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Abstract
Purpose of Review Thismanuscript orients the reader to the underlyingmotivations of environmental biomarker development for
human population studies and provides the foundation for applying these novel biomarkers in future research. In this review, we
focus our attention on the DNA methylation–based biomarkers of (i) smoking, among adults and pregnant women, (ii) lifetime
cannabis use, (iii) alcohol consumption, and (iv) cumulative exposure to lead.
Recent Findings Prior environmental exposures and lifestyle modulate DNA methylation levels. Exposure-related DNA meth-
ylation changes can either be persistent or reversible once the exposure is no longer present, and this combination of both
persistent and reversible changes has essential value for biomarker development. Here, we present available biomarkers
representing past and cumulative exposures using individual DNA methylation profiles.
Summary In the present work, we describe how the field of environmental epigenetics can leverage machine learning algorithms
to develop exposure biomarkers and reduce problems of misreporting exposures or limited access technology. We emphasize the
crucial role of the individual DNA methylation profiles in those predictions, providing a summary of each biomarker, and
highlighting their advantages, and limitations. Future research can cautiously leverage these DNAmethylation–based biomarkers
to understand the onset and progression of diseases.
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Introduction

DNA methylation, typically characterized by the addition of
methyl-groups to cytosine nucleotides followed by guanine bases
(CpGs), is the most widely studied biomarker of epigenetic pro-
gramming in human population studies [1]. DNA methylation
levels are relatively stable and are inherited during cellular divi-
sion. In addition, DNA methylation changes are critically rele-
vant to human health given DNAmethylation’s known ability to

alter gene expression thereby impacting phenotypic expression
including the potential manifestation and progression of diseases
[2]. For these reasons, they have been explored as precursors of
diseases and all-cause mortality [3–5].

Research demonstrates that DNA methylation profiles can
be modulated by prior environmental exposures and lifestyle.
Exposure to air pollutants, heavy metals, and smoking has
each been associated with DNAmethylation changes in adults
and children [6–11]. Those DNA methylation alterations,
once established, can persist in the absence of the initial envi-
ronmental or lifestyle factors which induced them. Indeed,
DNA methylation, having a clear mechanism for post-
mitotic inheritance, has the potential to retain the signature
of exposures after many years and, due to its inter-individual
stability over long time-span, offers an inherent biological
mechanism for cells to remember alterations associated with
environmental exposures [12, 13]. Some alterations have even
been shown to persist across tissue types, on intra and inter-
individual levels, and over extended periods of time. For in-
stance, prenatal maternal smoking exposure has been robustly
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and consistently associated with DNA methylation at specific
loci among offspring at birth and in early childhood [10].
Moreover, those smoke-related changes in DNA methylation
profiles persisted in exposed offspring for decades after pre-
natal exposure [14]. Similar findings have been made with
respect to mercury [15]. Prenatal blood mercury levels were
associated with cord blood DNA methylation changes and
with persistent whole blood DNA methylation disruptions in
the same loci during early and mid-childhood [15].

Given that exposure concentrations and timing impact how
DNA methylation is modulated, DNA methylation incorpo-
rates not only information about lifestyle and environmental
factors, but also about the timing and consistency of the ex-
posures. Occasional smokers have different DNAmethylation
profiles than never smokers and even regular/current smokers
[16••]. Further, smoking cessation can result in partial resto-
ration of pre-smoking methylation levels [17–19]. Therefore,
exposure-related DNAmethylation changes can either be per-
sistent (i.e., stable changes) or reversible (i.e., return to prior
state) once the exposure is no longer present. This combina-
tion of both persistent and reversible changes has important
value for biomarker development.

The most commonly used technology for DNA methyla-
tion analysis in humans are high-density microarrays to mea-
sure individual CpG methylation levels at approximately a
million CpG sites for each DNA sample. Several
platforms—Illumina Infinium HumanMethylation27
BeadChip Array (Illumina27K), Illumina Infinium
HumanMethylation450 BeadChip Array (Illumina450K),
Illumina Infinium MethylationEPIC BeadChip microarray
(IlluminaEPIC)—have been used in epigenome-wide associ-
ation studies (EWAS) in which DNA methylation levels at
each CpG site are analyzed individually. EWAS has been in-
creasingly employed to uncover biological mechanisms that
underlie extrinsic environmental stimuli and adverse health
outcomes [20–22]. Because DNA methylation is sensitive to
external factors and can show changes at multiple CpG sites in
response to environmental toxicants, multiple changes can be
combined to build a composite estimator of environmental
exposures and lifestyle factors. These composite estimators
are unique because they go beyond simple loci associations.
Rather, they represent biomarkers with immense potential to
reconstruct exposure in practical situations when exposure
data is truly unavailable or the timing for biomarker collection
has passed.

