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Abstract

Purpose of Review The purpose of this review is to consolidate exposure assessment methods for occupational research on
engineered nanomaterials (ENMs) published within the past 5 years (2015-2020).

Recent Findings The three ENMs that generated the highest volume of new research include titanium dioxide, graphene, and
aluminum oxide. A multi-metric approach, using both online and offline instruments and analyses, has been found to be a useful
method to characterize ENM workplace exposures and was commonly used in the recently published literature. Particle number
concentration was the most common online exposure metric used, followed by the metrics of mass and surface area. There are
currently no consensus methods for offline analyses of most ENMs. Researchers generally used gravimetric or elemental
analyses for carbonaceous nanomaterials, titanium dioxide, and other nanometals, but there was little overlap between other
ENM materials reviewed. Using biological markers of exposure, such as urinary oxidative stress biomarkers, as an indication of
chronic exposure may also be useful for some ENMs and should be further researched.

Summary Generally, similar online instrumentation and offline electron microscopy methods were used for all ENMs. However,
this consistency was not observed for offline mass analysis methods within specific ENMs. Consolidation of the most recent
methods and results of exposure assessments within this broad material category can guide researchers toward future areas of
study. Establishing consensus methods of exposure assessment for each individual ENM is crucial to characterizing workplace
exposures, pooling data to fully understand their associated risks, and developing useful occupational exposure limits.

Keywords Exposure assessment - Nanomaterials - Nanoparticles - Occupational exposure

Introduction are not exhibited by their bulk counterparts. ENMs have
gained prominence in technological advancements due to their
Engineered nanomaterials (ENMs) are a broad class of mate-  tunable physicochemical characteristics such as melting point,

rials that are developed to have at least one dimension between  wettability, electrical and thermal conductivity, catalytic ac-
1 to 100 nm and offer unique, size-dependent properties that  tivity, light absorption, and scattering effects resulting in en-
hanced performance [1]. These materials offer the potential
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electronics, energy storage, textiles, and cosmetics, as well
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Mamadou Niang As a result, there have been growing concerns about pos-
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ENMs. Previous research on ambient air pollution and natu-
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(diameter less than 2.5 um) and ultrafine particulates (diame-
ter less than 0.1 pum), has shown potential harmful effects.
ENMs could have similar novel biological properties that
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may cause inflammatory and oxidative stress—induced lung
injury and translocate to extrapulmonary tissues [4, 5].
Additionally, the term ENM covers a broad class of materials
with various modes of action, mechanisms, and specific char-
acteristics that may drive certain health effects [6]. Therefore,
fully understanding the toxicity of these materials is a complex
task. Furthermore, there has been limited occupational epide-
miologic evidence of human health effects from workplace
exposures to ENMs [7]. The introduction of ENMs into the
work environment may cause unpredictable and potentially
serious adverse health effects to exposed workers [8].

Consequently, sampling methodologies and metrics to as-
sess occupational exposures to ENMs have been at the fore-
front of discussion over the past decade. Currently, there are
no consensus measurement methods or exposure metrics to
assess occupational exposures to ENMs, but several multi-
metric approaches have been suggested by various researchers
and international agencies. These approaches include
collecting a combination of exposure data using direct reading
or online measurement methods and lab-based, offline analy-
ses. Online methods can assess particle number, particle size
distribution, surface area, and mass concentration in real time,
while offline methods use laboratory-based electron micros-
copy or a gravimetric/elemental mass analysis [9—12]. Online
methods can provide a quantitative result with a high time
resolution for the exposure metric of choice while offline mea-
surement methods refer to the type of aerosol samples collect-
ed on a filter or grid and analyzed by a laboratory at a later
date. The lack of specificity of the online measurement
methods and potential issues with sample loading and the
sensitivity of the offline analytical methods combined with
the varying physical, chemical, and physicochemical proper-
ties of ENMs preclude the idea of using a single exposure
metric [10].

It has been nearly two decades since Maynard et al. (2004)
published the first ENM exposure assessment at a primary
producer of single-walled carbon nanotubes (SWCNT) [13].
Interest in assessing occupational exposures to ENM has con-
tinued to grow over the last two decades with more than 50
studies being published internationally since that time.
Recently, several comprehensive reviews and commentaries
have been published, which have focused on rating the quality
of evidence of an ENM exposure. The reviews evaluated the
overall quality of the published studies at that time, their mea-
surement techniques, and examined the most commonly re-
ported processes and tasks that resulted in ENM exposures
[14-16]. Additionally, reviews by Guseva-Canu et al. (2016;
2020) have focused on evaluating the completeness and reli-
ability of exposure data for use in epidemiology and risk as-
sessments specifically for carbon nanotubes (CNT) [17, 18].

