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Abstract
Purpose of Review  Maternal tobacco smoking during pregnancy is of public health concern, and understanding the biological mech-
anisms can help to promote smoking cessation campaigns. This non-systematic review focuses on the effects of maternal smoking 
during pregnancy on offspring’s epigenome, consistent in chemical modifications of the genome that regulate gene expression.
Recent Findings  Recent meta-analyses of epigenome-wide association studies have shown that maternal smoking during 
pregnancy is consistently associated with offspring’s DNA methylation changes, both in the placenta and blood. These stud-
ies indicate that effects on blood DNA methylation can persist for years, and that the longer the duration of the exposure and 
the higher the dose, the larger the effects. Hence, DNA methylation scores have been developed to estimate past exposure 
to maternal smoking during pregnancy as biomarkers.
Summary  There is robust evidence for DNA methylation alterations associated with maternal smoking during pregnancy; 
however, the role of sex, ethnicity, and genetic background needs further exploration. Moreover, there are no conclusive 
studies about exposure to low doses or during the preconception period. Similarly, studies on tissues other than the placenta 
and blood are scarce, and cell-type specificity within tissues needs further investigation. In addition, biological interpreta-
tion of DNA methylation findings requires multi-omics data, poorly available in epidemiological settings. Finally, although 
several mediation analyses link DNA methylation changes with health outcomes, they do not allow causal inference. For 
this, a combination of data from multiple study designs will be essential in the future to better address this topic.

Keywords  Maternal smoking during pregnancy · Multi-omics · Epigenetics · DNA methylation · Tissue · Child health

Introduction

Maternal tobacco smoking during pregnancy (MSDP) is still 
of great concern in public health. A report including data 
from 43 countries indicated that the global prevalence of 

MSDP for the 1985–2016 period was 1.7%, ranging from 
0.8% in Africa to 8.1% in Europe [1]. Children of smoker 
mothers are born with lower birth weight [2]. Moreover, they 
are at increased risk of developing a long list of pathologies 
later in life, including obesity [3], impaired lung function 
and asthma [4], and neuropsychological problems [5].

Before the clinical endpoint, MSDP triggers several 
molecular, cellular, and physiological pathways in the 
mother and the offspring. These pathways are diverse due 
to the number of toxic chemical compounds found in ciga-
rettes and in the smoke produced by their combustion [6]. 
The epigenome has been proposed as one of the mechanisms 
linking environmental exposures to disease [7]. It consists 
of several mitotically heritable chemical modifications of 
the genome, which control gene expression in a tissue- and 
time-specific manner, including DNA methylation (DNAm), 
histone modifications, and regulatory RNAs.
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This non-systematic review summarizes currently avail-
able literature about the effects of MSDP on the offspring’s 
epigenome, especially on DNAm, and their link with health 
outcomes. The review presents what is known about dose and 
duration of exposure, the persistence of the effects, tissue and 
cell specificity, and the mediator role of DNAm on health out-
comes. Moreover, it presents evidence of the effects on other 
molecular layers, including gene and microRNA (miRNA) 
expression and metabolomics. Finally, it discusses the main 
gaps in the literature and future research directions.

Maternal Smoking During Pregnancy 
and Blood DNA Methylation

Associations with Cord Blood DNA Methylation 
at Birth

Most epigenome-wide association studies (EWAS) of MSDP 
assess DNAm through microarrays as they allow evaluating 
hundreds of participants at a relatively low cost. The most 
common microarray is the Illumina 450 K, which has since 
been updated to the MethylationEPIC array, and the most 
frequently investigated tissue is blood or leukocyte rederived 
DNA as it is easily accessible in epidemiological settings. 
On the other hand, information on MSDP is usually obtained 
through self-reports and less often through objective bio-
markers (e.g., urinary cotinine). Obtaining this information 
at different time points in pregnancy allows to study differ-
ent exposure windows: any MSDP (when mothers smoke at 
any time during pregnancy), non-sustained MSDP (when 
mothers quit smoking at the beginning of pregnancy), and 
sustained MSDP (when mothers smoke through most of the 
pregnancy).