Thus far, developed biomarkers have identified combina-
tions of CpGs that reflect exposure levels and allow for some
reconstruction of the time of exposure. Predictive CpGs are
first identified with screening approaches to select the sites
most strongly associated with the exposure. These screens
usually entail a locus-by-locus epigenetic-wide association
analysis, and then use those sites in machine learning algo-
rithms, such as elastic nets or LASSO (least absolute

shrinkage and selection operator) regressions [23, 24]. Both
elastic nets and LASSO regressions evaluate the association of
all sites additively and linearly with the exposure in the same
model. These approaches also gain further information from
features (CpGs) that, when taken individually, are not statisti-
cally significant, but when taken jointly contribute to improv-
ing the exposure prediction [23, 24]. Presently available bio-
markers are blood, cord blood, or buccal derived [9••, 16••,
25••, 26••]. Moreover, they mostly focus on stigmatized ex-
posures, such as lifetime smoking, smoking during pregnancy,
or lifetime cannabis use, which may be under-reported. Still,
some attention has been given to less-stigmatized exposures
with major public health implications, such as chronic lead
exposure. Here, we report on the available environmental
DNA methylation biomarkers (Fig. 1), emphasizing limita-
tions and advantages.

Biomarkers of Tobacco Exposure in Adults
and in Pregnancy

The motivation for a DNA methylation–based biomarker of
tobacco smoking is primarily driven by well-established data
demonstrating that individuals under-report or purposefully
misclassify their smoking status given perceived social stig-
mas [9••, 16••]. Remedying this issue of misclassification has
many important consequences including better tailoring of
services to clinically serve patients and reducing the potential
for confounding by smoking in research studies. Numerous
studies have identified CpG sites associated or causally linked
with smoking. However, a recent smoking DNA methylation
predictor tool, EpiSmokEr, was developed as a smoking status
prediction tool [16••]. Utilizing a training dataset of peripheral
blood cell DNAmethylation from 474 Finnish adults and self-
reported smoking data, the authors employed a machine learn-
ing algorithm (multinomial LASSO regression) to construct a
classifier tool from 121 CpG sites corresponding to 92 genes.
Gene ontology analysis of these genes demonstrated some
enrichment for general processes including DNA binding
and skeletal development. Relevant genes included multiple
zinc finger proteins (ZNF555, ZNF641, and ZNF808), carti-
lage oligomeric matrix protein (COMP), and insulin-like
growth factor 2 (IGF2). This tool is able to calculate probabil-
ities of an individual being a never, former, or current smoker
with the status with the highest probability being reported as
the predicted smoking status [16••]. On average, the tool iden-
tifies current smokers with a sensitivity of 81% and a speci-
ficity of 85%. Never smokers were identifiedwith a sensitivity
and specificity of 94% and 57% respectively. The tool per-
formed the poorest in the former smokers demonstrating a
sensitivity of 18% and a specificity of 96% [16••]. Three ex-
ternal datasets, originating from different populations, were
then used for the biomarker validation.

Curr Envir Health Rpt (2020) 7:121–128122



In addition to its ability to determine the most probable
smoking classification, EpiSmokEr is also promising as a bio-
marker for three additional reasons. First, it can be applied to
an individual sample or a population of samples. Second, un-
like existing classifiers, it does not require the prior determi-
nation of specific thresholds in each individual dataset being
examined to assign or predict smoking status. Previous clas-
sifiers have required researchers to first determine prediction
thresholds in the non-smokers of their dataset before applying
the classifiers to all individuals [27, 28]. Even newer potential
classifiers, including those that appear more promising for
cost saving because they utilize methylation of a single CpG
site like cg05575921 (AHRR), have not arrived at a consensus
on prediction thresholds that would allow for widespread clas-
sifier application [29•]. In contrast, EpiSmokEr can be applied
to all individuals comprising a dataset directly. Finally, it dem-
onstrated utility in tissues other than blood cells (e.g., buccal
cells and peripheral blood mononuclear cells). Despite these
positive aspects, some limitations may remain given its poor
performance in former smokers. However, as the authors men-
tion, performance among former smokers can not only be
thought of as a deficit in the tool, but it more greatly reflects

