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Abstract

Purpose of the Review Exposure to essential and non-essential metals is widespread. Metals exposure is linked to epigenetic,
particularly DNA methylation, differences. The strength of evidence with respect to the metal exposure type, timing, and
level, as well as the DNA methylation association magnitude, and reproducibility are not clear. Focusing on the most recent
3 years, we reviewed the human epidemiologic evidence (n =26 studies) and the toxicologic animal model evidence (n=18
studies) for associations between metals exposure and DNA methylation.

Recent Findings In humans, the greatest number of studies focused on lead exposure, followed by studies examining cad-
mium and arsenic. Approximately half of studies considered metals exposure during the in utero period and measured DNA
methylation with the genome-wide Illumina arrays in newborn blood or placenta. Few studies performed formal replication
testing or meta-analyses. Toxicology studies of metals and epigenetics had diversity in model systems (mice, rats, drosophila,
tilapia, and zebrafish were represented), high heterogeneity of tissues used for DNA methylation measure (liver, testis, ovary,
heart, blood, brain, muscle, lung, kidney, whole embryo), and a variety of technologies used for DNA methylation assess-
ment (global, gene specific, genome-wide). The most common metals tested in toxicologic studies were lead and cadmium.
Summary Together, the recent studies reviewed provide the strongest evidence for DNA methylation signatures with pre-
natal metals exposures. There is also mounting epidemiologic evidence supporting lead, arsenic, and cadmium exposures
with DNA methylation signatures in adults. The field of metals and DNA methylation is strengthened by the inclusion of
both epidemiology and toxicology approaches, and further advancements can be made by coordinating efforts or integrating
analyses across studies. Future advances in understanding the molecular basis of sequence specific epigenetic responses to
metals exposures, methods for handling exposure mixtures in a genome-wide analytic framework, and pipelines to facilitate
collaborative testing will continue to advance the field.

Keywords Metals - Epigenetics - DNA methylation - Exposure - Lead - Cadmium

Introduction

Environmental exposures to metals are an enduring public
health issue. Non-essential metals, such as lead and cad-
This article is part of the Topical Collection on Metals and Health mium, are those with no normal physiologic function in
the body. At increasing levels, they have deleterious effects
on multiple health endpoints, including neurodevelopment
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function or as a component of amino acids (selenocysteine)
[5, 6]. Essential metals can exhibit non-linear dose—response
curves with health endpoints, wherein toxicity is observed
at both low and excess levels. Epidemiology studies can
approximate human exposure to environmental trace met-
als through biomonitoring levels in human tissue (e.g., pla-
centa, whole blood) and excretion samples (e.g. urine and
fecal samples), but these studies are often observational and
available tissues may be limited. Toxicology studies of trace
metals are better able to assess causality and mechanisms
of action; however, their findings may not always be able
to be extrapolated to humans. Selection of model systems
and relevance of dose for human exposures are important
toxicologic study design factors. Across both epidemiology
and toxicology studies of metals, the exposure timing (e.g.,
adulthood, in utero), route (e.g., inhalation, ingestion, injec-
tion), duration (e.g., acute, chronic), and source, and dose
may influence the impacts. Altogether, the integration of
complementary evidence from both epidemiology and toxi-
cology studies are critical for advancing human health risk
assessments of metals exposures.

Metals exposure levels related to health can have epi-
genetic marks as a biomarker or mechanism of that action.
Upon human exposure, trace metals can interact with
enzymes and interfere with intracellular gradients of micro-
nutrients and reactive oxygen species [7]. These interactions
are detectable via shifts in molecular signals, including epi-
genetic modifications [8]. There are several types of epi-
genetic modifications, and although their mechanisms are
unique, they have important implications for regulating gene
expression. DNA methylation is one epigenetic mechanism
that can directly influence the magnitude of gene expres-
sion. Levels of epigenetic factors and responses to metals
exposure can be tissue specific. For example, whole blood
and saliva are less invasive source tissues in epidemiology
studies, and they may be a proxy or surrogate of changes in
the epigenome at hypothesized target organs where toxico-
logical effects are occurring [9]. Studies conducted in animal
models are better equipped to directly determine epigenetic
mechanisms in target tissues, such as the brain or heart. The
timing of epigenetic measurements is also important. When
measuring epigenetics as a potential consequence of envi-
ronmental exposures, prospective study designs with expo-
sure prior to DNA methylation measurement are necessary.
Biologically, there are major waves of epigenetic change
throughout the life course, including the in utero or early
life period for all tissues, or other time periods like puberty
for specific tissues. Studies may monitor exposures during
these windows of epigenetic susceptibility.