The largest EWAS meta-analysis to date evaluating the 
association of MSDP with cord blood DNAm at birth was 
conducted by Joubert et al. within the Pregnancy And Child-
hood Epigenetics (PACE) consortium and included data 
from 13 cohorts [8••]. After correcting for false discovery 
rate (FDR), the authors identified 6073 CpGs differentially 
methylated in relation to sustained MSDP (52% hyper- and 
48% hypo-methylated). Consistent with studies of current 
smoking in adults, the top CpG was cg05575921 located 
within the AHRR gene body, which showed reduced meth-
ylation in newborns of smoker mothers (− 6.6%). This gene 
codes for the protein Aryl hydrocarbon receptor repressor 
that represses the transcription activity of the Aryl hydro-
carbon receptor, a chemical/ligand-dependent intracellular 
receptor involved in xenobiotic detoxification [9]. Joubert 
et al. performed pathway enrichment analysis and revealed 
that genes annotated to CpGs associated with MSDP were 
enriched for anatomical development, phosphate-containing 

compound metabolism, nervous system development, and 
cell communication processes. Among the MSDP-sensitive 
CpGs, around 30% were common with CpGs found to be 
associated with own smoking in adults’ blood [10••]. Inter-
estingly, CpGs unique to newborns were enriched in xeno-
biotic metabolism pathways.

The CpGs most widely identified across other EWAS are 
situated within coding or regulatory regions of the AHRR, 
GFI1, CYP1A1, and MYO1G genes (Tables S1). Altered 
DNAm patterns in these genes were identified in European 
[11, 12, 13••], Japanese [14], and African American popu-
lations [15], suggesting similar effects of MSDP across 
ancestries. Sex differences in DNAm are frequent and stable 
throughout early development and are known to alter health 
risks [16]. Nevertheless, only a few studies have explored 
sex-specific DNAm patterns associated with MSDP, giving 
inconsistent results [13••, 15, 17–20]. Furthermore, none of 
these studies assessed DNAm changes in sex chromosomes, 
whereas evidences in adult current smokers suggest that they 
are also present [21].

Persistence of Associations on Blood DNA 
Methylation in Childhood, Adolescence, 
and Adulthood

Literature suggests that environmental exposures may 
involve lasting alterations in DNAm. Within the PACE 
meta-analysis, the authors explored whether blood DNAm 
changes associated with MSDP at birth were still observed 
in childhood [8••]. They observed that all 6073 CpGs identi-
fied in newborns were still nominally associated with MSDP 
in child blood at a mean age of 5 years (of these, 148 CpGs 
met FDR significance), and 73% had a consistent direction 
of effect.

Other studies also reported persistent effects of MDSP 
on blood DNAm after birth, covering different age ranges: 
infancy [22••], childhood [13••, 23, 24••], adolescence 
[13••, 20, 25, 26], and adulthood [13••, 20, 26, 27]. The 
overlap among CpGs and genes showing persistent effects 
at different ages is shown in Fig. 1.

However, these results are mostly based on evaluations 
of DNAm levels at only one time-point, which does not 
allow to examine time-response patterns to MSDP in the 
same individual. Importantly, the Avon Longitudinal Study 
of Parents and Children (ALSPAC) cohort measured blood 
DNAm at birth, 7 and 17 years of age in the same partici-
pants. Leveraging this approach, they observed that some 
CpGs recovered DNAm levels similar to those unexposed 
(e.g., within GFI1, KLF13, and ATP9A genes), while oth-
ers showed persistently perturbed DNAm levels throughout 
childhood and adolescence (e.g., within AHRR, MYO1G, 
CYP1A1, and CNTNAP2 genes) [13••].
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Maternal Smoking During Pregnancy 
and DNA Methylation in Other Tissues

Associations with Placenta DNA Methylation

Placenta, a critical organ for fetal development, is another 
accessible tissue in epidemiological settings. It mediates 
the maternal–fetal exchange of gases, nutrients, hormones, 
and metabolic waste products, thereby playing a crucial 
role in shaping fetal growth and birth size, a significant 
predictor of health across the life course [28]. Despite the 
importance of this organ for child and adult health, there 
are limited studies analyzing the effect of environmental 
exposures on it [29].

