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Abstract

Purpose of Review The purpose of this review is to summarize the application of untargeted metabolomics to identify the
perturbation of metabolites or metabolic pathways associated with air pollutant exposures.

Recent Findings Twenty-three studies were included in this review, in adults, children, or pregnant women. The most commonly
measured air pollutant is particulate matter smaller than 2.5 pm. Size-fractioned particles, particle chemical species, gas pollutants,
or organic compounds were also investigated. The reviewed studies used a wide range of air pollution measurement techniques and
metabolomics analyses. Identified metabolites were primarily related to oxidative stress and inflammatory responses, and a few
were related to the alterations of steroid metabolic pathways. The observed metabolic perturbations can differ by disease status, sex,
and age. Air pollution-related metabolic changes were also associated with health outcomes in some studies.

Summary Our review shows that air pollutant exposures are associated with metabolic pathways primarily related to oxidative
stress, inflammation, as assessed through untargeted metabolomics in 23 studies. More metabolomic studies with larger sample
sizes are needed to identify air pollution components most responsible for adverse health effects, elaborate on mechanisms for
subpopulation susceptibility, and link air pollution exposure to specific adverse health effects.
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Abbreviations NOx nitrogen oxides
COPD chronic obstructive pulmonary disease PM; 5 particulate matter with diameter < 2.5 pm
IHD ischemic heart disease PM,o particulate matter with diameter < 10 pm
TRAP traffic-related air pollution UFP ultrafine particles (particulate matter of nano-
03 ozone scale size, <0.1 um)
PAHs polycyclic aromatic hydrocarbons PM, 5 19 particulate matter with a diameter between 2.5
PM particulate matter and 10 pm
Cco carbon monoxide TSP total suspended particles
Pb-PAH particle-bound polycyclic aromatic
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GC-MS gas chromatography coupled to mass
spectrometry

C18 C18 hydrophobic reversed-phase chromatography

ESI electrospray ionization

TOF time-of-flight

HMBD Human Metabolome Database

KEGG Kyoto Encyclopedia of Genes and Genomes

L C - M S /liquid chromatography coupled to tandem mass
MS spectrometry

PLS-DA partial least squares discriminant analysis
OPLS-DA  orthogonal PLS-DA

ANOVA  analysis of variance

ANCOVA analysis of covariance

ROS reactive oxygen species

PUFA polyunsaturated fatty acids

13-HODE  13-hydroperoxyoctadecadenoic acid
4-HNE 4-hydroxynonenal

FEVI forced expiratory volume in 1 s
Pb-PAHs  particle-bound polycyclic aromatic hydrocarbons
AOA adult-onset asthma

CCVD cardio-cerebrovascular diseases
Introduction

Metabolomics is the agnostic or comprehensive assessment of
low molecular-weight endogenous and exogenous metabo-
lites in a biological sample. Knowledge of these compounds
can be used to elucidate the molecular-level responses to a
genetic alteration, or the effect of disease. They can also be
used to monitor responses to various stimuli such as exposure
to environmental and lifestyle factors or administration of a
drug [1-3]. Metabolite abundance is regulated by various host
processes such as protein-enzymatic reactions; thus, metabo-
lomics sits at the end of the “omics cascade” within the central
dogma of biology [3]. In addition to host processing, metab-
olites can be co-metabolized by the microbiome; a pool of
these microbial metabolites is secondary metabolites, of
which most are currently uncharacterized. As metabolites are
the biochemical intermediates that carry out biological func-
tions within the body, the metabolome closely reflects the
phenotype or physiological state, compared to analysis of
the genome, transcriptome, and proteome [3]. Recent devel-
opments in mass spectrometry have allowed for high-
resolution measurement of tens of thousands of features in
small volumes of biological samples, which enables an
untargeted strategy to simultaneously analyze exogenous
chemicals, their metabolites, and associated perturbations to
the endogenous metabolome, allowing for an exposome-level
evaluation [4].

Air pollutants have been associated with various health
outcomes, such as cardiovascular diseases, respiratory dis-
eases, cancer, central nervous system disorders, and adverse
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pregnancy outcomes [5-9]. However, the mechanisms that
underlie these observed associations are not conclusive [10,
11]. Numerous studies have extensively investigated selected
biomarkers of oxidative stress and inflammation, with a tradi-
tional, hypothesis-driven approach [12]. This approach, often
focusing on a relatively small number of metabolites, cannot
capture the full picture of biological responses to air pollution
[11, 13]. To address this challenge, untargeted metabolomics
has been incorporated into many recent mechanistic studies of
air pollution. A recent book chapter reviewed the application
of metabolic profiling in human, animal, and in vitro studies
of air pollution, and discussed metabolites or pathways related
to oxidative stress responses [13]; however, this review was
based on a limited number of human studies (n = 8), and fo-
cused on oxidative responses only.

The objective of this review is to provide a comprehensive
review of the emerging literature on air pollution and
untargeted metabolomics (agnostic/global detection and rela-
tive quantitation of all small molecules in a sample), including
assessments of study design, metabolites and pathways identi-
fied, discussion of methodological challenges, and to provide
recommendations for future studies.