Therefore, the goal of this review was to not duplicate past
systematic reviews conducted by Debia et al. (2016), Boccuni
etal. (2017), Ding et al. (2017), and Guseva-Canu et al. (2016;
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2020), but rather to highlight recently published literature be-
tween 2015 and 2020 relevant to assessing occupational ex-
posures to ENMs within workplaces. Additionally, this re-
view pays specific attention to the metrics of exposure and
instrumentation used to assess exposures, while offering sug-
gestions for future areas of study that will progress this impor-
tant field of research. We searched the PubMed database by
combining search terms related to nanomaterial exposure as-
sessments (e.g., nanomaterial, nanoparticle, exposure assess-
ment, workplace, occupational) with the names of specific
ENMs of interest. We first focused our search on the nine
most widely used ENMs based on tonnage which included
carbon black, amorphous silica, aluminum oxide, barium tita-
nate, titanium dioxide, cerium oxide, zinc oxide, carbon nano-
tubes and nanofibers, and nano silver before expanding to
other emerging ENM such as graphene [19].

We then reviewed the abstracts identified by these searches
and selected relevant articles based on the following criteria:
(1) occupational exposure data was collected for ENMs; (2)
exposures were assessed within industrial workplaces or lab-
oratories performing daily job tasks; and (3) they provided
quantitative data on ENM exposures.

Results of the Literature Search

Our initial literature review identified 37 publications
assessing occupational exposure to ENMs that were published
between 2015 and 2020. Twenty-two of which were not in-
cluded in the four most recent ENM review articles and are
discussed within this review [14, 16—18]. The three ENMs
that generated the highest volume of new research include
titanium dioxide (TiO,), the graphene family of ENMs, and
aluminum oxide (Al,O3). We identified ten TiO, studies and
nine graphene studies published between 2015 and 2020.
Seven of the studies for each material were not previously
covered in other reviews. Six new Al,O; studies are also in-
cluded in this review, while recent review articles only includ-
ed two. ENMs with the fewest recent publications included
cerium oxide, zinc oxide, nano clays, nano iron, nano nickel,
and nano palladium, each of which only had one exposure
assessment publication each.

Carbonaceous Nanomaterials
Carbon Nanotubes and Nanofibers

CNTs have been the most assessed ENM to date, with 27
articles being published on the topic between 2004 and 2018
[18]. Since that time, one additional manuscript has been pub-
lished that met our inclusion criteria and assessed exposures to
MWCNT at a primary manufacturing facility (Table 1).
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Bressot et al. (2018) collected particle size distribution and
particle number concentration (PNC) using a fast mobility
particle sizer (FMPS), scanning mobility particle sizer
(SMPS), and condensation particle counter (CPC) coupled
with the offline analysis method of electron microscopy to
verify airborne occupational exposure [20]. However, this site
assessment did not use any form of offline mass-based mea-
surement, such as elemental carbon mass which has been suc-
cessfully utilized by other recent studies and is the exposure
metric for the US National Institute for Occupational Safety
and Health (NIOSH) Recommended Exposure Limit (REL)
[18, 21].

Graphene

There have been seven new peer-reviewed publications that
assessed occupational exposures to graphene (Table 1). Of the
seven publications identified, one was conducted at a
laboratory/research & development (R&D) facility, five were
conducted at primary production facilities, and one assessed
exposure at two secondary manufacturing companies associ-
ated with the conductive inks and coatings industries.

Two of the recently published graphene studies used online
instrumentation to assess the exposure metric of mass, while
five reported surface area ranges, and all studies used at least
one online measurement instrument to assess PNC ranges.
Four of the recently published studies also conducted an
offline gravimetric mass analysis, while three of the studies
conducted an offline elemental carbon mass analysis. The
presence of aerosolized graphene was confirmed via offline
electron microscopy analysis in five publications, but no
quantitative estimates were provided. However, Vaquero
et al. (2019) used electron microscopy to assess morphology
but could not confirm the presence of graphene due to the size
of agglomerates observed [22¢]. Lavicoli et al. (2018) solely
focused their assessment on the use of online instrumentation
to assess surface area, PNC, and aerosol size distribution in-
formation [23].