In this review article, we link together exciting recent
research on metals and epigenetics. The field of metals and
epigenetics has been active for at least two decades and pre-
vious review articles summarized early progress [10—13].

@ Springer

To bring the reader up to date, in this article, we focused on
metals and epigenetics research published in the last 3 years.
First, we cover the domain of human population-based epi-
demiology. Second, we review studies using model system-
based toxicology. In both fields of research, we summarized
their findings and evaluated the strength of the current evi-
dence. Lastly, we reflect on the critical gaps and future direc-
tions of this field to make suggestions for strategies to make
further advances.

Metals and Epigenetics: Epidemiologic
Evidence

Many recent studies have associated metal exposures to
changes in epigenetic endpoints. Through a PubMed search
(Supplementary Methods) and subject matter expertise, we
identified recent epidemiologic observational studies, pub-
lished between January 1, 2019, and March 31, 2022. DNA
methylation is the most common epigenetic endpoint used in
epidemiologic studies that include epigenetic measurement.
We included studies based on DNA methylation being the
primary endpoint, metal exposure the primary exposure, and
observational studies based on human subjects only (Supple-
mental Fig. 1). These epidemiological studies vary in design,
sample characteristics, and timing of exposure and DNA
methylation collection. Our findings included 26 observa-
tional studies, including three prospective studies, three
meta-analyses, nineteen cross-sectional studies, and one
case—control study (Table 1). We organized the results by
study design and when possible, by metal exposure (Fig. 1).

DNA methylation is sequence specific and microarrays
or sequencing technologies allow for measurement of DNA
methylation at candidate locations or genome-wide to test
for differentially methylated positions or regions. Epige-
nome-wide association studies (EWAS) are performed as a
discovery analysis when all positions or regions are tested
for differences. These methods often rely on bisulfite treat-
ment of the DNA, which converts an un-modified cytosine
to uracil and maintains modified cytosines in the sequence.

Prospective Studies

Prospective studies are a strong epidemiologic study design
as the exposures are measured prior to DNA methylation
measures, limiting the potential for reverse causation. We
identified three prospective studies testing prenatal mater-
nal lead concentration levels and cord blood DNA meth-
ylation at birth. Although there were substantial differences
in sample size, these studies were characterized by having
repeated measures of lead concentrations during critical ges-
tational periods with the purpose of unveiling (1) trimester-
specific effects of maternal lead exposure on the offspring
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DNA methylation levels, and (2) sex-specific DNA meth-
ylation patterns in response to lead exposure. Specifically,
in a cohort of Mexican mother—child pairs, first trimester
blood lead concentrations were associated with DNA meth-
ylation levels at three sites, annotated to the genes RABSA,
EXT1, and a non-genic region, and sites were enriched for
pathways related to neurodevelopment [24]. No associations
were observed between second trimester maternal blood lead
levels and DNA methylation, but third trimester blood lead
concentrations were associated with one site in a non-genic
region [24]. Additionally, in a study of mother—child pairs in
Korea, the maternal blood lead levels measured during preg-
nancy weeks 12-20 were tested with infant sex-specific cord
blood DNA methylation was tested [23]. Among males, 11
sites were differentially methylated by lead levels, and sites
were enriched for endothelial cell development via CDH5
and axonogenesis via PLXNA4 [23]. Among females, no dif-
ferentially methylated sites were observed [23]. Finally, a
multi-metal epigenome-wide association study in the USA
explored the relationship between prenatal exposure to
essential and non-essential trace metals during first trimes-
ter of pregnancy and DNA methylation at two time points,
in cord blood at birth and in whole blood at mid child-
hood [21]. Manganese concentrations were associated with
higher DNA methylation at one site, mapping to the gene
A2BPI, while lead exposure was associated with to lower
DNA methylation of a site, mapping to the gene CASPS.
In females, manganese exposure was associated with nine
differentially methylated sites, seven of which persisted to
mid-childhood [21]. Among males, manganese exposure
was associated with higher DNA methylation of one site
linked to the gene A2BP1, which persisted to mid-childhood
[21]. Jointly, the results from these studies suggest that metal
exposures during critical gestational periods, in particular
during the first trimester of pregnancy, are associated with
sex-dependent differences in DNA methylation in the off-
spring, which may persist until mid-childhood.