The largest study to date investigating placental DNAm 
was conducted by Everson et al. within the PACE consor-
tium and included data from 7 cohorts [30••]. After Bon-
ferroni correction, the authors identified 443 CpGs differ-
ently methylated in response to any or sustained MSDP 
(41.5% hypo- and 58.5% hyper-methylated). These CpGs 
were annotated to genes enriched for detoxification path-
ways, growth-factor signaling, immunity and inflammation, 
and myometrial and vascular smooth muscle contraction. 
Moreover, MSDP-associated CpGs were enriched in pla-
cental enhancers. The CpG cg27402634, located between 
LEKR1 and LINC00886, showed the largest effect (− 25.1% 
in sustained smokers). Besides this, other CpGs that yielded 
large magnitudes of association but far from the top CpG 
were located within the EDC3, WBP1L, and KDM5B genes. 
Interestingly, the genomic regions of LEKR1-LINC00886, 
EDC3, and WBP1L have been described to contain genetic 
variants related to birth weight.

These top genes were also identified in other single cohort 
EWAS by Morales et al. [31] and Cardenas et al. [32]. The 
latter evaluated DNAm with the Illumina EPIC array, which 
has a larger coverage of the genome than the 450 K, and this 
allowed the identification of 52 novel CpGs not described 
before. Finally, another study identified 203 placental differ-
entially methylated regions (DMRs) associated with MSDP 
[33•]. These DMRs encompassed 1023 CpGs, some of them 
overlapping previous literature. They were enriched for pla-
centa enhancer regions located near ten imprinted regions 
known to control fetal and placental development. Results 
from other smaller studies are summarized in Table S1.

Associations with DNA Methylation in Other Tissues

A limited number of studies have investigated the associa-
tion between MSDP and DNAm in tissues other than blood 
or placenta (Table S1). Access to fetal tissues is complicated, 
and thus studies are usually of small size. In dorsolateral 
prefrontal cortex samples from the second trimester of ges-
tation, 577 DMRs were associated with MSDP at nominal 
significance (n = 24) [34••]. Top DMRs were within the pro-
moter regions of GNA15 and SDHAP3, previously reported 
to show altered DNAm levels in the brain of patients with 
autism spectrum disorder and schizophrenia. In fetal lung, 
MSDP was nominally associated with DNAm at CpGs anno-
tated to several genes, including DPP10 previously related 
to asthma (n = 85) [35•, 36]. As indicated before, AHRR is 
a primary response gene for MSDP. However, unlike in cord 
blood, it was not affected in buccal epithelium cells collected 
at birth (n = 15) [18]. Finally, in child buccal epithelium cells 
(n = 272), one study found that MSDP was associated with 

Fig. 1   Venn diagram showing the overlap between CpGs (A) and 
genes (B) persistently associated with any/sustained maternal smok-
ing during pregnancy in blood in childhood (Richmond et al. [13••]; 

Joubert et  al. [8••]; Vives-Usano et  al. [24••]), adolescence (Rich-
mond et al. [13••], Rauschert et al. [20]), and adulthood (Richmond 
et al. [13••]; Wiklund et al. [26])
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DNAm differences at eight genes (AXL, PTPRO, KLK11, 
TGFB3, MET, SPDEF, SNCG, NBL1) [37].