Carbon Black

Two recent peer-reviewed publications assessed occupational
exposure to carbon black and were included in this review
(Table 1). Both exposure assessments were conducted at sec-
ondary production facilities within the rubber and conductive
inks industries. Both studies used online instrumentation to
assess mass and PNC, while Loven et al. (2020) used an
aethalometer to collect online measurements for carbon black
mass [24]. Loven et al. (2020) also collected air samples at the
inhalable size fraction for the mass of elemental carbon and
confirmed the presence of carbon black via an offline electron
microscopy analysis.

@ Springer

Krieder et al. (2015) used an innovative method which
involved an online analysis for PNC using the electrical low
pressure impactor (ELPI). The study also analyzed the parti-
cles collected from the ELPI impactor stages by using an
offline electron microscopy method following NIOSH meth-
od 7400 to determine the percent of carbon black particles
collected per stage [25¢¢]. The percentage was then multiplied
by the stage-specific online particle counts to provide an esti-
mate of the PNC for carbon black per size bin.

Nanometal Oxides
Titanium Dioxide

This review includes seven recent peer-reviewed publications
that assessed occupational exposures to titanium dioxide
(TiO,; Table 2). Two of the exposure assessments were con-
ducted at primary manufacturing facilities that were producing
industrial-scale quantities. Three assessments were conducted
at secondary manufacturing facilities (metals production, cos-
metic retailers, and conductive inks) and two assessments
were conducted at laboratory/R&D facilities. Lee et al.
(2020) used a novel biological monitoring approach to assess
exposures to TiO, and zinc oxide (ZnO) that measured oxida-
tive stress within cosmetic retail clerks using the urinary bio-
marker 8-hydroxy-2'-deoxyguanosine (8§-OHdG) [26¢].
Additional details on Lee et al. (2020) can be found in the
ZnO portion of the results section.

The remaining TiO, exposure studies used a combination
of online and offline measurement methods to assess occupa-
tional exposures. Two studies used online instrumentation to
assess TiO, mass while three reported exposures using the
exposure metric of surface area. Meanwhile, six studies used
at least one online instrument to assess PNC ranges or provide
information on the aerosol size distribution. Additionally,
three studies collected aerosol samples at the respirable or
ultrafine/fine particle size fractions for offline gravimetric
mass analysis; the metric and sampling method was used for
comparison to the US NIOSH Recommended Exposure Limit
[27]. The presence of airborne TiO, was confirmed via offline
electron microscopy analysis in six of the seven publications.
Additionally, Loven et al. (2020) provided a quantitative ex-
posure estimate via electron microscopy and also examined
TiO, presence or absence on work surfaces [24].

Aluminum Oxide

An additional six peer-reviewed publications that assessed
occupational exposures to aluminum oxide (Al,O3;) were
identified in the literature and included in this review
(Table 2). Three of the published site assessments were con-
ducted within laboratory/R&D facilities, while two assessed
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exposures within primary manufacturers, and one study was
conducted at a secondary facility that specialized in lacquering
and anodizing aluminum surface treatments.

Four of the included studies used online instrumentation to
assess the exposure metric of mass, three assessed exposures
using online surface area measurements, and all six reported
data on PNCs through the use of multiple instruments.
Brenner et al. (2016) used inductively coupled plasma atomic
emission spectroscopy (ICP-OES) to assess aluminum parti-
cles in the air, under the assumption that all aluminum detect-
ed was in the form of Al,O5 [28]. Meanwhile, Brenner et al.
(2015) and Glassford et al. (2020) also collected offline mass-
based measurements, but did not fully describe the analysis
methods [29, 30]. The presence of airborne Al,O3; was con-
firmed via offline electron microscopy analysis coupled with a
chemical microanalysis technique in all six assessments.
However, Brenner et al. (2016) also performed a quantitative
electron microscopy analysis [28].

Zinc Oxide

Lee et al. (2020) assessed occupational exposures to zinc ox-
ide (ZnO) within cosmetic retail clerks (Table 2) [26]. The
study used the urinary biomarker 8-hydroxy-2'-
deoxyguanosine (8-OHdG) to quantify oxidative stress. The
researchers began by examining commercially available cos-
metic products available in Taiwan that contained ZnO and
TiO,. They analyzed the content, concentration, and size of
the nanoparticles in the cosmetic products using single-
particle ICP-MS.

They recruited participants, collected demographic infor-
mation, exposure surveys, and collected two urine samples
from each participant on four separate occasions. This infor-
mation was used in conjunction with single-particle ICP-MS
to calculate daily exposure doses and cumulative risk calcula-
tions. The results linked a higher likelihood of chronic occu-
pational cosmetic exposures containing ZnO and TiO, with
higher urinary 8-OHdG levels, but additional research on der-
mal exposures to these ENMs is needed.