Meta-analyses

Discovery analyses through EWAS are often challenged
by a greater number of DNA methylation positions being
tested than number of participants in the study. Testing for
replication or meta-analyses across samples can help reduce
false positive associations. It has traditionally been difficult
to perform meta-analyses of metal exposure epigenetic sig-
natures due to heterogeneity in relevant design character-
istics such as sample size, demographic composition (sex
and genetic ancestry), timing of metal exposure (prenatal
vs adulthood), and epigenetic tissues measured (cord blood,
buccal cells, and blood). Three recent meta-analyses used
standardized protocols to harmonize exposure assessment
and DNA methylation datasets with the aim of identifying

epigenetic signatures of copper [18e], arsenic [20e], and
mercury exposure [22e], across different populations.

The first meta-analysis combined data from two mother-
infant pair cohorts, the New Hampshire Birth Cohort Study
and the Rhode Island Child Health Study, to explore the
relationship between placental copper concentrations and
genome-wide DNA methylation in placental tissue [18e].
These cohorts had similar collection of demographic and
anthropometric measures from mother-infant pairs, assess-
ment of metal concentrations, measurement of DNA meth-
ylation, and data analysis procedures. Through meta-anal-
ysis, placental copper concentrations were associated with
DNA methylation at 15 sites and a region in the promoter of
the gene GSTPI [18e]. Sensitivity analyses indicated these
results were robust to differences in the racial/ethnic compo-
sition of the two cohorts [18e]. With common investigators
involved in the design of these two cohorts, harmonization
of exposure assessment and DNA methylation measurement
was facilitated.

In the meta-analysis of prenatal mercury exposure and
DNA methylation, seven existing cohorts participated
[22e], and this collaboration was facilitated through the
Pregnancy and Childhood Epigenetics consortium [40].
Total mercury cord blood concentration was selected as
the primary exposure variable. For cohorts with mercury
assessment in different tissues (one in maternal hair and
five in maternal whole blood), exposure levels were trans-
formed to cord blood levels. The timing of DNA methyla-
tion measures varied across cohorts. Five cohorts meas-
ured cord blood DNA methylation at birth, four cohorts
measured child blood DNA methylation at ages 7-8, and
two cohorts had DNA methylation measures for both time
points [22e]. By leveraging the increased power across
cohorts, the meta-analysis identified mercury exposure
was associated with higher DNA methylation levels at two
sites mapped to the MED31 gene in both cord and child-
hood blood. These findings suggest prenatal exposure to
mercury is associated with DNA methylation differences
at birth that are sustained through childhood.

Third, the meta-analysis of arsenic and DNA meth-
ylation aimed at identifying arsenic related signatures of
DNA methylation across two different studies (in Chile
and Bangladesh) through standardized data pipelines,
study design procedures, and common applications of
statistical methods [20e]. The two study samples had dif-
ferences in exposure assessment and selected tissues for
DNA methylation analysis. The Chilean study assessed
exposure based on recruitment from historical high or low
arsenic exposure areas. The Bangladesh study measured
baseline arsenic levels in water samples during recruitment
[20e]. The Chilean sample used peripheral blood mono-
nuclear cells (PBMCs) and buccal cells for DNA meth-
ylation measurement, while the Bangladesh study used
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blood samples only [20e]. Results were meta-analyzed
using a combination of all PBMC samples from Chile and
Bangladesh, and all PBMC samples (Chile and Bangla-
desh) plus buccal cells (Chile only). The meta-analysis
from all PBMC samples revealed 11 differentially methyl-
ated regions, the meta-analysis from PBMC plus buccal
cells identified 16 differentially methylated regions, and
eight of the differentially methylated regions overlapped
[20e]. Arsenic-associated sites were enriched for pathways
related to fatty acid elongation, fatty acid metabolism, and
lysosome activity [20e]. In general, these copper, mercury,
and arsenic meta-analyses leverage large sample sizes to
achieve statistical power to detect common epigenetic
signatures from unique metal exposures across widely
diverse populations. Standardized data procedures facili-
tated DNA methylation analysis from different tissues and
time points to identify persistent epigenetic differences
across the lifespan.

Cross-sectional Studies

Cross-sectional studies are a highly feasible epidemiologic
study design because they only require one participant visit,
though we should be cautious when interpreting findings.
Across 19 cross-sectional studies identified, lead exposure
was the most researched metal [16, 17, 25, 26]. These stud-
ies varied in sample size, geographical region, and target
tissue. In general, lead blood levels were associated with
gene specific DNA methylation patterns, higher average lev-
els of DNA methylation, or differentially methylated sites.
In Zambia, blood lead levels were correlated with differen-
tial patterns of DNA methylation of the ALAD and the p16
tumor suppressor gene promoter regions [16]. At least 84.3%
of children with high lead exposure levels exhibited altered
ALAD gen DNA methylation, in comparison to only 42.1%