The overlap of the top CpGs associated with MSDP in 
the different tissues is shown in Fig. 2A. Five CpGs were 
common between placenta and cord blood, and one between 
cord blood and fetal cortex. CpGs in fetal lung did not over-
lap with CpGs described in any other tissue. Although 
these observations indicate cell-specific effects of MSDP, 
we cannot rule out the possibility that different CpGs might 
be regulating the same genes or pathways, particularly con-
sidering that gene expression is often regulated by different 
CpGs according to the tissue. In fact, when comparing lists 
of genes mapped to the CpGs significantly associated with 
MSDP, we found a higher number of overlapping genes: 
12 genes overlapped between the placenta and cord blood; 
11 genes between fetal cortex and placenta; and 18 genes 
between cord blood and fetal cortex (Fig. 2B).

Cell‑Type Specificity

Interpreting DNAm changes associated with smoking in the 
context of tissue cellular heterogeneity is challenging. To 
answer this, Bauer et al. examined DNAm at 5 smoking-
sensitive CpGs in sorted blood cell types [38]. They found 
that several scenarios were possible: smoking promotes the 
expansion of a specific cell type with a specific DNAm pat-
tern (i.e., GPR15 + T cells); smoking affects DNAm in spe-
cific cells (i.e., hypo-methylation of GFI1 in granulocytes); 
and smoking affects DNAm across blood cell types (i.e., 
hypo-methylation of the cg05575921 CpG in the AHRR). 
In the case of cg19859270, they confirmed that a smoking-
induced methylation difference of around 2% was caused 

by expansion of GPR15 + T cells, involved in inflammation 
and disease pathology. Thus, even slight DNAm changes in 
whole blood samples might be of strong biological relevance 
if attributed to a specific cell type.

However, cell sorting is not always possible in epide-
miological settings. To uncover these, there exist reference-
based cell deconvolution methods for tissues such as whole 
blood [39•], cord blood [40•], saliva [41•], or placenta 
[42•]. Most of the EWAS apply these methods to adjust 
for cell-type proportions in the statistical model; however, 
they can also be used to identify cell-type-specific effects. 
For instance, You et al. found that most highly reproducible 
smoking-associated hypo-methylation signatures in adults 
were more prominent in the myeloid lineage [43•].

Dose and Duration of Maternal Smoking 
During Pregnancy

The harmful effects of MSDP might be reduced or dimin-
ished if the mother quits smoking in the first trimester of 
pregnancy or if she decreases cigarette consumption. Thus, 
several studies have explored the effect of these temporal 
and dose parameters on offspring’s DNAm. Regarding the 
duration of the exposure, the PACE meta-analyses found that 
the effects on DNAm were stronger among sustained smoker 
mothers compared to the group of any smoker mothers, both 
in cord blood [8••] and placenta [30••]. Consistent findings 
were found in other studies [13••, 14, 18, 24••].

The number of cigarettes smoked per day is also impor-
tant. Some of the MSDP-sensitive CpGs in cord blood show 
evidence of a dose-dependent association, with stronger 

Fig. 2   Venn diagram showing the overlap between CpGs (A) and 
genes (B) significantly associated with any/sustained maternal 
smoking during pregnancy in cord blood (Joubert et  al. [8••]), pla-
centa (Everson et al. [30••]), fetal cortex (Chatterton et al. [34••]), 
and fetal lung (Chhabra et al. 35•). The study on buccal epithelium 

by Breton et  al. was not comparable to these studies (the authors 
assessed repetitive elements and a set of CpGs comprised in the 
GoldenGate Cancer methylation panel I), and therefore it was not 
included in the diagram
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effects with a higher number of cigarettes smoked per day 
[12, 13••, 44]. These duration and dose-dependent associa-
tions of MSDP seem to be maintained in children [24••], 
adolescents, and adults [20, 26]. The list of CpGs and genes 
with dose–response across age ranges is shown in Fig. 3.

