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Abstract
Purpose of Review  There is interest in evaluating the developmental origins of health and disease (DOHaD) which empha-
sizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. 
The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood 
onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with 
prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers 
that capture inter-individual differences in biologic response to external environments.
Recent Findings  Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker 
to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to 
date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in 
human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic 
patterns to serve as exposure biomarkers.
Summary  Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across 
a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other 
environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that 
can be used to evaluate early-life risk factors for health outcomes across the life span.
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Introduction

The developmental origins of health and disease (DOHaD) 
hypothesis is rooted in understanding the role of the early-
life environment on health outcomes across the lifespan. 
This hypothesis stems from evidence built over decades 
demonstrating that environments encountered in utero and 
during early life are associated with future non-communi-
cable disease risk [1–3]. Most DOHaD studies to date have 
focused on growth, nutrition, stress, and other exposures 

that are feasible to measure using questionnaire or medical 
or other record-based data due to practical challenges with 
prospectively collecting exposure data from the prenatal and 
early-life windows and health outcomes in childhood, ado-
lescence, and adulthood. Additional challenges to rigorously 
evaluating DOHaD include the short biologic half-life of 
many existing environmental toxicants (e.g., cotinine, phtha-
lates, bisphenol A), self-report or external measures may not 
capture inter-individual differences in biologic response to 
an exposure or the “internal dose” experienced, and harmo-
nization across studies due to different exposure measures. 
For these reasons, our ability to fully assess and identify 
prenatal and early-life risk factors associated with disease 
across the life course is limited. Thus, there is a need for 
effective molecular biomarkers that can be used to predict an 
individual’s exposure history and are harmonizable across 
studies to identify early-life exposures associated with future 
disease risk.

Ideal biomarkers are specific, long-lasting in the body, 
and reflect the dose of exposure. Additionally, they must 
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be present in easily accessible biospecimens [4]. Contrary 
to mechanistic studies that would require examination of 
an affected tissue to determine the relationship between an 
exposure and a health outcome, assessment of an affected 
tissue is not required to establish an effective biomarker. 
However, given that many molecular modifications that are 
often used as biomarkers are necessarily different across tis-
sue types, this must be accounted for and considered when 
establishing and implementing biomarkers, and when look-
ing across tissue types. Additionally, many substances have 
short half-lives; thus, more long-lasting molecular changes 
that are specific to an exposure can be a more accurate rep-
resentation of an individual’s past exposure. Thus, the ease 
and accessibility of the measurement matrix is critical, and 
tissues such as blood, cord blood, and saliva, are often used 
in studies of biomarkers. These features of a biomarker are 
especially important when considering how the environ-
ment encountered during critical windows of development, 
such as early life, can influence future health and disease. 
Epigenetic modifications provide a possible measure of pre-
natal and childhood exposures that could be used to fill this 
purpose.

Epigenetic modifications are mitotically heritable com-
ponents of cellular material that do not result in an under-
lying change to the DNA sequence [5]. Multiple types of 
epigenetic modifications exist including DNA methylation, 
histone modifications, non-coding RNAs, and chromatin 
structure. These modifications play critical roles in cellular 
functions and organismal development and are reversible. 
Studies have shown that many of these modifications dif-
fer by environmental contexts and undergo drastic changes 
particularly during developmental periods [5].

DNA methylation is the best-studied epigenetic modifica-
tion. DNA methylation is characterized by the addition of a 
methyl or hydroxymethyl group at the 5’ carbon position of 
a cytosine base when a cytosine is followed by a guanine in 
the nucleotide sequence [6]. We refer to this as a CpG site. 
Over the past decade, evidence has mounted showing DNA 
methylation is responsive to prenatal and early-life environ-
ments, is often specific to a particular exposure, and can 
persist across the life course and is detectable later in life[4], 
making it a useful biomarker of exposure.

Other epigenetic modifications may also have utility as 
biomarkers including post-translational modifications of 
histones (PTMs) and non-coding RNAs (ncRNAs) [7, 8]. 
Inside the cell, DNA is packaged into chromatin by wrap-
ping 147 base pairs around an octamer of histone proteins 
[7]. Covalent modifications such as methylation, acetylation, 
ubiquitylation, and phosphorylation can be made to the N- 
or C-terminal tails of histones to regulate DNA compaction 
and accessibility to transcriptional machinery [7]. It is well-
established that PTMs change in response to the environ-
ment [9]. Relative to DNA methylation and PTMs, ncRNAs 

are a more recently studied type of epigenetic modification. 
While ncRNAs do not encode genes, they do possess unique, 
and diverse functions inside of the cell, though we are learn-
ing quickly that their content can change in response to 
environmental cues in an exposure and temporally specific 
manner [8].

In this review, we will provide a summary of the current 
literature describing how prenatal and early-life environmen-
tal exposures, across several exposure domains, have been 
shown to impact epigenetic patterns, measured from birth 
through adulthood, in human observational studies. Our 
exposure domains include environmental toxicants, human 
behaviors, and social environments experienced during the 
prenatal, perinatal, and early childhood windows. We also 
summarize emerging evidence for epigenetic patterns to cap-
ture exposure mixtures and statistical tools to enable expo-
sure prediction and algorithms to build methylation scores 
that can be utilized as an exposure dosimeter/measure of 
current and/or past exposure.

Methods

The two main databases queried for this literature review 
were PubMed and Google Scholar. We restricted most of our 
search to the last 5 years (2017–2022, inclusive). For each 
search, we used combinations of keywords, examples of 
which are provided below. For exposures, we used keywords 
that referred to the broad class of exposure (e.g., “Pesticide,” 
“Metal,” “Phthalates,” “Smoking,” “Socioeconomic Posi-
tion”) as well as individual toxicants or factors (e.g., “Lead,” 
“Folic Acid,” “BPA,” “Stress,” “Tobacco”). We used these 
terms in combination with the exposure window (e.g., 
“Maternal,” “in utero,” “childhood”), and the measurement 
window (e.g., “birth,” “childhood,” “adolescence,” “adult-
hood”). We also used terms specific to the tissue type (e.g., 
“cord blood,” “placenta,” “saliva,” “blood,” “buccal cell”) 
that the epigenetic measurement was performed in. Terms 
specific to the type of epigenetic modification included 
“methylation,” “chromatin,” “histone,” “microRNA,” and 
“ncRNA,” and “mixtures” was included when identifying 
studies of mixtures. An example of a complete search is as 
follows: “‘prenatal’ ‘maternal smoking’ ‘DNA Methylation’ 
‘cord blood’.” For a comprehensive list of search terms used, 
please see Supplementary File 1.