@ Springer

of children with low lead exposure levels [16]. In a study
involving neonates from the USA, lead exposure was asso-
ciated with lower cord blood DNA methylation at 30 sites
and higher methylation at three sites [25]. These associations
were attenuated after adjusting for blood cell type propor-
tions, which is an important factor in DNA methylation pro-
files. A small study of occupational lead exposure in China
analyzed DNA methylation associations with high blood
lead levels (> 300 pg/L) versus low (< 100 pg/L), and lead
concentrations were associated with 356 differentially meth-
ylated sites enriched for pathways associated with nervous
system development [32]. Lastly, in Mexico, an epigenome-
wide association study of prenatal lead exposure and cord
blood DNA methylation found 47 differently methylated
sites, 20 of which were previously identified to be associ-
ated with low birth weight [26]. These findings may suggest
differences in DNA methylation may be a mechanism by
which lead exposure contributes to low birth weight [26].
Altogether, these studies provide evidence of the variable
effects of lead exposure on DNA methylation at early life
stages and during adulthood, though a formal meta-analysis
across studies has not yet been performed and is warranted.

After lead, the next most abundant metals examined in
human cross-sectional studies are cadmium, arsenic, and
chromium. Among 13 American Indian tribes, cadmium
exposure in adults was associated with six DNA methyla-
tion sites, and sites were enriched for cancer pathways, car-
diovascular disease risk factors, and inflammation [30]. A
cross-sectional analysis of electroplating workers in China
found chromium exposure was associated with eight DNA
methylation sites, these results were confirmed in vitro
and were associated with expression of SEMA4B, a gene
involved in chromium-related carcinogenesis [31]. Chronic
arsenic exposure has previously been associated with epige-
netic dysregulation and carcinogenesis. A large US cross-
sectional study observed arsenic exposure was associated
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with 20 differentially methylated sites and one differentially
methylated region, which were consistent across sex groups
and replicated findings from independent studies [28]. The
most significant differentially methylated site mapped to the
SLC7A11 gene, involved in transport of cysteine, an estab-
lished mechanism related to arsenic [28]. In a cross-sectional
study in Spain and Bangladesh, urinary arsenic levels were
associated with six common differentially methylated sites
and seven differentially hydroxymethylated sites, enriched
for cardiometabolic disease, inflammation, and cancer [29].
Across these metals, there may be sufficient individual stud-
ies for a formal meta-analysis to examine consistency across
populations.

Environmental exposure to metals occurs in mixtures,
and a diverse set of cross-sectional studies have analyzed
the associations between multiple metal exposures and
DNA methylation. For example, among Chinese mothers
exposed to e-waste recycling areas during pregnancy, con-
centrations of lead, cadmium, manganese, and chromium
were tested for association with DNA methylation in their
newborns’ cord blood [27]. Multiple metal exposures were
associated with 125 differentially methylated sites, includ-
ing 79 with higher DNA methylation and 46 with lower
DNA methylation [27]. In Taiwan, a log unit increase in
lead concentration was associated 0.315% higher global
DNA methylation (p <0.001), and a log unit increase in
cadmium concentration was associated with 0.263% higher
global DNA methylation (p <0.001) [17]. One study evalu-
ated the relationship between maternal concentrations of
three non-essential metals (lead, cadmium, and mercury)
and two essential trace metals (manganese and selenium),
and whole blood DNA methylation levels during pregnancy
[19¢]. Cadmium and manganese exposure were associated
with higher global DNA methylation [19¢]. Lead was associ-
ated with 11 differentially methylated sites (false discovery
rate <(0.1), enriched for neurology-related gene ontologies
[19e], similar to previous observations [24]. These studies
demonstrate that differences in DNA methylation may be
observed at different life periods with concomitant exposure
to multiple metals.

Case-control studies

Case—control studies can be leveraged for environmental
epigenetic epidemiology to provide insights for populations
with existing conditions. A matched case—control study con-
ducted mediation analysis to explore the indirect effect of
DNA methylation at the WNT3A gene on the relationship
between prenatal lead exposure and non-syndromic cleft
lip and/or palate (NSCL/P). In utero lead concentrations
were associated (p <0.05) with 0.52% higher DNA meth-
ylation at the WNT3A gene. They also observed that 9.2%
of the lead exposure association with non-syndromic cleft

lip and/or palate may be attributable to the mediating effect
of WNT3A DNA methylation. Additional studies indirectly
point to the role of metals in DNA methylation. For example,
a matched case—control study explored the joint association
between blood aluminum levels and DNA methylation of
the beta-2 adrenergic receptor (ADRB2) gene in asthmatic
children (n=70) compared to those without asthma (n=70)
[41]. High aluminum levels were associated with asthma
(OR=11.6,95%CI: 2.1, 63.4), but high ADRB2 DNA meth-
ylation was not associated with asthma (OR=0.7, 95%CI:
0.2, 3.1), suggesting uncontrolled asthma may be affected
by elevated blood aluminum concentrations rather than
ADRB2 DNA methylation [41]. However, the study did not
explore the relationship between aluminum concentrations
and ADRB2 DNA methylation levels directly. In studies such
as this, it will be possible to directly test for relationships
between exposure and DNA methylation in the future.