Study Populations and Study Designs

We conducted a search on human studies in PubMed using a
combination of MeSH terms and keywords:
(metabolomics[MeSH Terms] OR metabolome[MeSH
Terms] OR metabonomics) AND (air pollution[MeSH
Terms] OR particulate matterfMeSH Terms] OR nitrogen
oxides[MeSH Terms] OR air pollution OR air pollutants OR
polycyclic aromatic hydrocarbons). The last search was con-
ducted on June 9, 2020. After screening the abstract and full
text of 315 articles, we included a total of 23 studies on air
pollution and untargeted metabolomics published between
2012 and 2019 (Fig. 1, Table 1) [10, 11, 14-34]. More details
on these studies are in Table S1. Among these, 19 studies
focused on adults aged 18 or older [10, 11, 14-22, 25-28,
31-34], one study on pregnant women [23], two studies on
both elderly adults and children [29, 30], and one study on
children and adolescents [24].

These 23 studies include 11 crossover designs [10, 11,
14-22], 10 cross-sectional studies [23-32], one case-control
study, and one study using a combination of crossover and
cross-sectional designs [34].

All participants in the crossover studies went through two
to five exposure scenarios with varying expected air pollution
levels. In these scenarios, participants were requested to con-
duct activities (e.g., walking, driving), or to use real or sham
air purifiers. The order of purposefully designed exposure
sessions was typically randomized, and any two exposure ses-
sions were at least 7 days apart to avoid overlapping impacts
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Fig. 1 Flow diagram of literature
search and selection

PubMed search
(n=315)

References excluded after screening title

and abstract (n = 286)
Reviews or research on animals or cells

A 4

Full-text articles
screened (n = 29)

Targeted metabolomics
Not related to air pollution exposures

References excluded after reading full text

A 4

(n=6)

Articles included (n = 23)

Targeted feature extraction that was not
obvious in title or abstract (n = 3)
Only reported correlations between

different types of samples, but not the
correlations with exposures (n = 1)

Study design

Both (n=1)

Crossover design (n=11)
Cross-sectional design (n = 11)

Types of exposure
Short-term exposures (n = 13)
Sub-chronic exposures (n = 2)
Long-term exposures (n = 8)
Metabolomic sample
Serum or plasma sample (n = 15)
Urinary sample (n = 6)
Serum and saliva (n=1)
Exhaled breath condensate (n= 1)
Health conditions/markers
Investigated (n = 8)
Not investigated (n = 15)

Air pollution was not measured (n = 1)
Exposed individuals are all cases and
unexposed are all controls (n =1)

of the exposures. In the cross-sectional or case-control studies,
the selected participants were considered to capture the ex-
pected variation in air pollutant exposures of the study popu-
lation. For example, residents living in neighborhoods near
(< 500 m) or far (> 1000 m) from a highway were recruited
in the Community Assessment of Freeway Exposure and
Health (CAFEH) study in Boston, USA [25].

All 11 crossover studies and the one study combining
crossover and cross-sectional designs investigated short-term
effects of air pollution exposures (i.e., hours or days) on
metabolomic perturbations. As participants served as their
own comparisons in crossover designs, the changes in metab-
olite levels between exposure scenarios were investigated. All
studies measured metabolites at the end of exposure scenarios.
Five studies also measured metabolites before each scenario
[10, 11, 14, 15, 18]; that is, these five studies investigated the
changes in metabolites between exposure scenarios, as well as
the changes within each scenario.

Among the 10 cross-sectional studies and the one case-
control study, 10 investigated sub-chronic (i.e., multiple months)
or long-term effects (i.e., > 1 year). Nine collected one biological
sample for each participant, and thus investigated the between-
participant variations and related variations in metabolic pro-
files. The other two studies on sub-chronic or long-term effects

had repeated measures of metabolites to also account for within-
participant changes in metabolites over time [27, 32]. In the 10
sub-chronic or long-term studies, the timing of biological sam-
ple collection with respect to the exposure windows varied: five
studies collected one or multiple samples during the exposure
windows [25, 27, 31-33], one study collected one sample after
the exposure window [23], and four studies involving exposure
biomarkers collected the samples for measuring metabolites and
internal exposures at the same time [21, 26, 29].

Among the 23 studies reviewed in this paper, eight also
investigated metabolites related to health conditions such as
adult-onset asthma, ischemic heart disease (IHD) [10, 28,
33], or had measured health markers of early health effects
such as lung function, blood pressure, and biomarkers of
oxidative stress or inflammation [18, 21, 22, 27, 29]
(Table 2). These studies used case-control or cross-sectional
study designs. All but one of the eight studies collected bio-
logical samples after or at the same time of the assessment of
health outcomes. The other one study selected cases and con-
trols from two cohorts: (1) in Italy, biological samples were
collected before the identification of incident cardio-
cerebrovascular disease (CCVD); and (2) in Switzerland, bi-
ological samples were collected 7-10 years after identifying
cases of adult-onset asthma (AOA) [33].