Results

We queried the literature to identify reports of DNA 
methylation changes, present in any biospecimen type at 
birth, infancy (< 1 year of age), childhood, adolescence, 
or in adulthood, associated with prenatal and/or early-life 
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exposure to environmental factors with a focus on studies 
from 2017 to 2022. We did not assess inter- or transgenera-
tional inheritance, nor did we summarize studies in animal 
or in vitro models because we focus on relevance to human 
studies seeking to utilize epigenetic biomarkers in epide-
miology framework. We report these findings in Table 1, 
organized by the following exposure domains: (1) toxicant 
environmental exposures which included metals, endocrine 
disrupting compounds (EDCs), air pollutants, persistent 
organic pollutants (POPs), and pesticides; (2) behavioral 
including smoking (tobacco and nicotine), alcohol, illicit 
substance use, and diet and nutrition; and (3) social envi-
ronmental factors including stress, socioeconomic position, 
and adverse childhood experiences (ACEs). Tables 2 and 3 
report studies of early-life exposure across the same domains 
that identify methylation changes resulting from exposure to 

environmental mixtures, or that report changes in epigenetic 
material other than DNA methylation, respectively.

DNA Methylation Changes Associated with Specific 
Environmental Factors

Most studies across all environmental exposures are focused 
on the effects of prenatal exposure on methylation changes 
in tissues collected at birth (Table 1). More than 20 stud-
ies assessed the impact of maternal metal exposure on 
DNA methylation changes at birth, though just two stud-
ies examined the impact of childhood metal exposure on 
the methylome [95, 96], identifying a gap in research that 
should be addressed. One study specifically assessed the per-
sistent effects of prenatal mercury exposure on DNA meth-
ylation across the life course through repeated biospecimen 

Table 1   Summary of studies between 2017 and 2022 of early-life exposures and DNA methylation changes across the life course

Exposure timing and type Methylation Data Measurement Life Stage

Birth and Infancy < 1 Childhood Adolescence Adulthood

Environmental toxicant exposures
Pre- and perinatal Metals Cord blood (n = 16 

studies)[10••, 
11–25]

Bloodspots (n = 1 
study)[26]

placenta (n = 2 studies)
[27, 28]

Blood (n = 5 studies)
[10••, 11, 14, 17, 
29]

saliva (n = 1 study)[30]

Blood (n = 1 study)
[31]

Buccal cells (n = 1 
study)[32]

EDCs (phthalates, 
bisphenols, flame 
retardants)

Cord blood (n = 12 
studies)[33–44]

placenta (n = 4 studies)
[45–48]

Buccal cells (n = 1 
study)[49]

blood (n = 1 study)[50]

none none

Air Pollution Cord blood (n = 12 
studies)[51•, 52–62]

placenta (n = 11 stud-
ies)[58, 61, 63–71]

Blood (n = 2 studies)
[57, 72]

Blood (n = 1 study)
[72]

Saliva (n = 1 study)
[73]

none

POPs (Dioxins, PCBs, 
PAHs, PFAS)

Cord blood (n = 11 
studies)[74–84]

placenta (n = 3 studies)
[85–87]

none none Blood (n = 1 study)[88•]

Pesticides Cord blood (n = 4 stud-
ies)[89–92]

Blood (n = 1 study)
[93]

none Blood (n = 1 study)[94•]

Childhood Metals Blood (n = 2 studies)
[95, 96]

none none

EDCs (phthalates, 
bisphenols, flame 
retardants)

Blood (n = 3 studies)
[97–99]

Blood (n = 1 
study)[100•]

none

Air pollution Buccal cells (n = 1 
study)[101]

blood (n = 3 studies)
[102–104]

nasal epithelium (n = 2 
studies)[105, 106]

none none

POPs (dioxins, PCBs, 
PAHs, PFAS)

Blood (n = 1 study)
[107]

none none

Pesticides none none none
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Table 1   (continued)

Exposure timing and type Methylation Data Measurement Life Stage

Birth and Infancy < 1 Childhood Adolescence Adulthood

Behavioral exposures
Pre- and perinatal Smoking (tobacco) Cord blood (n = 12 

studies)[108–113, 
114••, 115–119]

placenta (n = 5 studies)
[120–124]

bloodspots (n = 1 
study)[125]

Blood (n = 9 studies)
[126–128]

Blood (n = 3 studies)
[129–131]

Blood (n = 6 studies)
[130–132, 133••, 134, 
135]

Alcohol Cord blood (n = 1 
study)[136]

buccal cells (n = 1 
study)[137]

placenta (n = 3 studies)
[137–140]

Saliva (n = 1 study)
[141]

blood (n = 1 study)
[141]

buccal cells (n = 2 
studies)[142••, 143]

none none

Illicit substance use Placenta (n = 1 study)
[144]

cord blood (n = 1 
study)[145]

buccal cells (n = 2 
studies)[146, 147]

saliva (n = 1 study)
[148]

Blood (n = 1 study)
[149]

none none

Diet/nutrition (folate, 
B12)

Cord blood (n = 15 
studies)[150–164]

placenta (n = 1 study)
[165]

mesenchymal stem 
cells (n = 1 study)
[166]

blood (n = 1 study)
[167]

Blood (n = 1 stud)
[164]

saliva (n = 1 study)
[168]

None Saliva (n = 1 study)
[169••]

Childhood Smoking (tobacco) Blood (n = 1 study)
[128]

None None

Alcohol none None None
Illicit substance use none None None
Diet/nutrition (folate, 

B12)
Saliva (n = 1 study)

[170]
blood (n = 1 study)

[171]

None None

Social environmental exposures
Pre- and perinatal Stress Cord blood (n = 8 stud-

ies)[160, 172–178]
placenta (n = 4 studies)

[173, 179–181]
blood (n = 1 study)

[182]

None None None

Socio-economic posi-
tion

cord blood (n = 5 stud-
ies)[183••, 184•, 
185–187]

placenta (n = 1 study)
[188]

Blood (n = 2 studies)
[183••, 184•]

Blood (n = 2 studies)
[183••, 184•]

None

Adverse childhood 
experiences (ACEs)
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measures and demonstrated that blood methylation changes 
associated with prenatal mercury exposure persisted into 
early and mid-childhood [10••].