Together, the recent epidemiology studies reviewed pro-
vide the strongest evidence for DNA methylation signatures
with prenatal exposures to lead, mercury, arsenic, copper,
and cadmium. Epidemiology studies of metals and DNA
methylation are strengthened by prospective study designs
and collaborative meta-analysis or replication testing. Com-
mon limitations of these studies include using surrogate tis-
sues for both exposure and DNA methylation assessment,
instead of the target tissues. DNA methylation measures
area often collected at delivery, though critical periods in
development may occur earlier. Complementary toxicology
studies are able to overcome many of these challenges and
provide controlled exposure doses and epigenetic measures
in target tissues.

Metals and Epigenetics: Toxicologic Evidence

Overview of Metal Exposure Toxicology Studies
with Epigenetic Endpoints

Metal exposure toxicology studies with epigenetic endpoints
seek to investigate biological mechanisms of exposure toxic-
ity and the role of changes in the epigenome. We searched
for metal exposure toxicology studies with epigenetic end-
points published as current research between January 1,
2019, and March 21, 2022 (Supplementary Methods). We
included studies based on epigenetic factors being the pri-
mary endpoint, metal exposure the primary exposure/treat-
ment, and studies in animal models only (Supplemental
Fig. 2). A total of 18 studies were identified (Table 2).

The studies profiled here were extremely diverse in
every aspect. The metal exposures evaluated in these stud-
ies included: cadmium (7 studies), lead (5 studies), titanium
dioxide (1 study), uranium (1 study), and arsenic (1 study),
with an additional study that evaluated a mixture of lead
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Fig.2 Summary of toxicology-
based metals exposure and
DNA methylation studies pub-
lished between January 1, 2019,
and March 31, 2022
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and cadmium exposure (1 study) (Fig. 2). Exposure methods
included drinking water, lactation, gavage, intraperitoneally
injection and inhalation. Multiple in vivo experimental
models were used including mice (C57BL/6 J, CD1, NIH/
OlaHsd), rats (Sprague—Dawley, Wistar, Long-Evans), dros-
ophila, zebrafish, and Nile tilapia fish. The target tissues
evaluated for DNA methylation in the studies varied consid-
erably. The liver (5) and testes (4) were the most common
targets, with additional tissues including the spermatozoa
(2), brain (2), blood (2), embryos (2), kidney (1), ovaries (1),
heart (1), and muscle (1). DNA methylation was the princi-
pal epigenetic endpoint measured in all toxicology studies,
though most of the studies evaluated multiple epigenetic
endpoints. Methyl groups are added to DNA using DNA
methyltransferase (DNMT) enzymes, and studies measure
levels or activity of DNMT to understand regulation of DNA
methylation. Expression DNMTs and ten-eleven transloca-
tion (TET) methylcytosine dioxygenases were often meas-
ured as secondary epigenetic endpoints.

Assessment Methods of DNA Methylation
in Exposure Toxicology Studies

DNA methylation was the primary epigenetic endpoint
measured in the exposure toxicology studies, though there
were considerable differences in the assessment methods.
Specific DNA methylation endpoints included global,
genome-wide, and locus-specific. Approximately half of the
studies reported results for global DNA methylation, which
represents overall degree of methylated cytosine compared
to total cytosine content [60]. Studies reporting changes in
global DNA methylation used colorimetric, ELISA, or lumi-
nometric microplate—based assays, or bisulfite conversion/
pyrosequencing of LINE-1, a repetitive DNA retrotranspo-
son used as a proxy for global DNA methylation because it
constitutes 17% of human genome [61]. The other half of
included toxicology studies evaluated genome-wide DNA
methylation with either whole genome bisulfite sequencing
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(WGBS), an expensive method that covers DNA methylation
across the entire genome [62], or enhanced reduced repre-
sentation bisulfite sequencing (EERBS), a more streamlined
method that focuses coverage on a large number of biologi-
cally relevant loci. Lastly, a handful of profiled studies evalu-
ated the DNA methylation at individual gene loci, primarily
focusing on imprinted genes.

