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Abstract
Purpose of Review The purpose of this review is to summarize the application of untargeted metabolomics to identify the
perturbation of metabolites or metabolic pathways associated with air pollutant exposures.
Recent Findings Twenty-three studies were included in this review, in adults, children, or pregnant women. The most commonly
measured air pollutant is particulate matter smaller than 2.5 μm. Size-fractioned particles, particle chemical species, gas pollutants,
or organic compounds were also investigated. The reviewed studies used a wide range of air pollution measurement techniques and
metabolomics analyses. Identified metabolites were primarily related to oxidative stress and inflammatory responses, and a few
were related to the alterations of steroid metabolic pathways. The observed metabolic perturbations can differ by disease status, sex,
and age. Air pollution-related metabolic changes were also associated with health outcomes in some studies.
Summary Our review shows that air pollutant exposures are associated with metabolic pathways primarily related to oxidative
stress, inflammation, as assessed through untargeted metabolomics in 23 studies. More metabolomic studies with larger sample
sizes are needed to identify air pollution components most responsible for adverse health effects, elaborate on mechanisms for
subpopulation susceptibility, and link air pollution exposure to specific adverse health effects.
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Abbreviations
COPD chronic obstructive pulmonary disease
IHD ischemic heart disease
TRAP traffic-related air pollution
O3 ozone
PAHs polycyclic aromatic hydrocarbons
PM particulate matter
CO carbon monoxide

NOx nitrogen oxides
PM2.5 particulate matter with diameter ≤ 2.5 μm
PM10 particulate matter with diameter ≤ 10 μm
UFP ultrafine particles (particulate matter of nano-

scale size, < 0.1 μm)
PM2.5–10 particulate matter with a diameter between 2.5

and 10 μm
TSP total suspended particles
Pb-PAH particle-bound polycyclic aromatic

hydrocarbons
PNC particle number concentration
BC black carbon
EC elemental carbon
OC organic carbon
LDSA lung deposited surface area
V vanadium
1-OHP 1-hydroxypyrene
LC-MS liquid chromatography coupled to mass

spectrometry
HILIC hydrophilic interaction liquid chromatography
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GC-MS gas chromatography coupled to mass
spectrometry

C18 C18 hydrophobic reversed-phase chromatography
ESI electrospray ionization
TOF time-of-flight
HMBD Human Metabolome Database
KEGG Kyoto Encyclopedia of Genes and Genomes
L C - M S /
MS

liquid chromatography coupled to tandem mass
spectrometry

PLS-DA partial least squares discriminant analysis
OPLS-DA orthogonal PLS-DA
ANOVA analysis of variance
ANCOVA analysis of covariance
ROS reactive oxygen species
PUFA polyunsaturated fatty acids
13-HODE 13-hydroperoxyoctadecadenoic acid
4-HNE 4-hydroxynonenal
FEV1 forced expiratory volume in 1 s
Pb-PAHs particle-bound polycyclic aromatic hydrocarbons
AOA adult-onset asthma
CCVD cardio-cerebrovascular diseases

Introduction

Metabolomics is the agnostic or comprehensive assessment of
low molecular-weight endogenous and exogenous metabo-
lites in a biological sample. Knowledge of these compounds
can be used to elucidate the molecular-level responses to a
genetic alteration, or the effect of disease. They can also be
used to monitor responses to various stimuli such as exposure
to environmental and lifestyle factors or administration of a
drug [1–3]. Metabolite abundance is regulated by various host
processes such as protein-enzymatic reactions; thus, metabo-
lomics sits at the end of the “omics cascade”within the central
dogma of biology [3]. In addition to host processing, metab-
olites can be co-metabolized by the microbiome; a pool of
these microbial metabolites is secondary metabolites, of
which most are currently uncharacterized. As metabolites are
the biochemical intermediates that carry out biological func-
tions within the body, the metabolome closely reflects the
phenotype or physiological state, compared to analysis of
the genome, transcriptome, and proteome [3]. Recent devel-
opments in mass spectrometry have allowed for high-
resolution measurement of tens of thousands of features in
small volumes of biological samples, which enables an
untargeted strategy to simultaneously analyze exogenous
chemicals, their metabolites, and associated perturbations to
the endogenous metabolome, allowing for an exposome-level
evaluation [4].

Air pollutants have been associated with various health
outcomes, such as cardiovascular diseases, respiratory dis-
eases, cancer, central nervous system disorders, and adverse

pregnancy outcomes [5–9]. However, the mechanisms that
underlie these observed associations are not conclusive [10,
11]. Numerous studies have extensively investigated selected
biomarkers of oxidative stress and inflammation, with a tradi-
tional, hypothesis-driven approach [12]. This approach, often
focusing on a relatively small number of metabolites, cannot
capture the full picture of biological responses to air pollution
[11, 13]. To address this challenge, untargeted metabolomics
has been incorporated into many recent mechanistic studies of
air pollution. A recent book chapter reviewed the application
of metabolic profiling in human, animal, and in vitro studies
of air pollution, and discussed metabolites or pathways related
to oxidative stress responses [13]; however, this review was
based on a limited number of human studies (n = 8), and fo-
cused on oxidative responses only.