Studies examining the effect of exposure to second-hand 
smoke (SHS), which involves lower doses and different 
exposure routes compared to the exposure through maternal 
smoking in pregnancy, are inconclusive. Recently, a study 
reported that exposure to SHS among non-smoking pregnant 
women was associated with cord blood DNAm changes in 
several CpGs, some of them overlapping MSDP-sensitive 
CpGs [45•]. In contrast, other studies did not find any asso-
ciation in child [24••] or adult blood [46]. Similarly, there 
is low evidence for an association between paternal smok-
ing during pregnancy (PSDP) and cord blood [13••, 44, 
47] or placenta DNAm [31, 33•]. The exception is a recent 
meta-analysis showing associations between PSDP and dif-
ferential DNAm in offspring’s blood [48•]. However, the 
study could not determine whether the observed associations 
were due to SHS exposure during the post-conception period 
(pregnancy or postnatally) or altered sperm DNAm patterns 
acquired preconceptionally and transmitted to the offspring.

Regarding preconception exposure, Rousseaux et al. found 
that placentas of women who quit smoking at least 3 months 
prior to their pregnancy presented altered DNAm patterns in 
particular regions of the genome, despite an absence of direct 
exposure of placentas to tobacco smoke [33•]. If misclassifi-
cation of the exposure can be ruled out, this suggests the pos-
sibility of an acquired epigenetic predisposition, previously 
described in adipose tissue of former smokers (Tsai et al. 
49). In contrast, another study did not find any association 

of maternal and paternal smoking before pregnancy (MSBP 
and PSBP) or of grandmother’s smoking during pregnancy 
(GMSDP) with cord blood DNAm [47].

Maternal Smoking During Pregnancy 
and Multi‑omics

Biological interpretation of DNAm changes requires annotation 
of CpGs to genes. Usually, this is done by linking the CpG to 
the closest gene, but this does not consider long-range chromatin 
interactions. To address this, some studies base their annotation 
on cis expression quantitative trait methylation (cis eQTMs), 
defined as correlations between DNAm and expression levels of 
nearby genes. For instance, Everson et al. found that the DNAm 
at 61.3% of the MSDP-sensitive CpGs were associated with the 
expression of nearby genes [30••]. The majority (65%) of the 
eQTMs showed inverse associations (i.e., higher DNAm – lower 
gene expression). Pathways identified using the eQTM genes 
differed slightly from those identified using the closest gene 
annotation. Others have applied similar strategies to identify 
MSDP responsive genes and pathways in blood [10••]. How-
ever, these studies are limited by the small number of individuals 
in the eQTM analyses, thus having a reduced statistical power. 
To overcome this, Ruiz-Arenas et al. created a catalog of blood 
cis eQTMs in children, defined as CpG-gene pairs within a 1 Mb 
window centered at the transcription start site (TSS) (accepted 
in eLife; https://​elife​scien​ces.​org/​artic​les/​65310). Among the 
13 M CpG-gene tests, 39,749 statistically significant eQTMs, 
representing 21,966 unique CpGs and 8886 unique genes, were 
found after multiple-testing correction. Most of the associations 
took place in a distance between the CpG and gene < 250 kb, and 

Fig. 3   Venn diagram showing the overlap between CpGs (A) and 
genes (B) associated with any/sustained maternal smoking dur-
ing pregnancy showing a dose–response pattern. Studies have been 
grouped by periods (including from each period the top CpGs/genes 
found in each of the studies): at birth (Markunas et  al. [12]; Rich-

mond et  al. [13••]; Monasso et  al. [44]), childhood (Vives-Usano 
et  al. [24••]), adolescence (Rauschert et  al. [20]), and adulthood 
(Wiklund et al. [26]). Adulthood CpGs in Wiklund et al. also report 
dose–response patterns at 16 years

https://elifesciences.org/articles/65310
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58% showed inverse relationships. Notably, only around half of 
the eQTM genes could be captured by annotating the CpG to 
the closest gene. The study also describes low overlap between 
eQTMs identified in children and adults. However, the authors 
could not rule out whether this resulted from real biological dif-
ferences or differences in the study designs. The whole cata-
log including the 13 M CpG-gene pairs is publicly available at 
https://​helix​omics.​isglo​bal.​org/.