As shown in Table 1, more than 15 human observa-
tional studies conducted in the last 5 years have docu-
mented DNA methylation changes in tissues collected 

Table 1   (continued)

Exposure timing and type Methylation Data Measurement Life Stage

Birth and Infancy < 1 Childhood Adolescence Adulthood

Childhood Stress None None None

Socio-economic posi-
tion

Buccal cells (n = 1 
study)[189]

none Blood (n = 2 studies)
[190, 191]

Adverse childhood 
experiences (ACEs)

Saliva (n = 3 studies)
[192–194]

blood (n = 2 studies)
[193, 195]

buccal cells (n = 1 
study)[196]

postmortem brain 
tissues (n = 1 study)
[197]

Saliva (n = 1 study)
[194]

blood (n = 1 study)
[198]

Blood (n = 10 studies)
[190, 193, 199, 200••, 
201–206]

saliva (n = 5 studies)
[193, 207–210]

buccal cells (n = 2 stud-
ies)[200••, 211]

bloodspots (n = 1 study)
[212]

Table 2   Summary of studies of early-life exposure to mixtures and DNA methylation changes across the life course

Methylation data measurement life stage

Exposure timing and type Birth and infancy < 1 Childhood Adulthood

Environmental toxicant exposures
Pre- and perinatal Metals Cord blood (n = 2)[213••, 214] None None

EDCs (phthalates, bisphenols, flame 
retardants)

Placenta (n = 3)[215–217] None None

POPs (dioxins, PCBs, PAHs, PFAS) Cord blood (n = 1)[79] None None
Placenta (n = 2)[85, 86]

Air pollution None None None
Pesticides None None None

Childhood Metals, EDCs, POPs, Air pollution, 
Pesticides

none none

Behavioral exposures
Pre- and perinatal Smoking, alcohol, illicit substance use, 

diet/nutrition
None None None

childhood Smoking, alcohol, illicit substance use, 
diet/nutrition

None None

Social environmental exposures
Pre- and perinatal Composite socioeconomic position (edu-

cation, income, neighborhood, etc.)
Cord blood (n = 4)[183••, 186, 187, 

218]
Blood (n = 1)[183••] None

ACEs, Stress None None None
Childhood Composite socioeconomic position (edu-

cation, income, neighborhood, etc.)
Blood (n = 1)[189] Blood (n = 4)

[190, 191, 
219, 220]

adipose tissue 
(n = 1)[220]

ACEs, Stress None None
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from birth, childhood, or adolescence related to prenatal 
exposure to EDCs including phthalates [33–38, 45, 46], 
bisphenols [33, 39–43, 47, 49, 50, 239, 240], and flame 
retardants [48]. Though most of the literature is focused 
on prenatal exposure to these chemicals (Table 1), work 
from the Spanish INMA-Granada birth cohort identified 
peripheral blood DNA methylation changes at the brain-
derived neurotrophic factor (BDNF) locus in adolescents 
with childhood bisphenol A (BPA) exposure [100•].

A recent epigenome-wide meta-analysis was among the 
first to identify several differentially methylated CpG sites 
in newborns that are significantly associated with prenatal 
particulate air pollution exposure [51•]. These CpG sites 
were annotated to genes previously implicated in lung-
related health outcomes [51•]. Exposure to air pollution 
during childhood is associated with methylation changes 
in children themselves (Table 1), but we were unable to 
identify studies that examined whether DNA methylation 
patterns associated with prenatal or childhood exposure 
to air pollution could be detected in adolescent or adult 
biospecimens.

Similar to the other classes of environmental toxicants, 
most of the persistent organic pollutant (POP) literature 
focused on prenatal exposure and methylation patterns at 
birth [74–87] (Table 1). In these studies, maternal urine or 
serum was assayed for detection of PFAS [75, 76, 81–83, 
87], PAHs [77, 78, 80], and PCBs [74, 79, 84, 85] to deter-
mine exposure levels during this critical window. One lon-
gitudinal study identified significant associations between 
prenatal PCB and polychlorinated dibenzofuran (PCDF) 
exposure levels and blood DNA methylation patterns at 20 
CpG sites in early adulthood [88•]. A second recent study 
assessed the impact of childhood PFAS exposure on blood 
DNA methylation levels in school-age children; the authors 
identified 12 differentially methylated CpG sites and 7 differ-
entially methylated genomic regions associated with higher 
levels of PFAS exposure [107].

We identified only six studies in the last 5 years that 
assessed the relationship between prenatal or childhood pes-
ticide exposure and DNA methylation patterns (Table 1). 
Four of those studies assessed cord blood methylation 
[89–92] and one examined child blood methylation [93]. 

Table 3   Summary of epidemiology studies of early-life exposures and non-methylation based epigenetic changes across the life course

** PTM posttranslational modification of histones, ncRNA noncoding RNAs including lncRNAs and miRNAs

Exposure timing and type Epigenetic material measurement time period

Birth and infancy < 1 Childhood Adulthood

Environmental toxicant exposures
Pre- and perinatal Metals ncRNA (n = 1 study)[221•] None None

EDCs (phthalates, bisphenols, flame 
retardants)

ncRNA (n = 4 studies)[222–225] None None

Air pollution ncRNA (n = 1 study)[226]
PTM (n = 1 study)[227]

None None

Pesticides PTM (n = 1 study)[92] None None
POPs None None None

Childhood Air pollution ncRNA (n = 2 studies)[228•, 229] None
Metals, EDCs, pesticides, POPs None None

Behavioral exposures
Pre- and perinatal Smoking ncRNA (n = 2 studies)[230, 231] PTM (n = 1 study)[232••] None

Alcohol ncRNA (n = 2 studies)[233, 234] None None
Illicit Substance Use, Diet/Nutrition none None None

Childhood Smoking, alcohol, illicit substance 
use, diet/nutrition

None None None

Social environmental exposures
Pre- and perinatal Stress, SEP, ACEs None None None
Childhood ACEs PTM (n = 1 study)[235] miRNA (n = 2 

studies)[236, 
237]

PTM (n = 1 
study)[238]

Stress, SEP none none
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Recent work from the Child Health and Development Study 
detected DNA methylation changes at genes involved in 
pubertal development and breast cancer susceptibility in 
adulthood that were associated with prenatal DDT exposure 
[94•]. These results provide initial evidence to support that 
DNA methylation patterns, from birth through adulthood, 
reflect prenatal pesticide exposure and have the potential to 
serve as a pesticide exposure biomarker.