difficulties that come from both the detection and definition of
former smokers [16••]. Unlike current and never smokers,
former smokers across different studies are often a heteroge-
neous category. There are some individuals that barely meet
the threshold of former smoker, while other individuals report
smoking cessation for decades. In these scenarios, one can
imagine former smokers with recent cessation may have a
DNA methylation profile more similar to current smokers
while the former smoker with a decade of cessation has a
profile more similar to never smokers. One can further com-
plicate the smoking classifications by noting that a current
occasional smoker may be misclassified as a never smoker
as was observed with the EpiSmokEr study [16••]. These is-
sues with misclassification, particularly for individuals with
complex smoking behavioral habits, highlight another major
caveat of the study: self-reports were utilized as the gold stan-
dards to assess tool performance. It is possible that if the
researchers utilized a composite self-report and biological
measure (e.g., serum cotinine, which is a good marker of
short-term tobacco smoke exposure) when developing their
gold standards and training their tool, the overall performance
would be improved.

Fig. 1 Characteristics of the DNAmethylation–based biomarkers of environmental exposures. The asterisk indicates four alcohol consumption markers
were created; here, the most accurate one was reported. Parentheses refer to the population in which the markers were generalized.
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Reese et al. (2017) employed such a composite measure of
serum cotinine measurements and survey data when con-
structing their biomarker of sustained maternal smoking dur-
ing pregnancy [9••]. In training (N = 1057) and test (N = 221)
datasets composed of samples from a Norwegian mother and
child cohort, they defined “sustained smoking during preg-
nancy” as maternal serum cotinine > 56.8 nmol/L at about
18 weeks or self-reported later in pregnancy (17 or 30 weeks).
Using cord blood samples from their cohort, they performed
genome-wide linear regression with the sustained smoking
variable as the dichotomous predictor and the log ratios of
the DNA methylation data as the response variable [9••]. To
accommodate for randomness of the LASSO approach, the
authors performed it 100 times on resampled datasets with
the same sample size and selected a robust subset of CpGs
that appeared in all iterations. Following this iterative LASSO
regression procedure, they identified 28 CpGs that were used
to build their final score. Of these 28 CpGs, only one was
shared with the 121 CpGs that make up EpiSmokEr:
cg05575921 (AHRR). Notably, AHRR is one gene whose
DNA methylation status has been shown to be robustly asso-
ciated with cigarette smoking [30]. The remaining 27 CpGs
belonged to variety of genes including CYP1A1 and HIVEP2.
Furthermore, gene ontology analysis of the genes associated
with these CpG sites did not demonstrate any functional or
biological process enrichment. Overall, the score performed
well in the training data (i.e., sensitivity = 80%, specificity =
98%, accuracy = 96%) but demonstrated diminished sensitiv-
ity in the test data (i.e., sensitivity = 58%, specificity = 97%,
accuracy = 91%) [9••]. Notably, the training and test data used
in the study were acquired at two different time points 2 years
apart. The authors tout this as evidence that their score is
robust, but admit that generalizability of their measure may
be limited by the homogenous composition of their
Norwegian cohort [9••]. Additional important limitations in-
clude the score being built on the Illumina Methylation
platforms—albeit the authors suggest that score is translatable
by pyrosequencing the specific loci—and an inability to out-
perform cotinine given that it was utilized in training stages of
biomarker development. Despite these limitations, there re-
mains much promise in utilizing and improving composite
measures for DNA methylation–based biosensing.