@ Springer
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Table 2  Summary of studies investigating the metabolites or metabolic pathways related to both air pollution exposures and health outcomes

First author,  Health outcomes Sample collection timing with respect to Findings

year health outcomes

van COPD, IHD Samples collected after identifying health Out of the 15 compounds associated with
Veldhoven outcomes (diseases presented upon NO,, two were also associated with
2019 [10] recruitment) COPD (data not shown).

Chen 2019 4 oxidative stress biomarkers: 8-OHdG,  Samples collected at the same time when 10 potential metabolites associated with
[24] HNE-MA, 8-isoPF2«, and 8-NO2Gua; biomarkers were evaluated (in urine higher exposures to industrial emissions

31 acylcarnitines samples) were also related to elevated oxidative

stress and deregulated serum
acylcarnitiens: inosine monophosphate
and adenosine monophosphate (purine
metabolism), malic acid and oxoglutaric
acid (citrate cycle), carnitine (fatty acid
metabolism), and pyroglutamic acid
(glutathione metabolism).

Zhang 2019  Electrocardiogram (ECG) parameters and Samples collected shortly after the 8-OHdG was significantly associated with
[22] ambulatory blood pressure (BP) measurements of health markers (i.e., both heart rate variability indices, heart
monitored during the whole riding health markers were measured during the rate, and size-fractioned PM (PM, 5, PM;,
period exposure session, while samples were PM, s, PMs, PM;(, TPM), but only
collected at the end of each session) among males.

Decreased 8-OHdG and increased
prolyl-arginine were observed while
wearing masks, compared to not wearing
masks. And they both were associated
with ECG parameters. These findings
were only observed in males.

Jeong 2018  Switzerland: adult-onset asthma (AOA);  Switzerland: Samples collected after case Overlapping exists among significant
[33] Italy: cardio-cerebrovascular diseases identification; Italy: samples collected pathways: linoleate metabolism and
(CCVD) before case identification glycerophospholipid metabolism linking
UFP to AOA; glycosphingolipid
metabolism linking UFP to CCVD; and
carnitine shuttle linking NO, to CCVD;
No metabolites were associated with both air
pollution exposure and health outcomes
(i.e., AOA or CCVD)
Huang 2018 COPD Samples collected after case identification ~ PM; s- and COPD-related metabolic
[28] biomarkers were correlated. These
biomarkers include uric acid, altered
glucose and dopamine metabolism.

Vlaanderen 3 parameters of lung function: FENO, Samples collected at the same time when At 2 h after exposure session, 21 features
2017 [18] FVC, FEV1; 6 markers of inflammation health markers were evaluated were associated with > 1 air pollutant and
and coagulation measured in peripheral to > 1 health marker. The reported
blood: IL-6, fibrinogen, tPA/PAI-1, associations were primarily for FEV1 and
VWE, platelets, CRP fibrinogen.

At 18 h after exposure session, 62 features
were associated with >1 air pollutant and
to >1 health marker. The observed
associations were primarily for FEV1,
fibrinogen, or PM; s—10-SO..

These metabolites are primarily involved in
tyrosine metabolism, urea cycle/amino
group metabolism, and N-Glycan

degradation.
Chen 2017  Oxidative stress biomarkers: 8-OHdG, Samples were used for measuring both In children: tryptophan metabolism (e.g.,
[29] HNE-MA, 8-isoPF2«, and 8NO2Gua metabolome and health markers (at the tryptophan, indole-3-acetamide),
same time) phenylalanine metabolism (e.g.,

phenylalanine, hippuric acid, 4-hydroxy
benzoic acid), and alanine, aspartate, and
glutamate metabolism (aspartic acid)
linking industrial emissions to oxidative
stress;
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Table 2 (continued)

First author,  Health outcomes

Sample collection timing with respect to
year health outcomes

Findings

Menni 2015 FEV1 and FVC

Samples were collected at the same time
[27] when lung functions were measured

In elderly: glycine, serien, and threonine
metabolism (e.g., threonine, serine,
glyceric), and alanine, aspartate, and
glutamate metabolism (aspartic acid)
linking industrial emissions to oxidative
stress

Eight metabolites were significantly
associated with both lung function and
PM (i.e., PM, 5 and PM,): asparagine,
glycine, N-acetylglycine, serine,
glycerate, threonate, alpha-Tocopherol,
benzoate.

Vitamin E showed the strongest associations
with both PM, 5 exposure and FEV 1.

To find the metabolic pathways linking air pollution to
health outcomes, these studies first investigated the metabo-
lites or pathways associated with air pollution, and those as-
sociated with health outcomes, separately. Then, they investi-
gated whether there was overlap or correlation in the metabo-
lites or pathways related to air pollution and those related to
health outcomes. Three of the eight studies explicitly referred
to this method of finding overlapping metabolites as a “meet-
in-the-middle” approach [21, 29, 33].