The objective of this review is to provide a comprehensive
review of the emerging literature on air pollution and
untargeted metabolomics (agnostic/global detection and rela-
tive quantitation of all small molecules in a sample), including
assessments of study design, metabolites and pathways identi-
fied, discussion of methodological challenges, and to provide
recommendations for future studies.

Study Populations and Study Designs

We conducted a search on human studies in PubMed using a
c omb i n a t i o n o f MeSH t e rm s a n d k e ywo r d s :
(metabolomics[MeSH Terms] OR metabolome[MeSH
Terms] OR metabonomics) AND (air pollution[MeSH
Terms] OR particulate matter[MeSH Terms] OR nitrogen
oxides[MeSH Terms] OR air pollution OR air pollutants OR
polycyclic aromatic hydrocarbons). The last search was con-
ducted on June 9, 2020. After screening the abstract and full
text of 315 articles, we included a total of 23 studies on air
pollution and untargeted metabolomics published between
2012 and 2019 (Fig. 1, Table 1) [10, 11, 14–34]. More details
on these studies are in Table S1. Among these, 19 studies
focused on adults aged 18 or older [10, 11, 14–22, 25–28,
31–34], one study on pregnant women [23], two studies on
both elderly adults and children [29, 30], and one study on
children and adolescents [24].

These 23 studies include 11 crossover designs [10, 11,
14–22], 10 cross-sectional studies [23–32], one case-control
study, and one study using a combination of crossover and
cross-sectional designs [34].

All participants in the crossover studies went through two
to five exposure scenarios with varying expected air pollution
levels. In these scenarios, participants were requested to con-
duct activities (e.g., walking, driving), or to use real or sham
air purifiers. The order of purposefully designed exposure
sessions was typically randomized, and any two exposure ses-
sions were at least 7 days apart to avoid overlapping impacts
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of the exposures. In the cross-sectional or case-control studies,
the selected participants were considered to capture the ex-
pected variation in air pollutant exposures of the study popu-
lation. For example, residents living in neighborhoods near
(< 500 m) or far (> 1000 m) from a highway were recruited
in the Community Assessment of Freeway Exposure and
Health (CAFEH) study in Boston, USA [25].

All 11 crossover studies and the one study combining
crossover and cross-sectional designs investigated short-term
effects of air pollution exposures (i.e., hours or days) on
metabolomic perturbations. As participants served as their
own comparisons in crossover designs, the changes in metab-
olite levels between exposure scenarios were investigated. All
studies measuredmetabolites at the end of exposure scenarios.
Five studies also measured metabolites before each scenario
[10, 11, 14, 15, 18]; that is, these five studies investigated the
changes in metabolites between exposure scenarios, as well as
the changes within each scenario.

Among the 10 cross-sectional studies and the one case-
control study, 10 investigated sub-chronic (i.e., multiplemonths)
or long-term effects (i.e., ≥ 1 year). Nine collected one biological
sample for each participant, and thus investigated the between-
participant variations and related variations in metabolic pro-
files. The other two studies on sub-chronic or long-term effects

had repeated measures of metabolites to also account for within-
participant changes in metabolites over time [27, 32]. In the 10
sub-chronic or long-term studies, the timing of biological sam-
ple collection with respect to the exposure windows varied: five
studies collected one or multiple samples during the exposure
windows [25, 27, 31–33], one study collected one sample after
the exposure window [23], and four studies involving exposure
biomarkers collected the samples for measuring metabolites and
internal exposures at the same time [21, 26, 29].

Among the 23 studies reviewed in this paper, eight also
investigated metabolites related to health conditions such as
adult-onset asthma, ischemic heart disease (IHD) [10, 28,
33], or had measured health markers of early health effects
such as lung function, blood pressure, and biomarkers of
oxidative stress or inflammation [18, 21, 22, 27, 29]
(Table 2). These studies used case-control or cross-sectional
study designs. All but one of the eight studies collected bio-
logical samples after or at the same time of the assessment of
health outcomes. The other one study selected cases and con-
trols from two cohorts: (1) in Italy, biological samples were
collected before the identification of incident cardio-
cerebrovascular disease (CCVD); and (2) in Switzerland, bi-
ological samples were collected 7–10 years after identifying
cases of adult-onset asthma (AOA) [33].

Fig. 1 Flow diagram of literature
search and selection
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Table 2 Summary of studies investigating the metabolites or metabolic pathways related to both air pollution exposures and health outcomes

First author,
year

Health outcomes Sample collection timing with respect to
health outcomes

Findings

van
Veldhoven
2019 [10]

COPD, IHD Samples collected after identifying health
outcomes (diseases presented upon
recruitment)

Out of the 15 compounds associated with
NO2, two were also associated with
COPD (data not shown).