Biomarker of Lifetime Cannabis Use

In the USA, cannabis use is highly prevalent although it is
often stigmatized. Due to increased legalization for both med-
ical and recreational purposes in a growing number of US
states, the number of Americans using cannabis is expected
to continue to increase [26••]. Previously, epidemiological
studies had limited opportunities to evaluate the health effects
of cannabis use, and often resulted in inconsistent findings

[31, 32]. Additionally, the urinary metabolites, commonly
used as cannabis biomarkers, measure only acute exposures,
with limited possibilities to increase the window for detection
and evaluate consequences of lifetime exposure [33].
However, human cannabinoid pharmacokinetic processes are
dynamic, change over time, and are affected by the frequency
andmagnitude of drug exposure [34]. Cannabis remains in the
body more than 5 days, and cannabis exposure reflecting a
cumulative and long-term consistent consumption could be a
better predictor of adverse subsequent chronic health out-
comes [34]. Therefore, an effort was conducted to build a
novel epigenetic biomarker for lifetime (ever/never) cannabis
use, using whole blood DNA methylation measured with the
Illumina450K. The authors discovered that the combination of
DNA methylation at three CpGs serves as a unique classifier
for individuals with lifetime cannabis use [26••]. These three
CpGs (cg15973234, cg04685163, and cg03765885) respec-
tively lie within the CEMIP gene, 10 base pairs away from the
DLGAP2 transcription start site and within an intergenic re-
gion in chromosome 2 and were negatively associated to life-
time cannabis use. DNA methylation level of cg15973234
was not correlated with reported cannabis-associated SNPs
and none of those sites were never previously associated to
smoking or alcohol consumption, suggesting that the findings
were unlikely to be genetically driven and more likely related
to the cannabis exposure. The authors leveraged 1730 non-
Hispanic white women from the Sister Study in a LASSO
regression and validated results in 853 women [26••]. The
lifetime cannabis biomarker provided good accuracy
(AUC= 0.79 (95% confidence interval [0.76, 0.82])) for the
classification of women with lifetime cannabis use and it can
now be used in future epidemiological studies to evaluate
long-term health effects of cannabis [26••].

Although the authors adjusted all models for several
confounders, technical variables, and cell type propor-
tions, limiting the spurious signals, and reduced the
overfitting of the model with cross-validation, a few
study characteristics (age, sex, race/ethnicity, and devel-
opment of breast cancer) may limit the generalizability
of the results to the overall US population. Among the
limitations, the authors acknowledged the missing infor-
mation about other illicit drugs or environmental expo-
sures, which may have impacted the results. Also, all
participants self-reported on lifetime cannabis use,
which may have led to underreporting and misclassifi-
cation, leading results to bias towards the null hypothe-
sis. The authors validated results by using an internal
random split sample validation approach. Although val-
idation should be always attempted for any of those
epigenetic-derived biomarkers, internal random split
sample validation may have led to severely optimistic
performance estimates and results should be confirmed
with further studies [35].
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Biomarkers of Alcohol Consumption

Alcohol abuse is one of the leading causes of death and dis-
ability worldwide [36]. Diagnosis and treatment of alcohol-
related diseases is limited by the lack of reliable measures of
alcohol intake [37]. Alcohol consumption is mostly self-
reported during hospitalization and in observational studies,
but its social implications lead to under- or misreporting of this
exposure. Biological biomarkers of heavy drinking have been
previously created, but they are far from ideal [38••]. Alcohol
consumption has been suggested to alter global and site-
specific DNA methylation, which in turn can affect gene ex-
pression levels. Liu et al. (2018) have identify blood-derived
DNA methylation biomarkers of heavy alcohol drinking and
explored the functional implications of alcohol-related differ-
ential methylation by evaluating its association with gene ex-
pression in blood [38••]. A total of 13,317 participants from
population-based cohorts (9643 European and 2423 African
ancestries) of the Cohorts for Heart and Aging Research in
Genomic Epidemiology Consortium plus (CHARGE+)
Consortium were included in this analysis. Heavy drinkers,
≥ 42 g per day in men and ≥ 28 g per day in women, repre-
sented 2–17% of participants across studies. Four biomarkers
of alcohol were created by using a four-step procedure. First,
the authors performed an inverse-weighted random-effects
meta-analysis, condensing results from EWAS analysis of
eight cohorts with European ancestry. A total of 333 CpG sites
had p values below 5 × 10−6 in the meta-analysis and were
included in both Illumina450 and Illumina EPIC assays. All
of them were combined in a LASSO regression using the
largest training cohort (2427 European ancestry participants
with 8% of heavy drinkers). The LASSO approach regressed
alcohol intake in grams and the residuals of linear regressions
linking methylation levels of those significant CpGs to
sociodemographic confounders. Four sets of CpGs (5, 23,
78, and 144) were selected to discriminate heavy drinkers
from light- and non-drinkers. All sets were validated in indi-
vidual cohort populations of both European and African an-
cestries and results were generalized using monocyte-derived
DNA samples from a population cohort including European,
African, and Hispanic ancestries. The most parsimonious set
of 5 CpGs allows to discriminate between heavy and non-
drinkers, and between heavy and light drinkers with a good
accuracy (over 80% and 65% respectively) in all validating
cohorts. The biomarkers composed by 23, 78, and 144 CpGs
had even better performances [38••]. As a biomarker, the se-
lected 144 CpGs performed better than common clinical var-
iables and biomarkers in discriminating current heavy alcohol
drinking. The authors have also shown that whole-blood epi-
genetic changes were associated with gene expression in
whole blood [38••]. Namely, methylation alterations in
GABA receptor genes were significantly associated with the
expression levels of genes involved in immune function [39].