Air Pollution Exposure Assessment

In 13 studies on short-term effects, 12 studies used portable or
stationary monitors [10, 11, 14-19, 21, 22, 28, 34], and one
study used human exposure chamber to challenge study par-
ticipants with ozone (Os) or filtered air [20]. Among the 10
studies on sub-chronic or long-term effects, five studies used
dispersion, land use regression (LUR), or kriging models to
estimate air pollutant exposure levels [23, 25, 27, 29, 33]; four
studies measured exposure biomarkers of ambient polycyclic
aromatic hydrocarbons (PAHs) or vanadium (V) [24, 26, 29,
30]; and one study used portable or stationary monitors [31].

Air pollution mixtures from different sources differ in the
chemical composition and size distribution of particulate matter
(PM), which could influence the decision on which pollutants
or components to measure in these studies. All but one of the 14
studies on ambient air pollution or traffic-related air pollution
(TRAP) measured PM with diameter < 2.5 um (PM, 5) mass
concentration [10, 11, 14, 15, 18, 19, 21-23, 25, 27, 28, 32,
33]. Five of the eight TRAP studies also measured PM com-
ponents related to combustion, such as elemental carbon (EC),
organic carbon (OC), and particle-bound polycyclic aromatic
hydrocarbons (pb-PAH) [10, 11, 15, 18, 32]. Among the four

studies on industrial emissions from petrochemical or coking
plants, external or internal exposures to PAHs and/or heavy
metals were investigated among residents [21, 26, 29, 30].
Pollutants measured in occupational settings varied widely de-
pending on the anticipated exposures [16, 17, 31, 34].

Studies in China (Beijing and Shanghai) [14, 19, 21, 22,
28] tended to show higher PM, 5 mass concentrations than the
studies performed in Europe (UK, Switzerland, and Italy) [27,
33] or the USA [32]. For the four studies on industrial emis-
sions, the urinary 1-hydroxypyrene (1-OHP) level in the el-
derly residing near a coking plant in Shanxi, China (1.42 ug/g
creatinine for non-smokers and 3.13 pg/g creatinine for
smokers), was higher than the levels in elderly adults residing
near the largest petrochemical complex in Taiwan (0.42 pg/g
creatinine) [21, 26, 29, 30]. In addition, the 1-OHP levels in
the exposed elderly were higher than the levels in exposed
children (0.25 pg/g creatinine) in Taiwan [29].

Untargeted Metabolomics Analysis

From the 23 studies we examined, 15 studies analyzed the
serum or plasma metabolome [10, 11, 14-21, 23, 25-27,
33], six analyzed the urinary metabolome [21, 22, 28-31],
one analyzed both serum and saliva [32], and one analyzed
exhaled breath condensate [34].

For analytical platforms, 15 studies used liquid chromatog-
raphy mass spectrometry (LC-MS) to measure metabolites
[10, 11, 15, 16, 18, 21-25, 28, 30, 32, 33, 35], four studies
used both gas chromatography (GC)-MS and LC-MS [14, 19,
20, 27], three studies used nuclear magnetic resonance (NMR)
spectroscopy [26, 31, 34], and one study used two-
dimensional GC x GC-time-of-flight (ToF)-MS [29]. The
combination of LC and GC has been shown to achieve
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complementary coverage [36]. LC-MS analyses can be heter-
ogenous between research labs due to the many different con-
figurations of columns (e.g., hydrophilic interaction liquid
chromatography (HILIC), reversed-phase liquid chromatogra-
phy (RPLC)), the type of ionization (e.g., electrospray ioniza-
tion (ESI), atmospheric pressure chemical ionization (APCI)),
the mode of ionization (i.e., positive and/or negative), and the
type of mass analyzer (e.g., time-of-flight (ToF), quadrupole,
ion trap).

All studies preprocessed their metabolomics data to align,
filter, and deconvolute the data using a wide range of software.
After obtaining the deconvoluted peak area/heights for each
metabolic feature, studies narrowed down the features for fur-
ther analysis, by selecting those that were detected in at least
10-80% of samples. Such a wide range of cut-off points for
feature selection could lead to variation between data reported
from different studies; keeping features detected in > 10%
samples might be more likely to find more significant features
than a study with more strict inclusion criteria.

As most of the studies (20 out of 23) used MS, in this
review, we only discuss the common methods for annotating
features in MS studies. All of the studies searched the mass-to-
charge ratios (m/z) of each feature against metabolite, and
metabolic pathway libraries (e.g., Human Metabolome
Database (HMDB) [37], Kyoto Encyclopedia of Genes and
Genomes (KEGG) [38], METLIN [39]). Five studies conduct-
ed additional validation using LC coupled to tandem mass
spectrometry (LC-MS/MS), to fragment the metabolic fea-
tures and confirm the compound identity by comparing MS/
MS spectra to those available in the public libraries [18, 22,
28,29, 31]. In 12 studies, the spectra were matched against an
authentic chemical standard analyzed on the same analytical
platform. To do this, the m/z of the parent ion and MS/MS
fragments were compared, as well as the retention time to
perform the highest level of confidence in metabolite identifi-
cation [10, 11, 14, 16, 20, 23, 25, 27, 30, 32, 33, 35].