Differential DNA Methylation in the Liver in Metal
Exposure Toxicology Studies

As a major organ, the liver is the primary site of xenobi-
otic metabolism in vivo, making it a prominent target for
metal exposure toxicity [63]. In the studies profiled here,
the liver was the most evaluated target tissue for changes
in DNA methylation. Only two studies evaluated the same
metal (lead) and target tissues (liver and blood), using the
same model (mice) [54e, 57]. In both studies, maternal
mice were exposed to lead through drinking water 2 weeks
prior to pregnancy, during pregnancy, and through wean-
ing [54e, 57]. Male and female base-pair resolution DNA
methylation was measured in offspring at 3 weeks old in
one study [57] and 5 months old in the other study [54e].
Although, both studies had hundreds of tissue- and sex-
specific differentially methylated regions in lead-exposed
tissues compared to controls, there was little in common
between the results reported. For example, one of the
goals of the two studies was to determine if DNA meth-
ylation changes in the liver corresponded to those in paired
blood samples. In young mice, there were few differen-
tially methylated regions in common between the blood
and liver; however, in the adult mice, there were hundreds
of differentially methylated regions in common between
the two tissues. Moreover, each study had differentially
methylated regions at different imprinted genes in com-
mon between blood and liver: young mice had Aridib,
PdelOa, Smoc2, Trappc9, and adult mice had Bargain,
Pegl2, Rasgrfl, Snrpn, and different enriched pathways.
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Together, the results of these two studies demonstrated
that perinatal lead exposure caused changes in liver and
blood DNA methylation in a dynamic manner over time,
even after lead exposure had ceased.

In addition to the two studies, several other studies
evaluated exposure induced differential DNA methyla-
tion in the liver. One study demonstrated that cadmium
exposure in adult rats caused statically significant lower
DNA methylation in liver gene promoter regions [52e],
while a second study demonstrated that cadmium exposure
in juvenile tilapia fish caused significant time- and dose-
dependent lower global DNA methylation [46]. These find-
ings suggest that cadmium exposure may cause a trend
toward lower DNA methylation in functional regions of
the genome, with potential impacts on gene expression.

Differential DNA Methylation in Brain and Embryotic
Tissue in Metal Exposure Toxicology Studies

In addition to the liver, multiple toxicology evaluated expo-
sure-induced differential DNA methylation in other target
tissues. Neurotoxicity is one of the most studied adverse
health outcomes of lead exposure. Two studies evaluated
the effects of perinatal lead exposure on DNA methylation
in different parts of the rodent brain [43, 45¢]. One study
evaluated neurons isolated from the mouse neuronal cortex
[43], and the other study evaluated bulk tissue from the hip-
pocampus [45¢]. The neuron study reported a trend towards
lower DNA methylation in gene promoter regions in the
cortex [43]. In contrast, the hippocampus study reported
higher DNA methylation in gene promoter regions of the
hippocampus [45¢]. The results of these two studies demon-
strated that exposure to metals may cause variable changes
in DNA methylation within different regions from the same
organ.

Besides the brain, early embryonic target tissue was
evaluated in several studies for exposure-induced differen-
tial DNA methylation. During early embryonic develop-
ment, DNA methylation undergoes multiple windows of
reprogramming, making embryos particularly vulnerable to
exposure-induced alternations to DNA methylation, which
can last into adulthood and impact chronic disease risk [64].
One study reported lower methylation in 12-h cadmium-
exposed zebrafish embryos that returned back to baseline
by 24-h exposure [42]. Another study reported no change
to the global DNA methylation status of LINE-1 in preim-
plantation mouse embryos perinatally exposed to cadmium
[58]. The findings of these two studies suggest that cad-
mium exposure may not significantly affect global DNA
methylation; however, more comprehensive studies using
base-pair resolution methods and cell type adjusted methods
are needed to further understand the effects of cadmium on
embryonic tissue DNA methylation changes.