Chen 2019
[24]

4 oxidative stress biomarkers: 8-OHdG,
HNE−MA, 8-isoPF2α, and 8-NO2Gua;
31 acylcarnitines

Samples collected at the same time when
biomarkers were evaluated (in urine
samples)

10 potential metabolites associated with
higher exposures to industrial emissions
were also related to elevated oxidative
stress and deregulated serum
acylcarnitiens: inosine monophosphate
and adenosine monophosphate (purine
metabolism), malic acid and oxoglutaric
acid (citrate cycle), carnitine (fatty acid
metabolism), and pyroglutamic acid
(glutathione metabolism).

Zhang 2019
[22]

Electrocardiogram (ECG) parameters and
ambulatory blood pressure (BP)
monitored during the whole riding
period

Samples collected shortly after the
measurements of health markers (i.e.,
health markers were measured during the
exposure session, while samples were
collected at the end of each session)

8-OHdG was significantly associated with
both heart rate variability indices, heart
rate, and size-fractioned PM (PM0.5, PM1,
PM2.5, PM5, PM10, TPM), but only
among males.

Decreased 8-OHdG and increased
prolyl-arginine were observed while
wearing masks, compared to not wearing
masks. And they both were associated
with ECG parameters. These findings
were only observed in males.

Jeong 2018
[33]

Switzerland: adult-onset asthma (AOA);
Italy: cardio-cerebrovascular diseases

(CCVD)

Switzerland: Samples collected after case
identification; Italy: samples collected
before case identification

Overlapping exists among significant
pathways: linoleate metabolism and
glycerophospholipid metabolism linking
UFP to AOA; glycosphingolipid
metabolism linking UFP to CCVD; and
carnitine shuttle linking NO2 to CCVD;

Nometabolites were associated with both air
pollution exposure and health outcomes
(i.e., AOA or CCVD)

Huang 2018
[28]

COPD Samples collected after case identification PM2.5- and COPD-related metabolic
biomarkers were correlated. These
biomarkers include uric acid, altered
glucose and dopamine metabolism.

Vlaanderen
2017 [18]

3 parameters of lung function: FENO,
FVC, FEV1; 6 markers of inflammation
and coagulation measured in peripheral
blood: IL-6, fibrinogen, tPA/PAI−1,
VWF, platelets, CRP

Samples collected at the same time when
health markers were evaluated

At 2 h after exposure session, 21 features
were associated with > 1 air pollutant and
to > 1 health marker. The reported
associations were primarily for FEV1 and
fibrinogen.

At 18 h after exposure session, 62 features
were associated with >1 air pollutant and
to >1 health marker. The observed
associations were primarily for FEV1,
fibrinogen, or PM2.5–10-SO4.

These metabolites are primarily involved in
tyrosine metabolism, urea cycle/amino
group metabolism, and N-Glycan
degradation.

Chen 2017
[29]

Oxidative stress biomarkers: 8-OHdG,
HNE-MA, 8-isoPF2α, and 8NO2Gua

Samples were used for measuring both
metabolome and health markers (at the
same time)

In children: tryptophan metabolism (e.g.,
tryptophan, indole-3-acetamide),
phenylalanine metabolism (e.g.,
phenylalanine, hippuric acid, 4-hydroxy
benzoic acid), and alanine, aspartate, and
glutamate metabolism (aspartic acid)
linking industrial emissions to oxidative
stress;
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To find the metabolic pathways linking air pollution to
health outcomes, these studies first investigated the metabo-
lites or pathways associated with air pollution, and those as-
sociated with health outcomes, separately. Then, they investi-
gated whether there was overlap or correlation in the metabo-
lites or pathways related to air pollution and those related to
health outcomes. Three of the eight studies explicitly referred
to this method of finding overlapping metabolites as a “meet-
in-the-middle” approach [21, 29, 33].

Air Pollution Exposure Assessment

In 13 studies on short-term effects, 12 studies used portable or
stationary monitors [10, 11, 14–19, 21, 22, 28, 34], and one
study used human exposure chamber to challenge study par-
ticipants with ozone (O3) or filtered air [20]. Among the 10
studies on sub-chronic or long-term effects, five studies used
dispersion, land use regression (LUR), or kriging models to
estimate air pollutant exposure levels [23, 25, 27, 29, 33]; four
studies measured exposure biomarkers of ambient polycyclic
aromatic hydrocarbons (PAHs) or vanadium (V) [24, 26, 29,
30]; and one study used portable or stationary monitors [31].

Air pollution mixtures from different sources differ in the
chemical composition and size distribution of particulate matter
(PM), which could influence the decision on which pollutants
or components tomeasure in these studies. All but one of the 14
studies on ambient air pollution or traffic-related air pollution
(TRAP) measured PM with diameter ≤ 2.5 μm (PM2.5) mass
concentration [10, 11, 14, 15, 18, 19, 21–23, 25, 27, 28, 32,
33]. Five of the eight TRAP studies also measured PM com-
ponents related to combustion, such as elemental carbon (EC),
organic carbon (OC), and particle-bound polycyclic aromatic
hydrocarbons (pb-PAH) [10, 11, 15, 18, 32]. Among the four

studies on industrial emissions from petrochemical or coking
plants, external or internal exposures to PAHs and/or heavy
metals were investigated among residents [21, 26, 29, 30].
Pollutants measured in occupational settings varied widely de-
pending on the anticipated exposures [16, 17, 31, 34].