Across all exposure types, additional, more robust stud-
ies are needed to determine whether methylation changes 
resulting from a particular exposure are 1) specific to the 
type of chemical or toxicant; 2) persistent and thus consist-
ently detectable across life stages; and 3) detectable across 
tissue types from easily accessible biological specimens. 
Methylation changes that meet these criteria would serve 
as useful biomarkers of exposure and could help inform an 
individual’s future health and disease risk.

DNA Methylation Changes Associated with Human 
Behaviors

There is strong evidence to support the utility of DNA 
methylation as a biomarker of prenatal smoking exposure 
[108–113, 114••, 115–127, 129–132, 133••, 134] (Table 1). 
Multiple studies have identified consistent significant differ-
ential methylation in the aryl hydrocarbon receptor repressor 
(AHRR) gene [110–113, 117, 122]. Given the reproducibility 
of this finding, methylation changes at a specific locus within 
this gene are established and accepted as a biomarker of fetal 
exposure to tobacco smoke. Studies from the Avon Longitu-
dinal Study of Parents and Children (ALSPAC) have identi-
fied persistent methylation changes across the life course 
associated with prenatal smoking exposure that are inde-
pendent of postnatal and personal smoking exposures [241, 
242••]. Unsurprisingly, there were no studies on the effects 
of childhood smoking on methylation patterns given tobacco 
smoking in children is rare. We did however identify one 
study assessing the effect of childhood secondhand smoke 
exposure on blood DNA methylation, though no significant 
associations were detected[128].

Five studies assessed the associations between prena-
tal exposure to alcohol and methylation patterns at birth 
[136–140], and just three studies examined methylation 
changes in children prenatally exposure to alcohol (Table 1). 
Candidate gene methylation studies in placenta analyzed 
imprinting at the IFG2/H19 locus [139]. In children pre-
natally exposed to alcohol, persistent methylation changes 
were detected in saliva [141], blood [141], and buccal cells 
[142••, 143]. No longitudinal studies assessed the effects of 
this early-life exposure on the methylome in adolescence or 
adulthood. Additionally, we did not identify studies assess-
ing the effect of childhood alcohol use on methylation across 

the life course likely given the limited consumption of alco-
hol by children.

Few studies have assessed maternal substance use dur-
ing pregnancy and DNA methylation changes. This may 
be due, in part, to the illicit nature of these substances 
leading to reporting biases by mothers, and perhaps other 
social confounding factors that may make it more difficult 
for pregnant mothers experiencing substance use issues to 
seek care and/or be enrolled in studies. We identified six 
studies that assessed the impact of exposure to opioids, 
cocaine, methamphetamine, and cannabis on neonatal DNA 
methylation patterns (Table 1). Severe maternal addiction 
to crack cocaine was shown to predict oxytocin receptor 
(OXTR) gene DNA methylation patterns in newborns [145], 
and babies born to opioid-dependent mothers sustained on 
methadone treatment had increased buccal cell methylation 
at the Opioid Receptor Mu 1 (OPRM1) gene [146, 148]. We 
identified just one epigenome-scale association study that 
identified DNA methylation changes in placenta that differed 
in opioid exposed versus unexposed infants [144]. Children 
with prenatal methamphetamine exposure had hypermethyl-
ated hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2) 
buccal cell DNA relative to those without exposure [149].

As shown in Table 1, studies of prenatal diet and nutrition 
status were primarily associated with methylation changes 
at birth [150–164]. Dietary fat intake during pregnancy was 
associated with imprinted gene status in newborns [151], 
while folic acid supplementation for the entire duration of 
pregnancy was associated with methylation change at genes 
involved in neurodevelopment at birth [154]. A nested study-
ing within the Aberdeen Folic Acid Supplementation Trial 
assessed methylation changes in adults who were prenatally 
exposed to two different doses of folic acid supplementa-
tion. Methylation changes at individual CpG sites, as well 
as across regions of the genome, were identified in buccal 
cells from adult offspring, demonstrating the persistence 
of the effects of this prenatal exposure [169••]. Further, 
comparing methylation changes from low and high dose-
offspring identified a dose–response relationship between 
folic acid supplementation and the degree of methylation 
change, emphasizing the specificity of methylation change to 
the prenatal exposure [169••]. Given the widespread use of 
vitamins and supplements during pregnancy, studies should 
assess methylation changes across multiple life stages and 
should compare methylation changes across tissue types to 
establish effective biomarkers of prenatal nutrient status.

DNA Methylation Changes Associated with Social 
Environmental Factors

Prenatal exposure to several different stressors has been 
associated with changes in DNA methylation patterns 
collected at birth (Table  1). Placental methylation was 
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measured in 92 samples from the FinnBrain Birth Cohort, 
whose mothers were screened for psychosocial stress and 
depressive symptoms during early pregnancy [179]. Mater-
nal depressive symptoms were associated with DNA methyl-
ation at 2833 CpG sites [179]. In one study, the relationship 
between prenatal exposure to stress from a natural disaster 
and persistent methylation changes in adolescents was iden-
tified in participants from Project Ice Storm [243].