Effects of Metal Exposure on Multi-generational
Changes in DNA Methylation in Toxicology Studies

Multi-generational epigenetic studies are conducted with
exposure in one generation and epigenetic markers measured
in subsequent generations. Maternal (FO) exposure to toxi-
cants during pregnancy can directly cause changes in DNA
methylation and traits in the offspring (F1) generation [65].
The F2 generation was also directly exposed to the toxicant
through germ cells, and changes have been observed [65].
Some research examines the F3 and subsequent generations
that were never directly exposed to the toxicant. Reflected
in current research, there has been considerable interest in
studying effects of maternal metal exposure on DNA methyl-
ation patterns in adult offspring and subsequent generations.
Half of the studies profiled here evaluated multigeneration
effects of metal exposure. Although the variability in study
designs makes it hard to draw specific conclusions about
the findings, these studies reported some type of alterations
to DNA methylation resulting from maternal exposure to
metals. Most of the studies only involve evaluation of epige-
netic changes in the F1 generation; however, several studies
extend findings to the F2 and F3 generations. For example,
in response to arsenic exposure in rats, lower global testes
DNA methylation was observed in FO, higher testes DNA
methylation was observed in F2 and F3, and higher ovary
DNA methylation was observed in F3 [51]. Collectively,
the current studies have demonstrated metal exposures are
capable of causing multigenerational epigenetic alterations;
however, the effects of such alterations on the health trajec-
tory over the life course of individuals in future generations
is not yet understood.

Summary, Critical Gaps, and Future
Directions

Metals exposure and epigenetics research is in a period of
rapid growth. A critical mass of studies and research groups
are active in the area, which has generated breadth in the
timing and type of exposure measures, as well as the timing
and tissue of DNA methylation measures. Studies from the
last 3 years offer compelling findings in their study popula-
tion or model system. In recent human epidemiology studies,
there is most evidence for lead and cadmium exposure dur-
ing pregnancy and DNA methylation differences in tissues
collected at birth (cord blood and placenta tissue). In recent
toxicology studies, there is most evidence for prenatal lead
and cadmium exposure causing differences in DNA meth-
ylation in liver from rodent models. Building on these suc-
cesses, we identify areas of future development to advance
the field.
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The most pressing and perplexing question in metals
exposure epigenetics, and indeed in environmental epige-
netics more broadly, is the molecular basis for highly repro-
ducible, sequence-specific epigenetic differences. Metals
may have a generalized response on epigenetic modifying
enzymes. For examples, exposures, including some metals,
that generate reactive oxygen species can deplete available
methyl groups [66] or oxidize DNA which alters methyl
binding domains [67]. Metals can also influence levels of
DNMT enzymes [68] and cadmium can non-competitively
bind DNMT, changing enzyme function [69]. Metabolism
of metals, particularly arsenic, may also influence the avail-
ability of the methyl substrate for DNA methylation [12].
These types of epigenetic enzyme-based mechanisms would
be expected to produce widespread or global differences in
DNA methylation, which have been observed [68]. How-
ever, they fail to account for the highly sequence specific
differences in DNA methylation that are also observed with
metals exposures. The availability of sequences for action
by epigenetic enzymes (based on the presence or absence of
transcription factors or histone occupancy) varies by devel-
opmental timing and tissue, and this has been hypothesized
to dictate the exposure-epigenetic specificity [70, 71]. Simi-
larly, while groups of environment-related DNA methylation
differences are concurrently associated with gene expres-
sion differences [72], and new findings suggest epigenetic
factors may influence cellular cytoskeletal structures [73],
the range of potential consequences of environment-related
DNA methylation differences have not been fully explored.
Early life epigenetic programming may have lagged effects
in adulthood [74], requiring longitudinal investigations of
consequences. Targeted, sequence-specific epigenetic edit-
ing techniques [75, 76], such as using piRNA to edit DNA
methylation [77], CRISPR to modulate chromatin marks or
perturb DNA [78], or the DNA binding proteins zinc finger
nucleases and transcriptional activator like effector nucle-
ases [79] are emerging. Experimental toxicologic work using
these types of techniques will revolutionize the biologic
understanding of the consequences of altered DNA meth-
ylation. Understanding the biologic basis for reproducible,
sequence-specific signatures of metals exposure and their
consequences will catapult the field forward.