Studies in China (Beijing and Shanghai) [14, 19, 21, 22,
28] tended to show higher PM2.5 mass concentrations than the
studies performed in Europe (UK, Switzerland, and Italy) [27,
33] or the USA [32]. For the four studies on industrial emis-
sions, the urinary 1-hydroxypyrene (1-OHP) level in the el-
derly residing near a coking plant in Shanxi, China (1.42 μg/g
creatinine for non-smokers and 3.13 μg/g creatinine for
smokers), was higher than the levels in elderly adults residing
near the largest petrochemical complex in Taiwan (0.42 μg/g
creatinine) [21, 26, 29, 30]. In addition, the 1-OHP levels in
the exposed elderly were higher than the levels in exposed
children (0.25 μg/g creatinine) in Taiwan [29].

Untargeted Metabolomics Analysis

From the 23 studies we examined, 15 studies analyzed the
serum or plasma metabolome [10, 11, 14–21, 23, 25–27,
33], six analyzed the urinary metabolome [21, 22, 28–31],
one analyzed both serum and saliva [32], and one analyzed
exhaled breath condensate [34].

For analytical platforms, 15 studies used liquid chromatog-
raphy mass spectrometry (LC-MS) to measure metabolites
[10, 11, 15, 16, 18, 21–25, 28, 30, 32, 33, 35], four studies
used both gas chromatography (GC)-MS and LC-MS [14, 19,
20, 27], three studies used nuclear magnetic resonance (NMR)
spectroscopy [26, 31, 34], and one study used two-
dimensional GC × GC-time-of-flight (ToF)-MS [29]. The
combination of LC and GC has been shown to achieve

Table 2 (continued)

First author,
year

Health outcomes Sample collection timing with respect to
health outcomes

Findings

In elderly: glycine, serien, and threonine
metabolism (e.g., threonine, serine,
glyceric), and alanine, aspartate, and
glutamate metabolism (aspartic acid)
linking industrial emissions to oxidative
stress

Menni 2015
[27]

FEV1 and FVC Samples were collected at the same time
when lung functions were measured

Eight metabolites were significantly
associated with both lung function and
PM (i.e., PM2.5 and PM10): asparagine,
glycine, N-acetylglycine, serine,
glycerate, threonate, alpha-Tocopherol,
benzoate.

Vitamin E showed the strongest associations
with both PM2.5 exposure and FEV1.
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complementary coverage [36]. LC-MS analyses can be heter-
ogenous between research labs due to the many different con-
figurations of columns (e.g., hydrophilic interaction liquid
chromatography (HILIC), reversed-phase liquid chromatogra-
phy (RPLC)), the type of ionization (e.g., electrospray ioniza-
tion (ESI), atmospheric pressure chemical ionization (APCI)),
the mode of ionization (i.e., positive and/or negative), and the
type of mass analyzer (e.g., time-of-flight (ToF), quadrupole,
ion trap).

All studies preprocessed their metabolomics data to align,
filter, and deconvolute the data using a wide range of software.
After obtaining the deconvoluted peak area/heights for each
metabolic feature, studies narrowed down the features for fur-
ther analysis, by selecting those that were detected in at least
10–80% of samples. Such a wide range of cut-off points for
feature selection could lead to variation between data reported
from different studies; keeping features detected in > 10%
samples might be more likely to find more significant features
than a study with more strict inclusion criteria.

As most of the studies (20 out of 23) used MS, in this
review, we only discuss the common methods for annotating
features inMS studies. All of the studies searched the mass-to-
charge ratios (m/z) of each feature against metabolite, and
metabolic pathway libraries (e.g., Human Metabolome
Database (HMDB) [37], Kyoto Encyclopedia of Genes and
Genomes (KEGG) [38],METLIN [39]). Five studies conduct-
ed additional validation using LC coupled to tandem mass
spectrometry (LC-MS/MS), to fragment the metabolic fea-
tures and confirm the compound identity by comparing MS/
MS spectra to those available in the public libraries [18, 22,
28, 29, 31]. In 12 studies, the spectra were matched against an
authentic chemical standard analyzed on the same analytical
platform. To do this, the m/z of the parent ion and MS/MS
fragments were compared, as well as the retention time to
perform the highest level of confidence in metabolite identifi-
cation [10, 11, 14, 16, 20, 23, 25, 27, 30, 32, 33, 35].

For statistical analysis, supervised partial least squares dis-
criminant analysis (PLS-DA) or orthogonal partial least
squares discriminant analysis (OPLS-DA) was used in 11
studies to determine which metabolites drive the separation
of high- or low-exposure groups [19, 21, 23–26, 28–30, 34,
35]. The key features that drive the separation of the exposure
groups were identified by variable importance in projection
(VIP) scores (cut-offs, > 1, > 1.5, or > 2). Network analysis
and principal component analysis were also used to identify
groups of metabolites that were correlated with each other [14,
17]. These methods are dimension reduction tools for high-
dimensional data. To obtain effect direction, fold changes, t
test, analysis of variance (ANOVA), analysis of covariance
(ANCOVA), or regression models (e.g., mixed effect models)
were used in these studies. As a large number of metabolites
were investigated in these analyses, multiple comparison cor-
rection methods, such as Benjamini-Hochberg false discovery

rate adjustment or Bonferroni correction, were used to account
for multiple comparisons.