For statistical analysis, supervised partial least squares dis-
criminant analysis (PLS-DA) or orthogonal partial least
squares discriminant analysis (OPLS-DA) was used in 11
studies to determine which metabolites drive the separation
of high- or low-exposure groups [19, 21, 23-26, 28-30, 34,
35]. The key features that drive the separation of the exposure
groups were identified by variable importance in projection
(VIP) scores (cut-offs, > 1, > 1.5, or >2). Network analysis
and principal component analysis were also used to identify
groups of metabolites that were correlated with each other [14,
17]. These methods are dimension reduction tools for high-
dimensional data. To obtain effect direction, fold changes, ¢
test, analysis of variance (ANOVA), analysis of covariance
(ANCOVA), or regression models (e.g., mixed effect models)
were used in these studies. As a large number of metabolites
were investigated in these analyses, multiple comparison cor-
rection methods, such as Benjamini-Hochberg false discovery

@ Springer

rate adjustment or Bonferroni correction, were used to account
for multiple comparisons.

Metabolomics Methods Assessment

We developed an assessment tool to compare methods between
studies, based on recommendations from the Metabolomics
Standards Initiative, and other related studies and quality assess-
ment tools [40-46]. We constructed five metrics for scoring the
studies (Fig. 2). Higher scores indicate either more complete
reporting on the experimental design and methods for metabo-
lomics analysis, or more rigorous exposure assessment. The
scores are not final judgments on the scientific validity of a
study, but rather an attempt to understand where reporting could
be more transparent, so that findings can be robustly compared
across heterogeneous studies. This is a novel tool designed for
evaluation of metabolomics analysis of air pollution, but it can
be adapted to any metabolomics study with human subjects.
Most of the studies we reviewed had moderate to high scores
(Table 3). Fifteen of the 23 studies did not report how missing
values were treated [11, 17, 19, 21, 22, 24-32, 34]. Ten studies
conducted more rigorous exposure assessment by accounting
for time-activity patterns or requested participants to perform
standardized activities, and/or had taken into account temporal-
ity, by having the exposure windows preceding the metabolite
measurements [10, 11, 14-16, 18-23, 25, 28, 31, 32, 34]. Most
of the studies reviewed were found to have high confidence
levels for chemical annotation (level 1 or 2).

Perturbations of Metabolites or Pathways
Related to Air Pollutant Exposure

While untargeted metabolomic analysis of biological samples
can detect thousands of metabolic features, only a small num-
ber of these features correlate with air pollution exposure
(ranging from three to 121 across the reviewed studies), and
could be positively identified (MS/MS spectra matched to
authentic chemical standards or spectra in the libraries, i.c.,
level 1/2, Fig. 2). The detected metabolites were mostly en-
dogenous metabolites (i.e., lipids, amino acids, carbohydrates,
nucleotides, steroids, cofactors, and vitamins). Few studies
identified xenobiotics, such as PAH metabolites (i.c., cate-
chol, 3-(2-hydroxyphenyl)propanoate, naphthylamine, nico-
tine metabolites (i.e., cotinine), and benzoate [11, 25, 27].
These xenobiotics were identified through an untargeted pro-
cess. Pathway analyses identified 1-50 enriched metabolic
pathways.

All 23 studies detected perturbations in lipid levels or path-
ways related to lipid metabolism, primarily as responses to
oxidative stress and/or inflammation. Air pollutant exposures
were associated with higher levels of reactive oxygen species
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Table 3 Metabolomics methods assessment for reviewed studies

Author year 1. Study
participants

described

2. Exposure assessment
and study design

3. Sample collection 4. Data processing 5. Certainty of metabolite Total
and analysis

workflow identification points

Crossover design

Blood samples
Miller 2016 [20]
van Veldhoven 2019 [10]
Vlaanderen 2017 [18]
Mu 2019 [14]
Liang 2019 [11]
Ladva 2018 [15]
Shen 2018 [16]
Li 2017 [19]
Wei 2013 [17]

Urine samples
Zhang 2019 [22]
Chen 2019 [24]

Cross-sectional design

S O O O O o o o <o
S O O O o o o o <o

S O
S~
S o

Blood samples
Yan 2019 [23]
Walker 2018 [25]
Chen 2019 [21]
Menni 2015 [27]
Yuan 2016 [26]

Blood and saliva
Liang 2018 [32] 0 1

Urine samples
Huang 2018 [28]
Kuo 2012 [31]
Chen 2017 [29]
Wang 2015 [30]

Case-control study

oS O O O O
S O = = =
S O o O

S O o O
(=]

S O =
S o o o

Blood samples

Jeong 2018 [33] 0 0 0
Combined crossover and cross-sectional design
Exhaled breath condensate

Maniscalo 2018 [34] 0 1 0

S O o o O

X~ LV, BV B e e e NN

|
—_
(=]
o)

-1 0
-1 -1

S L))

-1 -1

o o o o
B A O W

(ROS) or free radicals that cause cellular membranes to break
into free fatty acids. Polyunsaturated fatty acids (PUFA), such
as linoleic acid and arachidonic acid, can be oxidized, leading
to increased pro-inflammatory metabolites, such as leukotri-
enes and prostaglandins [11, 14, 15, 21, 23, 31, 32]. A lipid
peroxidation biomarker, 4-hydroxynonenal (4-HNE), was
positively associated with UFP in the Boston CAFEH study
[25]. Linolenic acid, a downstream metabolite of PUFA with
anti-inflammatory effects (inhibits the biosynthesis of leuko-
triene B4), showed negative association with TRAP in
Boston, Atlanta, and California, in the USA [25, 32].