There are numerous complementary areas of future
development in the fields of metals exposure modeling and
in epigenetic measurement. With respect to metals expo-
sure, especially for essential metals where adverse effects
are expected at both low and high exposures, we need to
incorporate non-linear dose-response curves. In epide-
miology studies, the choice of biological media for expo-
sure assessment is a function of important considerations,
including metabolism and half-life of metals, directness of
inference to biological processes according to tissue speci-
ficity, and invasiveness towards human subjects sampling.
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Additionally, some metals, such as arsenic may be con-
jugated or modified upon metabolism within the human
body. As such, different species of metals may be quantified
and afford inference of the metal at different stages of the
metabolism process. Metals exposures occur in combina-
tion and can influence absorption and metabolism of each
other. Advanced methods for modeling exposure mixtures
has been applied [21], though will be challenged by fea-
tures of complex exposure matrices, including sparsity of
effect estimate signals within small sample sizes, collinearity
between exposures, and potential high-dimensional inter-
actions between exposures. Inclusion of multiple offspring
generations of model systems may yield important insight
into potential transgenerational effects attributable to metals
exposures. Multigenerational studies should take particular
care when interpreting potential effects, as up to three gen-
erations may be directly exposed to the parent chemical.
Future work may also incorporate genetic polymorphisms
that influence metals metabolism, and in turn, may modify
the relationship between metals exposure and epigenetics.
In the area of epigenetic markers, repeated longitudinal
epigenetic measures will help answer questions of the per-
sistence and timing of exposure and epigenetic associations.
The development of human DNA methylation microarrays
enabled standardization of measurement across popula-
tions, and the new mouse DNA methylation microarray and
the new custom mammalian array [80] should enable new
opportunities for cross-toxicology study investigation. Nota-
bly, standard laboratory methods collapse all DNA modi-
fications (methylation, hydroxymethylation, formylation,
carboxylation), though findings are often attributed to the
most abundant DNA modification, which is DNA methyla-
tion. Studies highlighted here have largely focused on DNA
methylation for utilitarian purposes (stability of the marker
in archived samples), though biologically DNA methylation
is expected to follow histone modifications [81]. Histone
modifications are expected to be rapid responses to envi-
ronmental conditions with more immediate impacts on gene
expression, while DNA methylation provides longer-term
maintenance of environmental signals [82]. Earlier environ-
mental epigenetic influences may be captured by using addi-
tional epigenetic markers, including histone modifications.
Measures of hydroxymethylation may also be considered,
particularly early in development or in brain or placenta tis-
sues where the marker is most abundant [83]. Rapid expan-
sion in technology to measure multi-omics data frames in
combination with enhanced exposure assessment will yield
new opportunities. Improvements in the areas of metals
exposure modeling and expansion on epigenetic markers
under consideration or standardization of epigenetic meas-
ures will build on the existing foundational research.
Additionally, advances in the field of metals and epi-
genetics together will continue. The rigor of associations
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between metals exposures and epigenetics is enhanced by
testing triangulation using diverse study designs and is a
major current strength. This includes testing findings across
toxicologic model systems for evolutionary conservation
and across diverse human study samples with wide ranges
of exposure for assessing generalizability or specificity of
signals. Statistically, we have noted that several the current
studies lack replication testing and are underpowered for
epigenome-wide assessment. As with any genome-wide
analysis with relatively small effect sizes and small sample
sizes, false positive associations are expected. It is time for
partnerships and replication testing to increase the impact
and rigor of the research. Larger and more collaborative
epidemiologic studies which involve replication testing or
meta-analysis, akin to the recent mercury study in the PACE
consortium [22e], are critically needed. There is also high
potential for these collaborative meta-analyses of metals and
epigenetics through the Toxicant Exposures and Responses
by Genomic and Epigenomic Regulators of Transcription
(TaRGET II) consortium [84], the Environmental Influ-
ences on Child Health Outcomes (ECHO) consortium [85],
and the Cohorts of Heart and Aging Research in Genetic
Epidemiology (CHARGE) consortium [86]. When testing
associations between metals exposures and epigenetics, we
need to be clear about the limits of the inferences we can
make (association, biomarker, mechanism, cell composition
marker) [87]. For example, reproducible epigenetic signa-
tures of metals may be assessed as biomarker of exposure,
as has been effectively demonstrated with smoking epige-
netic signatures [88] and follow-up questions can include the
persistence and cross-tissue applicability of the biomarker
signal. Currently, human studies lack evidence of a causal
relationship between metals exposure and epigenetic signa-
tures, but toxicologic studies are advancing this area. Epige-
netic signatures may be a marker of metals exposure-induced
altered cell type composition, particularly in toxicology
studies where cell type has generally not been adjusted for,
which could be an important biologic effect of exposures
[89]. Continued and expanded collaboration across metals
and epigenetics studies will enable the assessment of repro-
ducible findings, which will open opportunities for using
these signatures in biomarker or mechanistic studies.

Conclusion

In summary, metals exposures that are common in popu-
lations are associated with epigenetic markers, specifically
DNA methylation. To date, epigenome-wide studies have
largely investigated cadmium and lead exposure measured
in blood and observed sequence specific differences in DNA
methylation, though replication testing is needed. It is an
exciting era for metals and epigenetics studies with emerging

methods for multi-metal exposure assessment, reproducible
epigenome-wide DNA methylation measures, and pipelines
to facilitate collaborative testing. The next several years are
expected to bring further rapid advancements.
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