mediation methods 
could be applied to other omics data types. In fact, one of the 
main goals of omics data research would be to integrate all 
omics data together in statistical models, in order to maxi-
mize the information they provide. However, each omics data 
has its particular characteristics. For genomic SNPs data, for 
example, the dimensionality is sometimes much larger than 
for microarray epigenomic data (several millions of variables, 
instead of hundreds of thousands). Therefore, some variable 
selection or mediation methods might present huge compu-
tational times when applied to genomic data. Several efforts 
have been made to integrate different omics data, such as the 
Signature Regulatory Clustering (SiRCle) tool [55], which 
aims to integrate DNA methylation, RNA-seq and proteom-
ics data. The integration of proteomics data, however, consti-
tutes another statistical challenge, as proteomics data gener-
ally present a huge number of missing data, sometimes above 
90% [56]. Therefore, imputation methods would need to be 
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incorporated to mediation analysis to be able to deal with these 
data. Future research should focus on disentangling how each 
omics layer influences the subsequent layer and how to inte-
grate all layers in mediation analysis.

An important limitation of epigenetic studies that also 
extends to mediation analysis is the lack of generalizability 
across populations. Although robust and generalizable epige-
netic modifications have been identified for some exposures or 
phenotypes, such as smoking [57] or cancer [58], little overlap 
has been found across populations for other exposures or end-
points. This could be due to some epigenetic marks being pop-
ulation-specific, due to technical differences on DNA meth-
ylation measurement and preprocessing, or due to not being 
able to appropriately account for confounding, among other 
reasons. Multi-cohort studies that evaluate the robustness of 
potential epigenetic mediators across populations are needed. 
Moreover, given that DNA methylation has shown to be highly 
tissue specific [59–61], DNA methylation measured in dif-
ferent tissues might lead to very different findings. However, 
DNA methylation measured in blood has shown potential, for 
example, for early screening of non-hematopoietic cancers 
such as breast [62] and colorectal [63] cancer. Thus, blood 
DNA methylation might induce dysregulations of important 
biological processes in different target tissues.

Importantly, the approach of considering environmental 
factors as mixtures is more appropriate than considering 
them as separate exposures, as environmental pollutants are 
known to co-occur in the environment. Therefore, describing 
the interrelations and interactions between them in associa-
tion with health outcomes is a relevant scientific question. 
However, environmental mixtures have been overlooked for 
mediation analysis due to the complexity of considering a 
high-dimensional exposure. The BKMR-causal mediation 
analysis method [64] deals with mediation analysis in pres-
ence of environmental mixtures, however, it has not yet been 
extended to the setting of multiple mediators. More research 
is needed to develop methods for mediation analysis in the 
omics data setting considering environmental mixtures.

Conclusions

The growing interest in evaluating the mediating role of epi-
genetic marks on the association between environmental fac-
tors and chronic disease has led to extensive methodologi-
cal discovery. Many sophisticated statistical methods that 
address important challenges of high-dimensional data have 
been developed in the last years. However, key challenges 
such as the development of sensitivity analyses, dealing with 
mediator-mediator interactions, including environmental 
mixtures as exposures, the integration of different omics 
data, or the determination of the causal structure of epige-
netic marks have not been adequately addressed. Therefore, 

more research is needed to improve existing methods for 
epigenomic mediation analysis.
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