Inequities in socioeconomic position (SEP) are associ-
ated with poor health outcomes in individuals. SEP can 
be influenced by factors including education, occupation, 
income level, neighborhood, and race or ethnicity [244]. 
While SEP is comprised of multiple factors, several studies 
assessed the influence of individual SEP characteristics on 
DNA methylation patterns at birth [183••, 184•, 185, 188] 
(Table 1). An EWAS from the Extremely Low Gestational 
Age Newborns (ELGAN) determined that marital status, 
receiving supplemental nutrition assistance, education level, 
and health insurance status were each independently associ-
ated with placental DNA methylation at birth [188]. Higher 
levels of cord blood methylation at the repetitive element 
LINE-1 were associated with living in the most impover-
ished neighborhood in a Mexican–American birth cohort 
of 241 maternal-infant pairs [185]. Women from the Project 
Viva cohort who were married or cohabitating with a part-
ner had infants with lower levels of cord blood methylation. 
This prospective study followed infants through early and 
mid-childhood and demonstrated significant associations 
between maternal education and global DNA methylation at 
both stages of life [183••]. The ALSPAC cohort performed 
an epigenome-scale association study of DNA methylation 
changes at birth, childhood, and adolescence associated with 
markers of SEP during pregnancy and found that maternal 
education was associated with cord blood methylation at 
birth and methylation changes in adolescence [184•].

While the relationship between adverse childhood expe-
riences (ACEs) and childhood and adolescent methylation 
was assessed in seven studies, most of the literature in this 
domain assessed the long-lasting effect of ACEs on meth-
ylation changes in adulthood (Table 1). At both time points, 
altered methylation of NR3C1 was identified as being associ-
ated with ACEs [196, 197, 199]. Genome-wide studies on 
the effects of ACEs on the adult methylome were performed 
together on blood samples from ALSPAC and buccal cells 
from the MRC National Survey of Health and Development 
(NSHD) study [200••]. Nine DMRs were significantly asso-
ciated with a specific ACE measure across both NSHD and 
ALSPAC, including one that was associated with a cumula-
tive measure of adversity [200••]. It is notable that these 
DMRs were replicated between two different cohorts and 
across tissue types—blood or buccal—suggesting that meth-
ylation changes resulting from childhood adversity are stable 

over time, specific to the exposure, and are detectable across 
tissues.

DNA Methylation Patterns Associated with Exposure 
to Mixtures

Biomarkers that reflect exposure to mixtures can be used as 
a reduced complexity measure to capture the complex mix-
tures of chemicals that individuals are exposed to daily. This 
is especially important given that the mixture of chemicals 
that individuals regularly encounter may influence health 
outcomes differently as a mixture than they do as individ-
ual chemicals. Although most studies to date have focused 
on identifying DNA methylation patterns related to single 
exposures, recent statistical and exposome measurement 
advances have allowed researchers to begin to assess the 
impacts of environmental mixtures on DNA methylation pat-
terns [245, 246]. As detailed below, mixtures studies to date 
have largely focused on chemical toxicant mixtures, some 
studies have examined multiple social exposures, and to our 
knowledge, no studies have examined behavioral exposure 
mixtures in relation to DNA methylation. Social exposure 
mixtures were primarily defined by composite SEP, a sum-
mative score that accounts for the individual socioenviron-
mental factors that comprise SEP. Future studies should 
continue to use newly developed statistical methods (such 
as Bayesian kernel machine regression) to evaluate environ-
mental mixtures and its effect on the epigenome.

Associations between prenatal exposure to a 16-metal 
mixture and cord blood DNA methylation were assessed 
using the Bayesian kernel machine regression (BKMR) 
model[213••] (Table 2). A BKMR statistical model allows 
the joint effect of mixtures on methylation to be estimated 
in a way that is superior to standard regression approaches 
as it has features to account for the correlation structure of 
environmental mixtures, allowing it to overcome challenges 
from traditional analysis methods such as collinearity and 
high dimensionality [246]. No significant associations were 
observed between the metal mixtures and DNA methylation 
[213••]. Another study from the Norwegian Mother, Father, 
and Child Cohort assessed the effect of prenatal exposure 
to a mixture of 12 metals and essential elements on cord 
blood methylation in 631 mother–child pairs [214] (Table 2). 
Two-way interactions between exposures were investigated 
using elastic net regression, and the joint effects of the 
mixture on DNA methylation were assessed using quantile 
g-computation, a novel analysis approach that allows for an 
unbiased inference on the effects of mixtures [245]. Elastic 
net regression identified significant associations between 
cord blood methylation and maternal selenium, cobalt, and 
mercury exposure, individually [214]. However, despite the 
application of two novel statistical approaches to identifying 
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effects of exposure mixtures, no associations between pre-
natal metals mixtures and DNA methylation were observed.

The effect of prenatal exposure to mixtures of EDCs on 
DNA methylation has primarily been assessed in placenta. 
However, two studies took candidate gene approaches, 
investigating the relationship between mixtures of xenoes-
trogens on cord blood methylation at repetitive elements 
[215], as well as the effects phthalate and phenol exposures 
on imprinted genes in the placenta [216] (Table 2). For 
placenta, epigenome-scale association approaches identi-
fied methylation changes in the placenta that were associ-
ated with prenatal exposure to a mixture of xenoestrogens 
[217] or other POPs mixtures [79, 85, 86] (Table 2). In one 
study, multi-pollutant principal component analysis identi-
fied significant associations between a mixture of 57 POPs 
measured in maternal serum and placental DNA methylation 
at the insulin-line growth factor 2 (IGF2) imprinted locus 
[85]. Another multi-pollutant study used principal compo-
nent analysis to evaluate the association between prenatal 
exposure to multiple POPs and DNA methylation in the pla-
centa [86]. These results demonstrate that exposure to POPs 
mixtures is associated with DNA methylation changes, sup-
porting the potential for DNA methylation patterns to serve 
as a biomarker of POPs exposure mixtures.

In addition to environmental mixtures, studies have 
focused on the effect of composite early-life SEP—a way to 
assess the cumulative impact of the factors that contribute 
to socioeconomic status and adversity—on DNA methyla-
tion across the life course [186, 187] (Table 2). Work from 
the NEST cohort demonstrated that hypermethylation of 
the DLK1/MEG3 imprinting locus in cord blood samples 
was associated with lower composite SEP, where SEP was 
assessed as a principal components factor of six individual 
SEP measures [218]. In addition to work from Project Viva 
looking at how individual SEP factors associated with global 
DNA methylation, this study also detected locus specific 
methylation changes at birth and in childhood that were 
associated with prenatal composite SEP. Low prenatal SEP 
was associated with DNA methylation of the gene Leu-
cine Rich Repeat Neuronal 4 (LRRN4) at birth, and those 
methylation changes persisted into early childhood [183••]. 
Studies of the association between childhood composite 
SEP and DNA methylation identified methylation changes 
in children themselves [189], as well as persistent changes 
to the methylome in blood [190, 191] and adipose tissues 
(Table 2). A study from the Cebu Longitudinal Health and 
Nutrition Survey—a pregnancy cohort of women from the 
Philippines—identified epigenome-wide leukocyte methyla-
tion changes in adults that were associated with their com-
posite SEP in childhood [191].