Multi-omics studies of MSDP are scarce. An exception 
are the studies by Bauer et al. [22••] and by Vives-Usano 
et al. 2020 [24••] (Table S1). Vives-Usano et al. analyzed the 
association of MSDP with multi-omics biomarkers, including 
blood DNAm, blood gene and miRNA expression, plasma pro-
teins, and serum and urinary metabolites, assessed in children 
of the Human Early Life Exposome (HELIX) study. MSDP 
was related to DNAm changes at 18 loci, five of which showed 
an association with the expression of nearby genes. However, 
no evidence of association was found between MSDP and child 
blood gene expression, suggesting that the effect of MSDP was 
more persistent and stronger on DNAm than on gene expres-
sion. In line with this, in adults, it has been observed that gene 
expression levels are recovered to normal levels after smoking 
cessation faster than DNAm levels are [49]. Regarding other 
omics, only two child urinary metabolites (alanine and lactate) 
were associated with MSDP, with low biological plausibility. 
Metabolites, miRNAs, and transcripts that were previously 
found altered in current smokers were not among the top sta-
tistically significant markers in HELIX [50–53]. The authors 
also investigated the association of childhood SHS with child 
molecular signatures. In contrast to what was observed for 
MSDP, childhood SHS was related to reduced levels of several 
metabolites (phosphatidylcholines and sphingomyelins) and 
to increased plasma PAI1 (a protein that inhibits fibrinolysis), 
both previously described to be altered in current smokers.

Bauer et al. examined the association between DNAm in 
maternal and offspring’s blood samples through whole‐genome 
bisulfite sequencing (WGBS), which covers a greater fraction of 
the genome than array-based methods [22••]. The authors dis-
covered a set of 8409 DMRs associated with MSDP in children, 
1404 of which were independent of underlying genetic variants. 
Child and maternal DMRs were quite distinctive. By analyzing 
additional data on chromatin histone marks and RNAseq, the 
authors identified DNAm patterns at enhancers and repressive 
elements that correlated with transcriptional changes, showing 
stronger effects later in life than at birth. Two DMRs were vali-
dated in a larger sample: a DMR in the TMEM241 gene and a 
DMR in a JNK2 enhancer (in the GFPT2 gene). Interestingly, 
DNAm levels at this enhancer were determined by the combined 
effect of MSDP and a cis mQTL. Finally, loss of DNAm at the 
JNK2 enhancer was associated with an increased risk for wheez-
ing, and this was confirmed in a JNK2 knock-out mouse that 
had reduced airway inflammation and airway hyperreactivity.

From Smoking to Health Outcomes: the Role 
of DNA Methylation

It has been suggested that DNAm can mediate the effect of 
environmental exposures on health outcomes [7]. To explore 
this, several studies have conducted mediation analyses, 
which consist of calculating the percentage of the total effect 
of the exposure that acts through a given mediator factor 
(indirect effect), and the percentage of the total effect of the 
exposure unexplained by this same mediator (direct effect) 
(Fig. 4) [54•].

Maternal Smoking During Pregnancy, DNA 
Methylation, and Reproductive Outcomes

Several mediation analyses have been conducted to deter-
mine whether the effect of MSDP on birth weight is medi-
ated through DNAm in cord blood [17, 19, 55, 56•, 57, 58], 
neonate blood [59], or placenta [31, 32] (Table S2).

In cord blood, DNAm at several CpGs of the GFI1 gene, 
which is involved in hematopoiesis control, were found to 
mediate around 18% of the effect of MSDP on birth weight 
[55]. These results were replicated in cord blood [56•] and 
neonate blood [59]. Another study described that DNAm at 
8 CpGs (close to AHRR, CYP1A1, and GFI1 genes) medi-
ated up to 67.8% of the effect of MSDP on birth weight [58]. 
Lastly, two other studies suggested that the effect of MSDP 
on the risk of being born with low birth weight or being 
small for the gestational age could be mediated by DNAm 
at IGF2, an essential gene for fetal growth [17, 19].