Perturbations to amino acids, metabolites in purine me-
tabolism, and acylcarnitines that are involved in energy
metabolism were also commonly reported (Table 4).
Histidine, with anti-inflammatory effects, showed consis-
tent inverse associations with air pollution exposures, in-
cluding TRAP, PM, 5, and emissions from a petrochemical
plant [11, 23, 25, 26, 32]. Uric acid, a powerful antioxidant
and end product of purine metabolism, which is measured
in urine samples, was negatively associated with air pollu-
tion exposures, including PM, s and coking plant emissions
[21, 28, 30]. The effect directions of other metabolites,
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Criteria

-

study with full description:

\ BMI, gender/sex, study type, inclusion/exclusion criteria

1. Study participants described, or citation provided to previously published

a. IRB approval, geography, location, medical history, age, weight, height,

~

/ Scoring process \

[ All studies start with 5 points
N

U

P
0 =no problems

J

L -1 = missing description

@ 2. Air pollution exposure assessment and study design described:

and exposure windows

S b. Study design (e.g., cross-sectional, crossover)

a. Air pollutants, exposure assessment methods (e.g., monitors, models),

) 4
(0 =no problems
-1 = missing 1+ point

J

+1 = considered time-activity

3. Sample collection and analysis described:

duration, freeze/thaw cycles)
b. Analytical platform — NMR spectroscopy, or MS with GC, LC
c. Quality control approach

-

a. Method of sample collection, storage conditions (e.g., temperature,

~

pattern or standardized activities,
\_°r clear temporality!

J

or other

P
0 =no problems

J

-1 = missing 1+ factor
(. —

/4. Data processing workflow described:
a. Peak picking/deconvolution, alignment

methods
c. Statistical analysis

b. Missing value imputation, normalization, scaling, transformation

\_ d. If pathway analysis is conducted, what software/database was used

\

J

0 = no problems
-1 = missing 1+ factor
.

J

g

ﬁ Certainty of metabolite identification

confirmation to standard.

libraries
c. Level 3/Putatively characterized compound classes: level 4,

of organic compounds

MS, or other) that can be reproducibly detected and quantified

a. Level 1/Positively confirmed metabolite identification: levels 2-4 plus\

b. Level 2/Putatively annotated compounds: same as levels 3 and 4,
including spectral (NMR and/or MS) similarity with public or commercial
spectral and/or physiochemical properties consistent with a particular class

d. Level 4/Unknown: A discernible spectral signal (NMR spectroscopy,

O=Llevellor2
L -1=Level3o0r4

Final score:

5 or higher: high quality reporting

plus

1 or lower: low quality reporting

J

2-4: moderate quality reporting

Fig. 2 Scoring process for metabolomics methods assessment ('clear temporality means that the air pollution exposures precede the metabolite

measurements)

including oxidants or antioxidants, were variable between
studies (Table 4).

Three studies reported perturbations in metabolites in steroid
metabolic pathways (e.g., glucocorticoid metabolism) [16, 19,
21]. A randomized, double-blind crossover trial in Shanghai,
China, implemented functional or sham air purifiers in dorms
for 9 days with a 12-day washout period, and observed that
stress hormones measured in blood serum (i.e., glucocorticoids
(cortisone and cortisol), catecholamine (epinephrine and nor-
epinephrine), and melatonin) were associated with higher
PM, 5 mass concentration exposures suggesting a response
from the central nervous system by activation of the
hypothalamus-pituitary-adrenal axis [19]. In a randomized
crossover study, 24 participants were exposed to O and filtered
air in human chambers during two clinical visits that were at
least 2 weeks apart. O3 was significantly associated with ele-
vated cortisol and corticosterone, consistent with studies in
rodent models [20]. However, a study on boilermakers at an
apprentice welding school in MA, USA, showed that
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glucocorticoids (cortisol, cortisone, corticosterone) were signif-
icantly lower after a 5-h shift in the welding workshop (higher
exposure to PM, s and PM enriched with heavy metals), com-
pared to before their shift commenced [16].

Current evidence cannot conclude which air pollutant or
chemical component of PM has stronger impacts on metabolic
perturbations. Some PM components exhibited stronger asso-
ciations with metabolites within studies, which might suggest
exposure contributions from different emission sources, specif-
ic to each study area. In the Atlanta Commuters Exposure
(ACE) study on TRAP, EC and V showed the largest number
of associations with metabolite features (i.c., unconfirmed me-
tabolites), among various PM, 5 components [11]. Specifically,
EC and V had 802 and 762 significantly associated features,
respectively, while PM, 5 was associated with just 215 signif-
icant features [11]. On the other hand, compared to other PM, 5
components, S showed the strongest associations with 5-
phosphoribosylamine, and S and V were related to the largest
decline in 4-pyridoxic acid, among the elderly residents in
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Table 4 Summary of commonly detected metabolites (detected in at least three studies) and effect directions