Metabolomics Methods Assessment

We developed an assessment tool to compare methods between
studies, based on recommendations from the Metabolomics
Standards Initiative, and other related studies and quality assess-
ment tools [40–46]. We constructed five metrics for scoring the
studies (Fig. 2). Higher scores indicate either more complete
reporting on the experimental design and methods for metabo-
lomics analysis, or more rigorous exposure assessment. The
scores are not final judgments on the scientific validity of a
study, but rather an attempt to understand where reporting could
be more transparent, so that findings can be robustly compared
across heterogeneous studies. This is a novel tool designed for
evaluation of metabolomics analysis of air pollution, but it can
be adapted to any metabolomics study with human subjects.
Most of the studies we reviewed had moderate to high scores
(Table 3). Fifteen of the 23 studies did not report how missing
values were treated [11, 17, 19, 21, 22, 24–32, 34]. Ten studies
conducted more rigorous exposure assessment by accounting
for time-activity patterns or requested participants to perform
standardized activities, and/or had taken into account temporal-
ity, by having the exposure windows preceding the metabolite
measurements [10, 11, 14–16, 18–23, 25, 28, 31, 32, 34]. Most
of the studies reviewed were found to have high confidence
levels for chemical annotation (level 1 or 2).

Perturbations of Metabolites or Pathways
Related to Air Pollutant Exposure

While untargeted metabolomic analysis of biological samples
can detect thousands of metabolic features, only a small num-
ber of these features correlate with air pollution exposure
(ranging from three to 121 across the reviewed studies), and
could be positively identified (MS/MS spectra matched to
authentic chemical standards or spectra in the libraries, i.e.,
level 1/2, Fig. 2). The detected metabolites were mostly en-
dogenous metabolites (i.e., lipids, amino acids, carbohydrates,
nucleotides, steroids, cofactors, and vitamins). Few studies
identified xenobiotics, such as PAH metabolites (i.e., cate-
chol, 3-(2-hydroxyphenyl)propanoate, naphthylamine, nico-
tine metabolites (i.e., cotinine), and benzoate [11, 25, 27].
These xenobiotics were identified through an untargeted pro-
cess. Pathway analyses identified 1–50 enriched metabolic
pathways.

All 23 studies detected perturbations in lipid levels or path-
ways related to lipid metabolism, primarily as responses to
oxidative stress and/or inflammation. Air pollutant exposures
were associated with higher levels of reactive oxygen species
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(ROS) or free radicals that cause cellular membranes to break
into free fatty acids. Polyunsaturated fatty acids (PUFA), such
as linoleic acid and arachidonic acid, can be oxidized, leading
to increased pro-inflammatory metabolites, such as leukotri-
enes and prostaglandins [11, 14, 15, 21, 23, 31, 32]. A lipid
peroxidation biomarker, 4-hydroxynonenal (4-HNE), was
positively associated with UFP in the Boston CAFEH study
[25]. Linolenic acid, a downstream metabolite of PUFA with
anti-inflammatory effects (inhibits the biosynthesis of leuko-
triene B4), showed negative association with TRAP in
Boston, Atlanta, and California, in the USA [25, 32].

Perturbations to amino acids, metabolites in purine me-
tabolism, and acylcarnitines that are involved in energy
metabolism were also commonly reported (Table 4).
Histidine, with anti-inflammatory effects, showed consis-
tent inverse associations with air pollution exposures, in-
cluding TRAP, PM2.5, and emissions from a petrochemical
plant [11, 23, 25, 26, 32]. Uric acid, a powerful antioxidant
and end product of purine metabolism, which is measured
in urine samples, was negatively associated with air pollu-
tion exposures, including PM2.5 and coking plant emissions
[21, 28, 30]. The effect directions of other metabolites,