Ferric Oxide

Two recent peer-reviewed publications assessing occupation-
al exposure to ferric oxide (Fe,Os) were identified (Table 2).
Both publications used online methods to investigate relation-
ships between number, surface area, and mass concentrations
of nanoparticles at primary production facilities. However,
Zou et al. 2015 also reported the ratio of cumulative PNC
and percentage by mass to assess which of the two character-
istics were dominant in two nanometals (Fe,O; & Al,O3)
[31]. Xing et al. (2015) and Zou et al. (2015) both confirmed
the presence of Fe,O; using scanning electron microscopy
[31, 32].

Cerium Oxide

Brenner et al. (2015) assessed occupational exposures to ceri-
um oxide (CeO,) within a laboratory/R&D facility that proc-
essed wastewater from semiconductor production (Table 2).
The assessment focused on the use of online instrumentation
to assess exposures using the metric of PNC and collected
information on aerosol size distributions. Brenner et al.
(2015) also collected samples at the inhalable aerosol fraction
for an offline gravimetric mass analysis, but results were be-
low the detection limit [29]. Additional offline analyses were
completed by electron microscopy to confirm the presence of
aerosolized CeO, at the facility.

Zirconium Dioxide

Exposures to zirconium dioxide (ZrO,) were assessed by two
peer-reviewed publications included in this review (Table 2).
Both exposure assessments were conducted at primary pro-
duction facilities. Glassford et al. (2020) assessed exposures
using online instrumentation for PNCs and mass, while
Bressot et al. (2018) also assessed exposures using online
instrumentation for PNC and to determine aerosol size distri-
butions [20, 30]. Glassford et al. (2020) reported the collection
of an offline analysis at the inhalable aerosol size fraction for
the airborne mass concentration of Zr, but the method was not
clearly described. However, the presence of airborne ZrO,
was confirmed using offline electron microscopy analyses in
both publications.

Nanometals
Silver

Three recent peer-reviewed publications assessed occupation-
al exposures to nano silver (Ag) and silver nanowires at pri-
mary production facilities (Table 3). Two studies used online
instrumentation to assess mass, while three studies used online
instruments to assess PNC using a combination of condensa-
tion particle counters and optical particle sizers. Garcia et al.
(2017) reported airborne silver mass concentrations at the
inhalable aerosol size fraction using NIOSH Manual of
Analytical Methods (NMAM) 7303 (ICP-AES) and used
NMAM 9102 (ICP-AES) to assess silver concentrations from
surface samples [33]. Glassford et al. (2020) reported silver
mass concentrations at the inhalable aerosol size fraction and
collected samples to assess silver concentrations from sur-
faces, but the analysis methods were not clearly described in
the publication [30]. The presence of airborne Ag was con-
firmed via offline microscopy analysis in all three publica-
tions, while Garcia et al. (2017) reported quantitative exposure
data [33].

@ Springer
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within a research laboratory using a combination of online and
offline methods to assess exposure (Table 3). Koivisto et al.
(2018a) used a single online instrument to assess the exposure
metric of surface area and PNC simultaneously [35]. The au-
thors also conducted a gravimetric analysis on aerosol samples
collected at the respirable aerosol size fraction. The presence
of alumino-silicate clay collected from air samples was con-
firmed using a modified version of NMAM 7402, originally
developed for asbestos [35].

Nanocellulose

Two recent peer-reviewed publications assessing occupation-
al exposure to nanocellulose were identified in this review
(Table 3). Between the two studies, exposures were assessed
at two primary manufacturers of nanocellulose and two
laboratory/R&D facilities. Both studies used a combination
of online and offline instrumentation and exposure metrics
to assess occupational exposures.

Each study used online instrumentation to assess mass and
both studies used a condensation particle counter along with
an optical particle counter to assess PNC ranges and particle
sizes. Glassford et al. (2020) conducted a mass concentration
analysis at the inhalable size fraction that used a cesium mark-
er as indication of exposure [30]. Ogura et al. (2020) conduct-
ed an offline gravimetric mass analysis at the respirable aero-
sol size fraction and included an offline elemental carbon
analysis using a modified version of NMAM 5040 [36].
Both studies used electron microscopy to confirm the pres-
ence of airborne nanocellulose.