Even though blood tissue is easily accessible, there is a 
concern that it might not be the key tissue for mediating the 
effect between MSDP and birth weight [55]. In contrast, the 
placenta is a more plausible tissue in terms of its biology for 
mediating the effects of MSDP on reproductive outcomes [29]. 
Indeed, the top CpG in the placenta, cg27402634 (LEKR1-
LINC00086), was found to explain up to 36% of the effect of 
MSDP on birth weight, and the CpG cg25585967 (TRIO) up 
to 5% [31]. Another study found seven CpGs likely mediating 
the effect of MSDP on birth weight, five of which presented an 
interaction effect between MSDP and DNAm [32].

Maternal Smoking During Pregnancy, DNA 
Methylation, and Other Outcomes

Regarding neuropsychological traits, the proportion of the 
effect of MSDP mediated through blood DNAm is substan-
tial: 48.4% for cord blood DNAm at GFI1 gene on atten-
tion deficit and hyperactivity disorder symptoms [60], and 
around 30% for adult blood DNAm at the GNG12 gene 
on schizophrenia-related outcomes [26]. Another study 

https://helixomics.isglobal.org/
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described that placental DNAm at the NR3C1 gene could 
mediate 25% of the effects of MSDP on basal cortisol levels 
of newborns [61]. Finally, another study found that the odds 
ratio (OR) for the indirect effect of MSDP on asthma medi-
ated through blood DNAm at the cg05575921 CpG (AHRR) 
was 1.18, being the OR of the total effect 1.48 [62].

Limitations of Mediation Analyses and Causal 
Inference

Findings from a mediation analysis must be interpreted with 
caution because they have several limitations. First, they give 
biased results when the mediator (i.e., DNAm) captures 
the exposure (i.e., MSDP) with less error than the method 
used to assess the exposure itself [56•], and when there is 
mediator-outcome confounding, exposure-mediator interac-
tion or poorly specified models [32, 54•]. Second, they only 
prove a statistical relationship between the factors (expo-
sure-mediator-outcome), but not a causal link. For causal 
inference, triangulation, which consists in obtaining more 
reliable answers to research questions by integrating results 
from different study designs, is essential [63]. Thus, EWAS 
findings from observational studies should be complemented 
with Mendelian randomization (MR) analyses, clinical trials, 
and validation in animal models, when possible.

Mendelian randomization is a statistical method that uses 
genetic variants that influence DNA methylation (mQTLs) 
as instrumental variables to evaluate the causal link 
between an exposure (i.e., DNAm) and an outcome [64•]. 

For instance, Morales et al. found suggestive evidence that 
decreased placental DNAm levels at the CpG cg27402634 
(LEKR1-LINC00086) lead to reduced birth weight [31]. 
Similarly, Wiklund et al. suggested that MSDP is associated 
with an increased risk of schizophrenia by a decrease of pla-
cental DNAm levels at the CpG cg25189904 (GNG12) [26]. 
MR analyses of DNAm or other molecular traits require 
public databases of molecular quantitative trait loci (QTLs) 
to identify the instrumental variables. While databases of 
expression QTL are publicly available for diverse tissues at 
websites such as the one by the Genotype-Tissue Expres-
sion (Gtex) project (https://​gtexp​ortal.​org/​home/), there are 
fewer, ancestry dependent, and generally smaller, public 
databases for mQTLs [65•, 66, 67].