Table 3 Metabolomics methods assessment for reviewed studies

Author year 1. Study
participants
described

2. Exposure assessment
and study design

3. Sample collection
and analysis

4. Data processing
workflow

5. Certainty of metabolite
identification

Total
points

Crossover design

Blood samples

Miller 2016 [20] 0 1 0 0 0 6

van Veldhoven 2019 [10] 0 1 0 0 0 6

Vlaanderen 2017 [18] 0 1 0 0 0 6

Mu 2019 [14] 0 1 0 0 0 6

Liang 2019 [11] 0 1 0 − 1 0 5

Ladva 2018 [15] 0 1 0 0 −1 5

Shen 2018 [16] 0 − 1 0 0 0 4

Li 2017 [19] 0 1 0 − 1 − 1 4

Wei 2013 [17] 0 1 0 − 1 − 1 4

Urine samples

Zhang 2019 [22] 0 1 0 − 1 0 5

Chen 2019 [24] 0 0 0 − 1 − 1 3

Cross-sectional design

Blood samples

Yan 2019 [23] 0 1 0 0 0 6

Walker 2018 [25] 0 1 0 − 1 0 5

Chen 2019 [21] 0 1 0 − 1 − 1 4

Menni 2015 [27] 0 0 0 − 1 0 4

Yuan 2016 [26] 0 0 − 1 − 1 − 1 2

Blood and saliva

Liang 2018 [32] 0 1 0 − 1 0 5

Urine samples

Huang 2018 [28] 0 1 0 − 1 0 5

Kuo 2012 [31] 0 1 0 − 1 0 5

Chen 2017 [29] 0 0 0 − 1 0 4

Wang 2015 [30] 0 0 0 − 1 0 4

Case-control study

Blood samples

Jeong 2018 [33] 0 0 0 0 0 5

Combined crossover and cross-sectional design

Exhaled breath condensate

Maniscalo 2018 [34] 0 1 0 − 1 − 1 4
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including oxidants or antioxidants, were variable between
studies (Table 4).

Three studies reported perturbations inmetabolites in steroid
metabolic pathways (e.g., glucocorticoid metabolism) [16, 19,
21]. A randomized, double-blind crossover trial in Shanghai,
China, implemented functional or sham air purifiers in dorms
for 9 days with a 12-day washout period, and observed that
stress hormones measured in blood serum (i.e., glucocorticoids
(cortisone and cortisol), catecholamine (epinephrine and nor-
epinephrine), and melatonin) were associated with higher
PM2.5 mass concentration exposures suggesting a response
from the central nervous system by activation of the
hypothalamus-pituitary-adrenal axis [19]. In a randomized
crossover study, 24 participants were exposed to O3 and filtered
air in human chambers during two clinical visits that were at
least 2 weeks apart. O3 was significantly associated with ele-
vated cortisol and corticosterone, consistent with studies in
rodent models [20]. However, a study on boilermakers at an
apprentice welding school in MA, USA, showed that

glucocorticoids (cortisol, cortisone, corticosterone) were signif-
icantly lower after a 5-h shift in the welding workshop (higher
exposure to PM2.5 and PM enriched with heavy metals), com-
pared to before their shift commenced [16].

Current evidence cannot conclude which air pollutant or
chemical component of PM has stronger impacts on metabolic
perturbations. Some PM components exhibited stronger asso-
ciations with metabolites within studies, which might suggest
exposure contributions from different emission sources, specif-
ic to each study area. In the Atlanta Commuters Exposure
(ACE) study on TRAP, EC and V showed the largest number
of associations with metabolite features (i.e., unconfirmed me-
tabolites), among various PM2.5 components [11]. Specifically,
EC and V had 802 and 762 significantly associated features,
respectively, while PM2.5 was associated with just 215 signif-
icant features [11]. On the other hand, compared to other PM2.5

components, S showed the strongest associations with 5-
phosphoribosylamine, and S and V were related to the largest
decline in 4-pyridoxic acid, among the elderly residents in

1. Study par�cipants described, or cita�on provided to previously published 
study with full descrip�on:

a. IRB approval, geography, loca�on, medical history, age, weight, height, 
BMI, gender/sex, study type, inclusion/exclusion criteria 

2. Air pollu�on exposure assessment and study design described:
a. Air pollutants, exposure assessment methods (e.g., monitors, models), 

and exposure windows 
b. Study design (e.g., cross-sec�onal, crossover)

3. Sample collec�on and analysis described: 
a. Method of sample collec�on, storage condi�ons (e.g., temperature, 

dura�on, freeze/thaw cycles)
b. Analy�cal pla�orm – NMR spectroscopy, or MS with GC, LC or other
c. Quality control approach

4. Data processing workflow described: 
a. Peak picking/deconvolu�on, alignment
b. Missing value imputa�on, normaliza�on, scaling, transforma�on 

methods
c. Sta�s�cal analysis
d. If pathway analysis is conducted, what so�ware/database was used

5. Certainty of metabolite iden�fica�on
a. Level 1/Posi�vely confirmed metabolite iden�fica�on: levels 2-4 plus 

confirma�on to standard.
b. Level 2/Puta�vely annotated compounds: same as levels 3 and 4, 

including spectral (NMR and/or MS) similarity with public or commercial 
libraries

c. Level 3/Puta�vely characterized compound classes: level 4, plus 
spectral and/or physiochemical proper�es consistent with a par�cular class 
of organic compounds

d. Level 4/Unknown: A discernible spectral signal (NMR spectroscopy, 
MS, or other) that can be reproducibly detected and quan�fied

0 = no problems
-1 = missing descrip�on

0 = no problems
-1 = missing 1+ point
+1 = considered �me-ac�vity 
pa�ern or standardized ac�vi�es, 
or clear temporality1

0 = no problems
-1 = missing 1+ factor

0 = no problems
-1 = missing 1+ factor

0 = Level 1 or 2
-1 = Level 3 or 4

All studies start with 5 points

Final score:
5 or higher: high quality repor�ng
2-4: moderate quality repor�ng
1 or lower: low quality repor�ng