Metabolites

Air pollution exposures

Effect directions

First author year

Histidine (anti-inflammatory effects)

Arginine (Related to endothelial function,
inflammation,
and airway hyperresponsiveness)

Glutamate (a precursor to the antioxidant
glutathione)

Phenylalanine (a biomarker of oxidative stress)

Serine (glycine, serine, and threonine metabolism,

a pathway closely related to oncogenic
transformation and the biosynthesis of
glutathione)

Aspartic acid (increase glutathione levels and

decrease
lipid peroxidation in animal models)

Hypoxanthine (a substrate for ROS formation)

Uric acid (a powerful antioxidant and end product
of purine metabolism measured in urine samples)

Acylcarnitine (involving energy metabolism)

TRAP (high vs. low exposure)
EC,V

PM; 5

Petrochemical plant emissions (high vs.
low exposure)

UFP

PM, 5

ECand V

BC and NOx

PM, 5

EC, OC

UFP

Occupational exposure to dust, phenol,
formaldehyde, and VOCs (high vs. low
exposure)

Petrochemical plant emissions (high vs.
low exposure)

Petrochemical plant emissions (high vs.

low exposure)
NO,

Petrochemical plant emissions (high vs.
low exposure)

Occupational exposure to welding fume
(welders vs. controls)

TRAP (high vs. low exposure)

ECand V

PMZ.S and PMI()

Petrochemical plant emissions (high vs.
low exposure)

TRAP
UFP

Petrochemical plant emissions (high vs.
low exposure)
PM, 5 (before/after vs. during the Beijing

Olympics)
PM2_5-ZH

CcO
PM, 5 (sham vs. real purifications)

PM, 5 and PM, 5 components
(i.e., Ba, Cd, Mn, P, Sb)

PM, 5 (sham vs. real purifications)

PM, 5

Coking plant emissions
(high vs. low exposure)

03

PM; 5

NO,

Coking plant emissions (high vs. low
exposure)
PMZ'S-ZH

NO,

Negative
Negative only in asthma

group
Negative

Negative

Positive
Positive

Negative only in asthma

group
Negative

Positive
Negative
Negative
Positive

Positive only in children
Negative

Negative

Positive only in elderly
Positive

Negative
Negative only in asthma

group
Negative

Positive (only
investigated children
and adolescents)

Negative

Negative
Negative

Positive

Positive
Positive
Positive

Negative only in asthma

group
Negative

Negative
Negative

Positive
Positive and negative
Positive

Positive

Negative
Negative

Yan 2019 [23]
Liang 2019 [11]

Liang 2018 [32]
Yuan 2016 [26]

Walker 2018 [25]
Li 2017 [19]
Liang 2019 [11]

Liang 2018 [32]

Mu 2019 [14]

Liang 2019 [11]
Walker 2018 [25]
Maniscalco 2018 [34]

Chen 2017 [29]
Yuan 2016 [26]

van Veldhoven 2019 [10]
Chen 2017 [29]

Kuo 2012 [31]

Yan 2019 [23]
Liang 2019 [11]

Menni 2015 [27]
Chen 2019 [24]

Liang 2019 [11]
Walker 2018 [25]
Chen 2017 [29]

Mu 2019 [14]

Vlaanderen 2017 [18]
Liang 2018 [32]
Chen 2019 [21]
Liang 2019 [11]

Chen 2019 [21]
Huang 2018 [28]
Wang 2015 [30]

Miller 2016 [20]
Chen 2019 [21]

Jeong 2018 [33]
Wang 2015 [30]

Liang 2019 [11]
van Veldhoven 2019 [10]
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Beijing, where coal combustion for heating and industries is a
major pollution source [28]. Little overlap in the metabolites
that showed associations with PM (i.e., PM; 5, PM; o, PM5 5 0,
UFP, and BC) and NOx, indicated differential effects of PM
and gas pollutants [10].

The perturbations of metabolites or pathways related to air
pollution exposure differed by disease status, age, and sex,
which potentially provides mechanistic basis for susceptibility
of subpopulations. The ACE study observed that most of the
TRAP-related metabolites were differently expressed by asth-
matic status of the participants [11]. Specifically, decreased
arginine and histidine were significantly associated with ex-
posures to EC or PM, 5-V only among asthmatic participants.
In addition, in these participants, increased methionine (an
essential amino acid promoting ROS) was significantly asso-
ciated with PM, s-Colbat. The pathways only significant in
asthmatic participants tend to be those related to acute inflam-
matory responses. A randomized crossover study, where 39
healthy volunteers commuted in the Beijing subway for 4 h
with or without masks (3 M respirator), found strong associ-
ations between 8-hydroxy-deoxyguanosine (8-OHdG), a bio-
marker of DNA damage, and size-fractioned PM and cardio-
vascular indicators in men only. This indicates that men might
be more prone to air pollution-related cardiovascular effects
than women [22]. In the randomized crossover trial on using
real and a sham air purifier (each for 9 days) in university
dormitories in Shanghai, the analysis of serum samples
showed significant interactions of PM, 5 with sex for five
metabolites, among which the effect sizes for hydroxylamine,
arginine, tryptophan, and phytosphingosine in men were larg-
er than those in women [19]. The studies on residents near a
large petrochemical complex in Taiwan found that in blood
and urine samples, different metabolic pathways were signif-
icantly dysregulated and the observed changes were age-
specific [24, 26, 29].