In sum, there is evidence showing DNA methylation 
changes are associated with exposure to EDC and POPs 
mixtures, as well as composite SEP. As next steps, it will be 

important to determine whether these changes are persistent 
over time and may have utility in helping us understand how 
these mixtures may contribute to adverse health outcomes, 
especially in the context of how they may compare to the 
effects of individual chemical toxicants on health outcomes. 
Future research is also needed to determine the specificity 
of these DNA methylation changes and to investigate other 
types of exposure mixtures, including across other exposure 
domains and windows of exposure.

Posttranslational Histone Modification 
and Noncoding RNA Changes Associated 
with Environmental Exposures

To date, studies investigating DNA methylation changes 
associated with prenatal and early-life exposures have 
largely focused on DNA methylation. This is mainly due 
to the ease and stability of collecting this measure in epi-
demiology samples, commercially available cost-effective 
measurement methods, and because we understand it best at 
a biologic level. However, other types of epigenetic material, 
such as posttranslational modifications of histones (PTMs), 
and noncoding RNAs (ncRNAs), have also been shown to 
differ by environmental context and play important roles in 
development and health. As our understanding of how these 
molecular modifications change in response to the environ-
ment expands, we highlight a largely unmet opportunity to 
consider whether non-methylation-based epigenetic changes 
may have utility as an exposure biomarker in human epide-
miologic studies. Below, and in Table 3, we summarize the 
evidence to date showing prenatal and early-life exposure 
associations with PTMs and ncRNAs.

We found limited evidence of any studies investigating 
the association between prenatal metal exposure and PTMs 
at any developmental period. We identified one study that 
examined the relationship between prenatal cadmium expo-
sure and long noncoding RNA (lncRNA) expression in pla-
centa[221•] (Table 3). There was a significant relationship 
between prenatal cadmium concentrations and expression 
of four lncRNAs in placenta [221•]. Bioinformatic analysis 
demonstrated that MIR22HG, the lncRNA whose placental 
expression was most significantly associated with prena-
tal cadmium exposure, was associated with gene modules 
involved in organ development and cellular respiration.

Prenatal exposure to phthalates and phenols has been 
associated with placental ncRNA expression [222–225] 
(Table 3). A study that co-enrolled women from the Har-
vard Epigenetic Birth Cohort and the Predictors of Preec-
lampsia Study assessed the relationship between exposure to 
multiple EDCs and placental micro RNA (miRNA)expres-
sion [225]. Maternal urine was collected to measure phtha-
late and phenol metabolites, and targeted expression of 29 
miRNAs was measured via real-time quantitative reverse 
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transcription polymerase chain reaction [225]. Of the 29 
miRNAs assessed, three had significant associations with 
urinary phthalate or phenol metabolite levels [225]. Other 
studies identified associations between prenatal phthalate 
exposure and placental lncRNA expression [222, 223]. 
Additional comprehensive studies are needed to establish 
ncRNA biomarkers of early-life EDC exposure across mul-
tiple tissue types and life stages. Future work should also 
assess the impact of EDC exposure on PTMs.

Prenatal gas and particulate air pollution exposure was 
associated with altered expression of a cluster of miRNAs 
in cord blood [226], while studies of childhood air pollution 
exposure detected changes in miRNA expression in serum 
[228•] and saliva [229] (Table 3). We found just one study 
that identified PTM changes in cord blood that were associ-
ated with prenatal exposure to ambient air pollution [227] 
(Table 3). This recent work assessed histone H3 methylation 
in cord blood from 609 mother-newborn pairs and found 
significant changes associated with PM2.5 and black carbon 
exposure during pregnancy [227].

As with the DNA methylation data available for early-life 
exposure to pesticides, epidemiologic studies on the effects 
of pesticide exposure on PTMs or ncRNAs were limited, and 
population-based studies of the epigenetic consequences of 
exposure to a pesticide mixture were sparse. We identified 
one recent study that examined the relationship between in 
utero exposure to chlordecone and its impact on PTMs in 
cord blood [92] (Table 3). A prospective study in the French 
West Indies collected cord blood samples at birth for PTM 
analyses, and maternal plasma was assayed for chlordecone 
concentration. Quantitative immunofluorescence analysis of 
PTMs in the nuclei of cord blood cells and found signifi-
cant decreases in H3K4me3 and H3K9me3 levels in cord 
blood from chlordecone exposed individuals relative to the 
unexposed controls [92]. This work combined their epide-
miologic work with in vitro approaches to experimentally 
validate their findings and assess the relationship between 
histone occupancies and changes in gene expression [92].

While studies on the impact of smoking on the methy-
lome are extensive, there is a dearth of epidemiologic lit-
erature on the effects of prenatal smoking on PTMs or ncR-
NAs. Work from the LINA mother–child cohort assessed 
the role of maternal smoking on chromatin architecture and 
PTMs in children around four years of age [232••] (Table 3). 
Chromatin immunoprecipitation sequencing (ChIP-Seq) was 
performed in blood for six mother–child pairs (three who 
smoked, three who did not). Two activating and two repres-
sive histone modifications were assessed, and the authors 
identified a shift from a repressive to an activate chroma-
tin state in cord blood from children prenatally exposed 
to maternal smoking relative to controls [232••]. Though 
their sample size was small, this represents one of the few 
studies that has looked at the effect of prenatal smoking on 

PTMs, and their findings suggest that additional work is 
warranted. One study of miRNAs assessed expression of 
two microRNAs in 441 cord blood samples from a prospec-
tive mother–child study of prenatal tobacco smoke exposure 
[230] (Table 3). They found altered miR-223 expression in 
cord blood following prenatal tobacco smoke exposure, that 
was further associated with low numbers of regulatory T 
cells at birth, and increased allergy risk in childhood [230]. 
A second study of maternal cigarette smoking assessed the 
expression of four miRNAs in 25 placentas samples [231] 
(Table 3). Despite a smaller sample size, authors found that 
expression of three of the four miRNAs—miR-16, miR-21, 
and mi-146a—was downregulated in placentas from smoke-
exposed individuals compared to controls [231].