Criteria Scoring process

Fig. 2 Scoring process for metabolomics methods assessment (1clear temporality means that the air pollution exposures precede the metabolite
measurements)
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Table 4 Summary of commonly detected metabolites (detected in at least three studies) and effect directions

Metabolites Air pollution exposures Effect directions First author year

Histidine (anti-inflammatory effects) TRAP (high vs. low exposure) Negative Yan 2019 [23]

EC, V Negative only in asthma
group

Liang 2019 [11]

PM2.5 Negative Liang 2018 [32]

Petrochemical plant emissions (high vs.
low exposure)

Negative Yuan 2016 [26]

Arginine (Related to endothelial function,
inflammation,
and airway hyperresponsiveness)

UFP Positive Walker 2018 [25]

PM2.5 Positive Li 2017 [19]

EC and V Negative only in asthma
group

Liang 2019 [11]

BC and NOx Negative Liang 2018 [32]

Glutamate (a precursor to the antioxidant
glutathione)

PM2.5 Positive Mu 2019 [14]

EC, OC Negative Liang 2019 [11]

UFP Negative Walker 2018 [25]

Phenylalanine (a biomarker of oxidative stress) Occupational exposure to dust, phenol,
formaldehyde, and VOCs (high vs. low
exposure)

Positive Maniscalco 2018 [34]

Petrochemical plant emissions (high vs.
low exposure)

Positive only in children Chen 2017 [29]

Petrochemical plant emissions (high vs.
low exposure)

Negative Yuan 2016 [26]

NO2 Negative van Veldhoven 2019 [10]

Serine (glycine, serine, and threonine metabolism,
a pathway closely related to oncogenic
transformation and the biosynthesis of
glutathione)

Petrochemical plant emissions (high vs.
low exposure)

Positive only in elderly Chen 2017 [29]

Occupational exposure to welding fume
(welders vs. controls)

Positive Kuo 2012 [31]

TRAP (high vs. low exposure) Negative Yan 2019 [23]

EC and V Negative only in asthma
group

Liang 2019 [11]

PM2.5 and PM10 Negative Menni 2015 [27]

Aspartic acid (increase glutathione levels and
decrease
lipid peroxidation in animal models)

Petrochemical plant emissions (high vs.
low exposure)

Positive (only
investigated children
and adolescents)

Chen 2019 [24]

TRAP Negative Liang 2019 [11]

UFP Negative Walker 2018 [25]

Petrochemical plant emissions (high vs.
low exposure)

Negative Chen 2017 [29]

Hypoxanthine (a substrate for ROS formation) PM2.5 (before/after vs. during the Beijing
Olympics)

Positive Mu 2019 [14]

PM2.5-Zn Positive Vlaanderen 2017 [18]

CO Positive Liang 2018 [32]

PM2.5 (sham vs. real purifications) Positive Chen 2019 [21]

PM2.5 and PM2.5 components
(i.e., Ba, Cd, Mn, P, Sb)

Negative only in asthma
group

Liang 2019 [11]

Uric acid (a powerful antioxidant and end product
of purine metabolism measured in urine samples)

PM2.5 (sham vs. real purifications) Negative Chen 2019 [21]

PM2.5 Negative Huang 2018 [28]

Coking plant emissions
(high vs. low exposure)

Negative Wang 2015 [30]

Acylcarnitine (involving energy metabolism) O3 Positive Miller 2016 [20]

PM2.5 Positive and negative Chen 2019 [21]

NO2 Positive Jeong 2018 [33]

Coking plant emissions (high vs. low
exposure)

Positive Wang 2015 [30]

PM2.5-Zn Negative Liang 2019 [11]

NO2 Negative van Veldhoven 2019 [10]
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Beijing, where coal combustion for heating and industries is a
major pollution source [28]. Little overlap in the metabolites
that showed associations with PM (i.e., PM2.5, PM10, PM2.5–10,
UFP, and BC) and NOx, indicated differential effects of PM
and gas pollutants [10].

The perturbations of metabolites or pathways related to air
pollution exposure differed by disease status, age, and sex,
which potentially provides mechanistic basis for susceptibility
of subpopulations. The ACE study observed that most of the
TRAP-related metabolites were differently expressed by asth-
matic status of the participants [11]. Specifically, decreased
arginine and histidine were significantly associated with ex-
posures to EC or PM2.5-V only among asthmatic participants.
In addition, in these participants, increased methionine (an
essential amino acid promoting ROS) was significantly asso-
ciated with PM2.5-Colbat. The pathways only significant in
asthmatic participants tend to be those related to acute inflam-
matory responses. A randomized crossover study, where 39
healthy volunteers commuted in the Beijing subway for 4 h
with or without masks (3 M respirator), found strong associ-
ations between 8-hydroxy-deoxyguanosine (8-OHdG), a bio-
marker of DNA damage, and size-fractioned PM and cardio-
vascular indicators in men only. This indicates that men might
be more prone to air pollution-related cardiovascular effects
than women [22]. In the randomized crossover trial on using
real and a sham air purifier (each for 9 days) in university
dormitories in Shanghai, the analysis of serum samples
showed significant interactions of PM2.5 with sex for five
metabolites, among which the effect sizes for hydroxylamine,
arginine, tryptophan, and phytosphingosine in men were larg-
er than those in women [19]. The studies on residents near a
large petrochemical complex in Taiwan found that in blood
and urine samples, different metabolic pathways were signif-
icantly dysregulated and the observed changes were age-
specific [24, 26, 29].