Epigenetic Scores to Predict Past Exposure 
to Tobacco Smoke During Pregnancy

DNAm patterns can predict past exposures to MSDP, which 
can overcome missing, incomplete, or inaccurate data on 
MSDP. The first epigenetic score of MDSP for cord blood, 
which included 28 CpGs, was developed by Reese et al. 
using an iterative logistic lasso cross-validation procedure 
[68]. The area under the curve (AUC) value, which is calcu-
lated according to the specificity and sensitivity of the score, 
was 0.90 for the testing cohort. A subsequent score for adult 
blood derived using the coefficients of 19 CpGs associated 
with MSPD in child blood from the PACE meta-analysis 
[8••], had moderate accuracy (AUC = 0.72) [69]. Recently, 

Fig. 4   Mediation analysis: the total effect of any/sustained maternal 
during pregnancy on adverse reproductive and childhood health out-
comes is divided in a direct effect and indirect effect through DNA 
methylation changes. The CpGs/genes for which a mediation effect 
has been found for different health outcomes and tissues are listed on 
the right (Murphy et al. [17]; Stroud et al. [61]; Bouwland-Both et al. 

[19]; Küpers et  al. [55]; Morales et  al. 31; Valeri et  al. [56•]; Witt 
et al. [57]; Cardenas et al.[32]; Hannon et al. [59]; Neophytou et al. 
[62]; Wiklund et al. [26]; Miyake et al. [60]; Xu et al. [58]). BW, birth 
weight; LBW, low birth weight, SGA, small for gestational age; SQ, 
squizofrenia; ADHD, attention deficit and hyperactivity disorder; 
ASTH, asthma

https://gtexportal.org/home/
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Rauschert et al. developed an epigenetic score for adolescent 
and adult blood containing 204 CpGs which were selected 
using the elastic net regression method [70••]. The score 
had AUC values > 0.80 for the testing cohorts and in these 
cohorts it outperformed the previous ones.

Finally, Blostein et al. developed an epigenetic smoking 
score for children and adolescents based on saliva DNAm 
(https://​www.​medrx​iv.​org/​conte​nt/​10.​1101/​2021.​11.​30.​
21267​020v1.​full). Even using weights of 6,074 CpGs from 
cord blood [8••], the AUCs were 0.78 at the age of 9 and 
0.77 at the age of 15. Moreover, the authors found that the 
score was quite portable across ancestry groups.

Conclusions

The existing literature supports a significant and consistent 
impact of MSDP on the offspring’s epigenome at biologi-
cally relevant genes across important tissues such as cord 
blood and placenta. This information has been successfully 
used to predict past exposure to MSDP through epigenetic 
scores. Despite this evidence, there are still some gaps to be 
addressed, some of which have already been highlighted by 
a previous review [71]. First, while it is clear that the dura-
tion of MSDP affects DNAm levels, the evidence for mater-
nal or paternal smoking during the preconception period is 
less consistent. Moreover, although MSPD dose–response 
patterns have been described in several CpGs, the effect of 
low doses such as for SHS is difficult to address. Similarly, 
more studies are needed to confirm the implications of the 
observed persistent effects in the epigenome, addressing 
the existence of cell memory mechanisms and the potential 
association with increased vulnerability to similar exposures 
later in life or future generations. Second, there is a need 
to investigate whether the effects of MSDP are consistent 
between sexes and ancestry groups, and the effect modifica-
tion of genetic variants or environmental factors should be 
considered more systematically. Third, translation of DNAm 
changes in certain CpGs into biological pathways requires 
additional deeper multi-omics data, especially transcrip-
tomic data. Biological interpretation is, in addition, compli-
cated due to limitations in tissue accessibility and cell-type 
specificity. Studies from abortions on fetal organs might 
offer more direct knowledge on otherwise inaccessible tar-
get organs. In turn, cell-type specificity can be addressed 
by conducting cell sorting, single-cell DNAm studies, or 
otherwise, by applying cell deconvolution methods. Finally, 
proving causal links between DNAm and health outcomes 
requires triangulation of findings from different study 
designs: observational, MR, and animal models. Overall, 
despite most of the findings reviewed here are robust and 
consistent, further investigations are guaranteed to provide 

a more comprehensive understanding of MSDP impact on 
the offspring epigenome by combining data obtained using 
newer technical approaches and multiple study designs.
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