Two studies identified associations between prenatal 
alcohol exposure and microRNA content at birth [233, 234] 
(Table 3). Plasma extracellular circulating miRNAs were 
isolated from infants from the Cape Town cohort of moth-
ers and infants [234]. Alcohol-consuming mothers drank 
on average 1–2 days/week during pregnancy. Offspring 
miRNA expression was altered in plasma from 2-week-old 
and 6.5-month-old infants. Confirmatory factor analysis 
identified three-factor models that explained the variance 
in expression of miRNAs associated with prenatal alcohol 
expression at both time points[234].

Micro-RNAs (miRNAs) and histone modification changes 
related to childhood trauma have been detected in adults, 
and thus may serve as a useful biomarker [247] (Table 3). 
Peripheral blood measures of miR-15a showed elevated lev-
els of expression in adults with childhood trauma compared 
to age and gender matched individuals with no history of 
early-life trauma or stress [236] (Table 3). More recently, 
downregulation of miRNA 125b-1-3p was observed in blood 
from adults that experienced childhood trauma compared 
to those who did not [237] (Table 3). Related work on the 
epigenetic eraser, histone-deacetylase 1 (HDAC1) demon-
strated elevated levels of HDAC1 expression in patients 
with schizophrenia who experienced early-life stress com-
pared to patients who did not [238]. Finally, analysis of six 
PTMs in the amygdala of postmortem brain samples showed 
changes in the histone landscape in individuals who experi-
enced severe childhood trauma compared to controls [235] 
(Table 3).

Development of Epigenetic Prediction Tools

In line with demonstrating the utility of DNA methylation as 
an exposure biomarker, studies have built epigenetic predic-
tion tools that use DNA methylation measures to estimate 
an individual’s current and previous exposures. These tools 
are extremely powerful because they provide an opportunity 
to accurately determine whether an individual incurred an 
exposure, or to what extent they were exposed to a chemical 
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or stressor, when that data is otherwise unattainable. Addi-
tionally, aggregate methylation score tools can have several 
advantages over traditional exposure ascertainment meas-
ures because (1) they include a collection of methylation 
loci to represent a particular exposure or multiple exposures 
which can provide greater statistical efficiency over individ-
ual CpGs, and (2) they may capture inter-individual biologic 
responses to similar measures of external exposures, i.e., 
serve as an “exposure dosimeter” [248, 249].

There are two main approaches to working with methyl-
ation-based predictive tools. The first is based on the devel-
opment and implementation of a methylation score. Here, 
CpG sites that were previously determined to be significantly 
associated with an environmental exposure are used to build 
a single numeric score that is a weighted sum of the selected 
CpG methylation levels, often using methylation data from 
an epigenome-scale analysis. This score is then used in lin-
ear regression models to determine an association with an 
exposure of interest [248, 249]. A study from the Norwe-
gian Mother and Child Cohort Study (MoBa) developed and 
tested a numeric DNA methylation score using 28 CpG sites 
associated with sustained smoke exposure. [114••]. When 
applied to a test dataset of cord blood samples, their numeric 
methylation score was able to predict prenatal smoke expo-
sure with a greater than 90% specificity [114••]. A methyla-
tion score of prenatal smoke exposure that persisted into 
adulthood was developed from the ALSPAC cohort. DNA 
methylation changes at 568 CpG sites that were previously 
demonstrated to be associated with prenatal smoke expo-
sure in cord blood were used to create a DNA methylation 
score to successfully predict whether adults sustained prena-
tal smoke exposure in utero (AUC 0.69) [133••]. A second 
score from the same study was derived from 19 CpG sites 
from children’s peripheral blood that were associated with 
prenatal smoke exposure. This score was even more suc-
cessful at predicting prenatal smoke exposure in adult blood 
samples (AUC 0.72), despite being derived from childhood 
biospecimens rather than newborn tissues [133••].

In addition to score-based prediction tools that can 
be used as biomarkers of exposure, machine learning 
approaches can be used to detect patterns in methylation 
data in an unsupervised manner that can ultimately be used 
to predict an individual’s exposure status [248, 249]. Work 
from the Study to Explore Early Development (SEED) was 
among the first to use predictive tools to determine whether 
DNA methylation changes at 26 CpG sites associated with 
prenatal smoke exposure in cord blood could similarly pre-
dict prenatal smoke exposure in childhood [250••]. Using 
a support vector machine classifier, with tenfold cross vali-
dation, prenatal smoke exposure was predicted in children 
with a greater than 86% accuracy when it was compared 
to maternal reports of smoking during pregnancy [250••]. 
Machine learning techniques have also been used to predict 

fetal alcohol exposure in children and adolescents. DNA 
methylation changes at 648 CpG sites initially identified in 
buccal cells from children and adolescents with fetal alcohol 
spectrum disorder (FASD) were used in a gradient boosting 
machine learning model to generate an algorithm capable of 
predicting FASD status in an independent set of individuals 
[142••]. When tested on buccal cell samples from children 
and adolescents, the algorithm was able to predict dichoto-
mous FASD status with a specificity of 75% [142••].

Discussion

There are potential advantages to using epigenetic biomark-
ers instead of traditional external exposure measures. First, 
epigenetic changes can reflect an internal dosimeter or rep-
resent the biologic response to exposure which could explain 
inter-individual variation. Second, epigenetic changes that 
are specific to an exposure can address exposure misclas-
sification such as incorrect self-report or other reporting 
errors or biases. Third, epigenetic analyses of environmental 
mixtures can overcome statistical concerns and difficulties 
modeling multi-exposures.