Conclusions and Future Research Directions

ENM uses will continue to grow as industries refine their pro-
cesses and find new applications for these unique materials. As
demonstrated throughout this review, a considerable amount of
research has been completed since 2015. As more exposure as-
sessment research is conducted, this information will further
guide the establishment of consensus sampling and analysis
methods for different types of ENMs. This portion of the review
will discuss the most prevalent methods applied, provide sugges-
tions for future research, and highlight research methods that
were particularly influential to ENM exposure research.

Online instruments are an essential component for assessing
exposures in the workplace since they can report data in real
time, but as mentioned previously, are not comprehensive due
to their lack of particle specificity. These instruments allow safe-
ty professionals to expeditiously locate sources of exposures,
evaluate control technologies, and monitor concentration pro-
files in order to better understand workplace exposures [14].
The online instrumentation most frequently used to characterize
the exposure metric of mass within the reviewed studies was the

@ Springer

DustTrak while the DiSCmini and the AeroTrak were most
commonly used to characterize surface area exposures.
Meanwhile, the CPC was the instrument most used to assess
PNC, and the OPS was commonly used to characterize particle
size distributions.

Previously, several authors have considered surface area
and particle number counts as important factors in deter-
mining potential adverse health effects to ENM exposure
[37, 38]. The major disadvantage of using the surface area
and particle number count methods reside in the difficulty
of distinguishing the target ENM from the background of
natural and incidental nanoparticles that may interfere with
measurements in the workplace [39, 40]. Considering this
critical point, Kreider et al. (2015) used a novel method that
can be used to assess all types of ENM by combining the
direct reading and low-pressure cascade impactor of the
ELPI with offline electron microscopy analysis methods.
Krieder et al. (2015) followed NMAM 7400 (asbestos and
other fibers by phase contrast microscopy) to determine the
percent of carbon black and amorphous silica particles col-
lected per impactor stage [25¢¢]. This unique technique
allowed for the quantitative measurement of the nanoparti-
cle of interest in mixed dust environments where many
particle types are present.

Meanwhile, offline exposure assessment methods may allow
for more ENM-specific quantitative and qualitative exposure
data but do not provide real-time data and some analyses can
be prohibitively expensive or time consuming to conduct.
Currently, there are few established methods for the offline
quantitative measurement and analysis of ENMs beyond the
US NIOSH Current Intelligence Bulletins for TiO,, Carbon
Nanotubes, and a NMAM method for the analysis of CNT by
transmission electron microscopy [21, 27, 41]. The use of offline
scanning or transmission electron microscopy to either identify
the ENM of interest or even quantify exposure to the ENM of
interest was nearly ubiquitous among all the recent literature
found in this review. Traditionally, manual microscopy-based
analysis and classification methods have been cumbersome.
However, recent studies have shown that the automatic detection
and classification of complex ENM structures are possible and
should be a continued area of future research [42].

Several recent studies assessing occupational exposures
to carbonaceous nanomaterials (i.e., graphene) and
nanometals (i.e., TiO,) reported the concentration of ele-
mental mass associated with the ENM of interest [24,
43-45]. This approach was generally applied for TiO, ex-
posure studies but was also used for other nanometals. The
recent inclusion of elemental mass concentrations can pro-
vide additional quantitative data and could help progress
ENM sampling harmonization assuming that the limits of
detection are sufficient.

It is evident that the harmonization of measurement strategies
and exposure metrics for ENMs is still under development.
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Although it appears that for some of the more commercially
established ENMs, such as CNT and TiO,, researchers are mov-
ing toward consensus on sampling methods and exposure met-
rics as additional literature is published. For example, there has
been a growing number of recent studies for CNT that have used
the offline analysis method of elemental carbon mass, coupled
with either a confirmatory electron microscopy or a quantitative
microscopy analysis method, to associate exposure to CNTs
with early biological markers of effect [46-49]. Additionally, a
recent study that found immunological effects due to CNT ex-
posure concluded that the quantitative electron microscopy anal-
ysis method was the most sensitive exposure metric [50].

The use of ENMs will continue to be incorporated into con-
sumer and commercial products. They are a broad class of ma-
terials that have vastly different material characteristics and po-
tential toxicities. Several general multi-metric exposure assess-
ment approaches have been suggested and are continuing to be
used throughout the recently published ENM exposure assess-
ment literature. It is important to continually assess and harmo-
nize ENM exposure assessment approaches, which will enable
data pooling and comparison, while also carefully considering
the unique material attributes of each individual ENM.
Consensus methods for assessing exposures to specific ENMs
will continue to emerge as exposure research continues.
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