Eight studies investigated whether air pollution-related me-
tabolites or pathways were also perturbed by health outcomes,
including diseases, (e.g., chronic obstructive pulmonary dis-
ease, COPD; IHD), as well as health markers (e.g., measures
of lung function, blood pressure, biomarkers of oxidative
stress, or inflammation). Seven of the eight studies found
overlapping metabolites or pathways related to both air pollu-
tion exposures and health outcomes [10], and one found a
correlation between PM, s- and COPD-related metabolites
among elderly COPD patients and their healthy spouses in
Beijing [28]. Table 2 summarizes the associations of air pol-
lution or health outcomes with the following metabolites or
pathways: 8-OHdG, prolyl-arginine, vitamin E, metabolites
related to purine metabolism, citrate cycle, fatty acid metabo-
lism, glutathione metabolism, linoleate metabolism,
glycosphingolipid metabolism, carnitine shuttle, tyrosine me-
tabolism, urea cycle/amino group metabolism, N-Glycan deg-
radation, tryptophan metabolism, phenylalanine metabolism,
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glycine, serine, and threonine metabolism, alanine, aspartate,
and glutamate metabolism.

Conclusions

Over the past decade, the application of untargeted metabolo-
mics to air pollution epidemiology has gained popularity.
However, the methodologies used in these studies vary widely
for both air pollution exposure assessment and untargeted
metabolomics profiling. Most studies investigated ambient
PM measured for various size fractions, and the number con-
centration and chemical composition. Gas pollutants (NO,
NOx, CO, O;) were also measured by these studies. A wide
range of exposure assessment methods was used, including
portable monitors, stationary monitors, and spatial models.
For analysis of the metabolome, most studies used LC-MS
as their primary analytical platform. All the studies report
the detection of thousands of features, but only a few metab-
olites can be confirmed with high confidence level. The pro-
cesses of annotation, statistical analysis, and pathway enrich-
ment analysis also varied widely.

A wide range of metabolites was associated with air pol-
lutant exposures, most of which were endogenous, and a few
of which were xenobiotics. Most detected metabolites or path-
ways were related to oxidative stress or inflammation re-
sponses, and perturbations in stress hormones were reported
in three studies [16, 19, 21]. Pro-inflammatory metabolites
(e.g., leukotrienes) or related metabolism was upregulated
[11, 14, 15, 21, 23, 31, 32] and metabolites with anti-
inflammation effects (e.g., histidine, linolenic acid) tended to
be downregulated under elevated air pollution exposures [11,
23, 25, 26, 32]. Although air pollutants were consistently re-
ported to disrupt antioxidant-oxidant balance, mixed effect
directions were reported for numerous oxidants or antioxi-
dants detected in the metabolomics analyses.

Existing evidence cannot conclude which air pollutants or
chemical components are most responsible for adverse health
effects. The physiochemical characteristics of air pollutants
differed across study locations and were likely attributable to
heterogeneity in findings. In one study reporting two cross-
sectional studies in London and Barcelona with similar meta-
bolomics analysis, the authors found no overlap in either the
confirmed metabolites or pathways related to air pollution
between the two cities [10]. The metabolic perturbations by
air pollution could differ by disease status, age, and sex, but
did not seem to differ by racial and ethnic groups [23], which
could provide evidence on mechanisms for susceptible
subpopulations.

A limited number of studies involving health outcomes
(including diseases or health markers) reported overlapping
or correlated metabolites or pathways between air pollution
exposures and health outcomes. However, all but one of these
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studies collected biological samples after or at the same time
of health outcome assessment. It is challenging to draw con-
clusions on whether these overlapping metabolites or path-
ways mediate the impact of air pollution on health outcomes,
or whether air pollution exacerbates health outcomes through
these shared metabolisms. Future studies prospectively eval-
uating exposures to airborne contaminants, metabolic chang-
es, and health outcomes are needed.

Recommendations

The studies documented in this review conducted extensive
exposure assessment, and most extensively documented the
details of metabolomic analyses. However, additional studies
or further improvement can be considered in the following
aspects:

* Identifying air pollutants or PM chemical components that
have the largest effect on the metabolome;

» Characterizing the joint effects of complex air pollutant
mixtures;

+ Investigating various potential effect modifiers, such as
sex, age, or disease status, to provide a mechanistic basis
for susceptibility to a wide range of health effects;

+ Expanding sample sizes by leveraging new technologies
in personal exposure assessment [47];

* Adopting a more standardized reporting methodology for
sample collection and data preprocessing, facilitating
comparisons across labs and between studies; and,

* Longitudinal design that prospectively evaluates air pollu-
tion exposures, metabolic changes, and health outcomes.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s40572-020-00298-x.
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