Epigenetic biomarkers need to be assessed in easily acces-
sible tissues [4]. At birth, this typically includes cord blood 
and placenta tissues. We saw that the majority of studies 
presented in this review were from cord blood samples col-
lected at birth, from which epigenetic measures were gener-
ated. Later in life, saliva and saliva-derived buccal cells, and 
whole blood, represent two tissue types that can be easily 
sampled across different stages of life to measure epigenetic 
biomarkers of exposure. This is consistent with the tissues 
that were commonly sampled in childhood, adolescence, and 
adulthood in the studies that we reviewed here. The work 
summarized in this review provided excellent examples of 
the utility of epigenetic biomarkers of early-life exposure 
that are detectable across tissue types and life stages, that are 
specific to the exposure of interest, and that are predictive of 
disease outcomes. This emphasizes the effectiveness of epi-
genetic exposure biomarkers and motivates future research 
to continue to use exposure biomarkers to identify potential 
interventions that could mitigate disease risk.

Literature on epigenetic biomarkers of early-life exposure 
is overwhelmingly focused on DNA methylation. This was 
true across all exposure domains, exposure timepoints, and 
measurement timepoints included in this review. However, 
there were a limited number of observational studies that fol-
lowed participants from birth through adolescence or adult-
hood, with repeated sampling of biospecimens to measure 
methylation changes over time. One question that remains 
is whether persistent methylation changes associated with 
prenatal exposures were similarly identifiable following 
childhood exposures. The data presented here is somewhat 
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inconclusive. For example, childhood metal exposure was 
associated with methylation changes at novel loci that had 
not previously been identified following prenatal exposures 
[95, 96]. Conversely, prenatal and childhood exposures to 
stress were associated with DNA methylation changes at the 
NR3C1 locus [243, 251–255], demonstrating that methyla-
tion changes here seemed to be more specific to the type 
of exposure rather than the developmental window that the 
exposure occurred. Similarly, childhood exposure to BPA 
was associated with BDNF methylation [100•], and work in 
animal models found that gestational BPA exposure in mice 
was associated with persistent DNA methylation changes 
in offspring of Bdnf, and that boys with high levels of BPA 
exposure in utero had aberrant BDNF methylation in cord 
blood [100•, 256]. Contrary to the metals studies, this sug-
gests that perhaps for BPA exposure, the epigenetic effects 
are specific to the chemical exposure and not necessarily 
the timing of the exposure. Finally, childhood air pollution 
was associated with differential methylation of nitric oxide 
synthase genes, a finding that was similarly detectable in 
adults with exposure to air pollution [257, 258]. To establish 
effective biomarkers, rigorous investigations are needed to 
identify whether methylation patterns associated with envi-
ronmental influences are more specific to a class of chemi-
cals or a developmental window of exposure.

While the importance of DNA methylation studies in 
advancing the field of epigenetics cannot be overstated, we 
were surprised to see the shortage of studies that assessed 
how early-life exposures during the in utero and childhood 
time periods were associated with non-methylation epige-
netic changes, particularly histone PTMs and ncRNAs. In 
these instances, work in animal models far surpasses epi-
demiologic studies [247, 259, 260]. However, those stud-
ies provide a strong scientific rationale for investigating the 
effects of exposure on epigenetic patterns in population-
based work. The studies we did find highlight associations 
between PTMs [7, 89, 92, 227, 235] and ncRNAs [221•, 
223, 226, 229, 230, 237] and exposures. Thus, future studies 
should focus on development and implementation of non-
methylation-based biomarkers of early-life exposure.

Recent advances in the development and implementation 
of epigenetic prediction tools have demonstrated the ability 
for composite DNA methylation changes to reconstruct an 
individual’s exposure history when that data is otherwise 
unavailable. Once developed and tested for accuracy and 
reliability, these predictive tools can be applied to observa-
tional studies to characterize an individual’s exposure his-
tory, and to better understand their potential future disease 
risk. Multiple studies have demonstrated the utility of these 
numeric methylation scores and machine learning predic-
tive algorithms at predicting prenatal exposures across the 
life course, and across tissue types [114••, 133••, 142••, 
250••]. However, additional methylation tools are needed to 

comprehensively predict early-life exposures across the three 
domains covered in this review. Further, these tools should 
be used to advance the development of biomarkers of the 
exposome to better understand an individual’s comprehen-
sive exposure history and future disease risk.

There are unique advantages and disadvantages to the 
methylation score and machine learning approaches to 
predictive modeling of biomarker development. For exam-
ple, one disadvantage to using DNA methylation scores is 
that the algorithm requires a mean methylation value for 
the “exposed” and “unexposed” groups. Thus, it cannot 
be used to predict exposure status when that data is other-
wise unavailable. One could use the mean values that the 
score was initially developed with in the test dataset, but the 
inter-experiment conditions, such as the presence of batch 
effects and other laboratory variables, could greatly impede 
the accuracy of this approach. However, an advantage to 
using methylation scores is that they can reflect an internal 
dosimeter of an individual’s exposure when quantifying an 
exposure in a biospecimen might not be feasible. Given that 
methylation scores are weighted, a higher score, for example, 
might be reflective of a higher level of exposure to a certain 
toxicant earlier in life. Machine learning approaches do not 
have this same capability. The output from these predictive 
algorithms is typically dichotomous, i.e., “yes” or “no,” for 
a particular exposure or outcome of interest, so no individual 
metrics about the magnitude of an exposure would be ascer-
tained in that case. However, machine learning is advan-
tageous given that once the algorithm is trained, no expo-
sure history data is needed to predict the binary outcome 
of whether an individual is or is not exposed. Investigators 
need to carefully consider the data they have available, and 
the scientific question that they are trying to address, when 
choosing an approach to developing biomarkers through 
predictive modeling.

Conclusions

In summary, the evidence provided in this review strongly 
supports epigenomic biomarkers of exposure are detectable 
across the lifespan across a range of exposure domains. Of 
note, we did not address the transgenerational effects of 
early-life exposure on the epigenome, or how inheritance 
of an aberrant epigenetic profile might be associated with 
disease risk in subsequent generations. Studies have begun 
to develop biomarkers for intergenerational and transgen-
erational exposures, and future work should be supported 
in this area. We have identified promising new directions 
that would address current gaps in research. These include 
the ability to capture an epigenetic biomarker of the expo-
some through mixtures analysis, the derivation and imple-
mentation of non-methylation biomarkers of exposure, and 
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the development and use of epigenetic prediction tools. 
Together, these research avenues will help advance our 
understanding of how exposures early in life shape health 
and disease across a generation.
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