Eight studies investigated whether air pollution-related me-
tabolites or pathways were also perturbed by health outcomes,
including diseases, (e.g., chronic obstructive pulmonary dis-
ease, COPD; IHD), as well as health markers (e.g., measures
of lung function, blood pressure, biomarkers of oxidative
stress, or inflammation). Seven of the eight studies found
overlapping metabolites or pathways related to both air pollu-
tion exposures and health outcomes [10], and one found a
correlation between PM2.5- and COPD-related metabolites
among elderly COPD patients and their healthy spouses in
Beijing [28]. Table 2 summarizes the associations of air pol-
lution or health outcomes with the following metabolites or
pathways: 8-OHdG, prolyl-arginine, vitamin E, metabolites
related to purine metabolism, citrate cycle, fatty acid metabo-
lism, glutathione metabolism, linoleate metabolism,
glycosphingolipid metabolism, carnitine shuttle, tyrosine me-
tabolism, urea cycle/amino group metabolism, N-Glycan deg-
radation, tryptophan metabolism, phenylalanine metabolism,

glycine, serine, and threonine metabolism, alanine, aspartate,
and glutamate metabolism.

Conclusions

Over the past decade, the application of untargeted metabolo-
mics to air pollution epidemiology has gained popularity.
However, the methodologies used in these studies vary widely
for both air pollution exposure assessment and untargeted
metabolomics profiling. Most studies investigated ambient
PM measured for various size fractions, and the number con-
centration and chemical composition. Gas pollutants (NO,
NOx, CO, O3) were also measured by these studies. A wide
range of exposure assessment methods was used, including
portable monitors, stationary monitors, and spatial models.
For analysis of the metabolome, most studies used LC-MS
as their primary analytical platform. All the studies report
the detection of thousands of features, but only a few metab-
olites can be confirmed with high confidence level. The pro-
cesses of annotation, statistical analysis, and pathway enrich-
ment analysis also varied widely.

A wide range of metabolites was associated with air pol-
lutant exposures, most of which were endogenous, and a few
of which were xenobiotics. Most detected metabolites or path-
ways were related to oxidative stress or inflammation re-
sponses, and perturbations in stress hormones were reported
in three studies [16, 19, 21]. Pro-inflammatory metabolites
(e.g., leukotrienes) or related metabolism was upregulated
[11, 14, 15, 21, 23, 31, 32] and metabolites with anti-
inflammation effects (e.g., histidine, linolenic acid) tended to
be downregulated under elevated air pollution exposures [11,
23, 25, 26, 32]. Although air pollutants were consistently re-
ported to disrupt antioxidant-oxidant balance, mixed effect
directions were reported for numerous oxidants or antioxi-
dants detected in the metabolomics analyses.

Existing evidence cannot conclude which air pollutants or
chemical components are most responsible for adverse health
effects. The physiochemical characteristics of air pollutants
differed across study locations and were likely attributable to
heterogeneity in findings. In one study reporting two cross-
sectional studies in London and Barcelona with similar meta-
bolomics analysis, the authors found no overlap in either the
confirmed metabolites or pathways related to air pollution
between the two cities [10]. The metabolic perturbations by
air pollution could differ by disease status, age, and sex, but
did not seem to differ by racial and ethnic groups [23], which
could provide evidence on mechanisms for susceptible
subpopulations.

A limited number of studies involving health outcomes
(including diseases or health markers) reported overlapping
or correlated metabolites or pathways between air pollution
exposures and health outcomes. However, all but one of these
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studies collected biological samples after or at the same time
of health outcome assessment. It is challenging to draw con-
clusions on whether these overlapping metabolites or path-
ways mediate the impact of air pollution on health outcomes,
or whether air pollution exacerbates health outcomes through
these shared metabolisms. Future studies prospectively eval-
uating exposures to airborne contaminants, metabolic chang-
es, and health outcomes are needed.

Recommendations

The studies documented in this review conducted extensive
exposure assessment, and most extensively documented the
details of metabolomic analyses. However, additional studies
or further improvement can be considered in the following
aspects:

& Identifying air pollutants or PM chemical components that
have the largest effect on the metabolome;

& Characterizing the joint effects of complex air pollutant
mixtures;

& Investigating various potential effect modifiers, such as
sex, age, or disease status, to provide a mechanistic basis
for susceptibility to a wide range of health effects;

& Expanding sample sizes by leveraging new technologies
in personal exposure assessment [47];

& Adopting a more standardized reporting methodology for
sample collection and data preprocessing, facilitating
comparisons across labs and between studies; and,

& Longitudinal design that prospectively evaluates air pollu-
tion exposures, metabolic changes, and health outcomes.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s40572-020-00298-x.
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