The authors acknowledge that results stratified by ancestry
lack of similarities of many CpG sites and larger studies with
multiple ethnicities and a broader age range are needed. The
authors also mentioned that differences can be driven by het-
erogeneity in alcohol consumption across different population
cohorts [38••].

Biomarkers of Cumulative Lead Exposure

Lead exposure has chronic adverse effects on the cardiovas-
cular, neurocognitive, and renal systems [40]. It is of pressing
importance for environmental and occupational health, with
more than a million employees, mostly men, working in gen-
eral industry and construction, suffering from this exposure
every year [41]. However, the Flint crisis, which gained much
attention starting in 2014, showed that lead is still a traceable
heavy metal in both adults and children. Lead exposure can be
measured in several tissues: blood, bones, hair, nails, and
urine. However, tissues measuring longer, and cumulative
lead exposure are more appropriate for evaluating its long-
term health effects. Bone lead levels are better biomarkers
than lead levels of blood and any other tissues in capturing
cumulative lead exposure [42–44]. Patella and tibia bone lead
levels reflect exposure of 8–20 years [45] and up to 50 years
[46], respectively, and require specialized X-ray-fluorescence-
spectroscopy available only in a few centers worldwide. Thus,
DNA methylation biomarkers have been developed to reflect
those cumulative lead exposures and to be applied to other
study populations, which do not have access to that technolo-
gy [25••]. Those biomarkers were discovered in a population
of 348 elderly non-Hispanic white men (73 years old on av-
erage) from the Normative Aging Study with moderate lead
levels (mean ± SD patella, 27 ± 18 μg/g; tibia, 21 ± 13 μg/g).
Both lead biomarkers reconstructed individual cumulative
lead exposure using blood DNA methylation profiles—
obtainable via Illumina450K or IlluminaEPIC assays.
Biomarkers for lead in patella and tibia were computed via
leave-one-out cross-validation elastic nets in the 80% of the
data and included DNA methylation measured in 59 and 138
sites, respectively. Estimated lead levels were well correlated
with actual measured values in the remaining validation set
(20%) of the data. These methylation-based biomarkers dis-
criminated participants highly exposed (> median) to lead
with good accuracy for both biomarkers (patella AUC = 0.79
(95% CI 0.68–0.90) and tibia AUC = 0.75 (95% CI 0.64–
0.87)) [25••]. The two sets of CpGs composing the
methylation-based lead biomarkers were mapped to genes bi-
ologically related to diseases or processes previously associ-
ated with lead exposure. Genes included in the patella bio-
marker were involved in Alzheimer’s disease, while genes in
the tibia biomarker were mainly related to nutritional path-
ways, including low-protein diets previously linked to
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increased lead absorption. These findings supported the hy-
pothesis that DNA methylation is an intermediate mechanism
between lead exposure and the development of chronic and
neurocognitive diseases. Using this approach, the authors
were able to reflect two cumulative periods of lead exposure
[25••]. However, applications of those biomarkers will require
caution, due to the limited data on extreme lead values, and no
inclusion of women, and children.

Discussion

DNA methylation is a stable biomarker, with unique proper-
ties of persistence and reversibility [47]. Its ability to reflect
lifestyle behaviors and their changes enables it to simulta-
neously incorporate information about exposure concentra-
tions and their timing [20–22, 25••]. DNA methylation pro-
files can be measured in several tissues, including whole
blood. Unlike many other epigenetic measures (e.g., RNAs),
DNA methylation can be easily detected in retrospective ar-
chived and appropriately frozen samples without special han-
dling requirements. Together, these characteristics have made
DNA a promising candidate biomarker of past or current en-
vironmental exposures and enabled it to contribute to the un-
derstanding of the onset and progression of diseases [48].
Those methylation-derived exposure biomarkers are indica-
tive of norms or aberrations present at molecular level linked
to environmental exposures. So, they can provide more infor-
mation on the biological mechanism and function associated
to human health than biomarkers based on exposure com-
pounds. Still, studies continue to advance the utility of this
biomarker as combinations of DNA methylation at several
CpGs are now being utilized as biomarkers to reconstruct
different exposures.

More specifically, these novel methylation-derived tools
can now be applied to observational studies in order to recon-
struct exposures and understand the causes of disease onset.
Importantly, this may help in measurement error correction
and reducing misclassified exposures when the exposure is
associated with a stigma or when technology is unavailable
[25, 49•]. Ignoring exposure misclassification when evaluat-
ing any exposure-disease relationships can lead to false or
exaggerated conclusions [49•]. Thus, measurement error cor-
rection approaches, including the development of
methylation-derived biomarkers, can improve validity of find-
ings and be of enormous public utility.

Both the LASSO and elastic net approaches, used for the
methylation-derived exposure biomarkers, have three main
advantages. They are easy to interpret, provide a variable se-
lection emphasizing each CpG site importance, and can be
regularized with a small number of hyperparameters to avoid
overfitting [23, 24]. For these characteristics, both LASSO
and elastic net regressions are well suited for environmental

epigenetic analyses; however, their performance depends on
the number of CpGs included in the model and the relation-
ship between CpGs and the environmental exposure [23, 24].
Indeed, those approaches are prone to overfit with a large
number of CpGs, especially if the CpGs are highly correlated.
To limit this issue, all authors screened the CpGs most signif-
icantly associated with the environmental exposure with an
EWAS strategy before combining them all in the machine
learning approach. Those approaches also assume additivity
of CpGs, and linearity between each CpG and the exposure
and approaches evaluating multiplicative and non-linear rela-
tionships can be considered for improving the development of
methylation-derived environmental exposure biomarkers.

The excitement to use methylation-derived biomarkers
across observational studies has to be balanced with caution.
The methylation-derived biomarkers discussed in this text
were developed in observational studies—with specific cohort
characteristics (i.e., ethnicity/race, sex, age)—and all bio-
markers used blood to reconstruct exposures. Hence, applying
them to studies with different characteristics or from different
tissues might lead to inappropriate exposure reconstruction.
Further studies are needed to validate biomarkers under dif-
ferent population characteristics, and open-data sharing policy
would facilitate this process. Other tissue types can also be
considered, especially if they are closer to the target tissue. For
instance, buccal biospecimens, which are easy to collect and
bank, may be more appropriate to exposures related to inha-
lation. Importantly, additional studies are needed to evaluate
the interplay relationships between DNA methylation marks
in the biomarker prediction and machine learning algorithms
not requiring assumptions of additivity and linearity among
those DNAmethylationmarks, may improve the accuracy and
prediction of environmental exposures. In moving forward,
the utility of such biomarkers will depend on their ability to
have consistent results across populations, and in our under-
standing about the pathways reflected by alterations of those
specific CpGs included in each biomarker.

Conclusions

Overall, these novel DNA methylation–based bio-
markers are attractive tools to accurately capture past
and cumulative environmental exposures, reducing
misclassified or missing exposures. Prospective studies
with extant methylation data can leverage these novel
biomarkers to understand the onset or progression of
human diseases. Furthermore, the ability to reconstruct
past environmental exposure using extant methylomic
data may open the door to novel research questions that
would have prospective data on exposure and health,
that otherwise would not exist.
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