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Abstract
Purpose of Review In recent years, investigators in a variety of fields have reported that most published findings can not be
replicated. This review evaluates the factors contributing to lack of reproducibility, implications for environmental epidemiology,
and strategies for mitigation.
Recent Findings Although publication bias and other types of selective reporting may contribute substantially to irreproducible
results, underpowered analyses and low prevalence of true associations likely explain most failures to replicate novel scientific
results. Epidemiologists can counter these risks by ensuring that analyses are well-powered or precise, focusing on scientifically
justified hypotheses, strictly controlling type I error rates, emphasizing estimation over statistical significance, avoiding practices
that introduce bias, or employing bias analysis and triangulation. Avoidance of p values has no effect on reproducibility if
confidence intervals excluding the null are emphasized in a similar manner.
Summary Increased attention to exposure mixtures and susceptible subpopulations, and wider use of omics technologies, will
likely decrease the proportion of investigated associations that are true associations, requiring greater caution in study design,
analysis, and interpretation. Though well intentioned, these recent trends in environmental epidemiology will likely decrease
reproducibility if no effective actions are taken to mitigate the risk of spurious findings.
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Introduction

In recent years, researchers in a variety of fields have investi-
gated whether previously reported scientific findings can be
reproduced by repeating the original experiments [1–3], or by
comparing meta-analyses to the original study findings [4•].

Findings have been dismal, routinely showing that novel find-
ings have, on average, larger effect sizes than confirmatory
studies, and that more than half of initially reported associa-
tions are contradicted by later studies. Lack of reproducibility
appears to be widespread, affecting all scientific fields of
study [5] including risk factor epidemiology [4•].

Although this state of affairs has come as a surprise to
some, it is understood by statisticians as a predictable conse-
quence of traditional null hypothesis testing for statistical sig-
nificance [6••]. This review explains the underlying causes of
the crisis, describes some of the implications for environmen-
tal epidemiology, and summarizes proposed solutions.

Understanding the Causes of the Replication
Crisis

The causes of the replication crisis can easily be understood
through the familiar framework of diagnostic testing, and
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particularly the concept of positive predictive value (PPV)
[7••, 8•]. PPV is a key component of diagnostic test validity,
and a very useful metric for imperfect tests because it condi-
tions on a positive diagnostic test result, directly answering the
question “how likely is it that I have this disease, given that
my test result is positive?” Consider any epidemiological as-
sociation analysis as a type of diagnostic test, in this case using
a cohort study, case-control study, or other sample to “test” for
a true disease association in a reference population or study
base from which the sample was drawn. In this context, one
can consider statistical significance (i.e., a low p value or a
confidence interval excluding the null hypothesis) as a “pos-
itive” test result, lack of statistical significance as a “negative”
test result, and the prevalence as the proportion of investigated
disease associations that are true disease associations (causal
or non-causal associations that exist in the reference
population/study base, but not necessary in the sample being
used for epidemiological study). Thus, in this context, the
PPV answers the question, “how likely is it that there is an
association in the reference population, given that there is a
statistically significant association in my study sample?”

In this context of the diagnostic reliability of hypothesis
testing using p values or confidence intervals, the statistical
power of an association analysis is its sensitivity, or the prob-
ability of a statistically significant finding given that there is a
true disease association in the reference population, and the
confidence level, 1 −α, is its specificity, or the probability of a
non-significant finding given that there is no disease associa-
tion in the reference population. By convention, α, the type I
error rate, is typically set to 0.05 both as a threshold for de-
claring statistical significance and for calculation of confi-
dence intervals (i.e., 1 −α = 95%). The PPV, or the probability
that there is a true disease association given that a statistically
significant result has occurred, has a well-known mathemati-
cal relationship to the sensitivity (sens), specificity (spec), and
prevalence (prev):

PPV ¼ sens⋅prev
sens⋅prevþ 1−specð Þ � 1−prevð Þ ð1Þ

which, in the context of an epidemiological association anal-
ysis, can be written as

PPV ¼ power⋅prev
power⋅prevþ α⋅ 1−prevð Þ ð2Þ

From this perspective and a few simple calculations, it is
evident that either low statistical power or low prevalence of
true disease associations will result in poor diagnostic reliabil-
ity of a statistically significant finding for predicting a true
disease association in the reference population. For example,
consider an analysis with 80% power, a level that is often
considered adequate for investigating primary aims [9], and
that usesα = 0.05 as threshold for statistical significance or for

comparing confidence intervals to null hypothesis values. If
half of such analyses actually investigate true risk factor asso-
ciations (i.e., prev = 0.50), then PPV = 94% and all is well,
because the vast majority of statistically significant findings
from such studies will actually reflect true associations in the
reference populations for those studies. However, if only 10%
of these analyses are for true associations (prev = 0.10), then
PPV = 64%, indicating that only a little more than half of the
study results can be trusted. PPV declines rapidly from there,
to values of 14% for prev = 0.01 and 2% for prev = 0.001.
Notably, these calculations depend on the actual power of
the tests, not the nominal power computed using simplifying
assumptions such as no adjustments for measurement error or
confounding. Those considerations may reduce the actual
power below nominal values, which would decrease PPV.

What is an appropriate value for prev, the prevalence of true
disease associations among those tested in environmental ep-
idemiology? This question is difficult to answer, but relevant
published estimates include 0.5 for mundane research onwell-
understood topics [8•], 0.1 for risk factor epidemiology as a
whole [10•], 0.096 for new drug development [11], 0.09 for
exploratory epidemiology studies [6••], 0.01 for innovative
high-risk research [8•], and 0.001 for discovery-oriented re-
search with “massive testing,” such as epigenetics [6••]. These
are mostly educated guesses at realistic values of prev, but
suggest that the example PPV calculations presented here
are highly relevant to the reliability of epidemiological re-
search using well-powered studies of a priori hypotheses.

It is important to recognize that the above calculations of
PPVare not realistic for many secondary analyses, or explor-
atory analyses. Such analyses are often conducted without any
formal power calculations, or with lower than 80% power and
the understanding that these more opportunistic analyses have
higher risk of failing to detect associations, but may produce
more novel findings. Considering the number of confidence
intervals or p values contained in a single manuscript, and the
number of power calculations in a typical grant application, it
seems likely that the majority of analyses in the published
epidemiological literature are secondary analyses, with typi-
cally less than 80% power. One early study estimated the
average power of hypothesis tests to be 50% for the medical
literature as a whole [10•], supported by surveys of medical
studies published in the 1990s. Secondary analyses may play
an even larger role in the literature now, considering the pro-
liferation of statistical methods, software, and computational
ability during the last two decades. A more recent analysis of
neuroscience topics assessed in meta-analyses reported that
the median power of those analyses on those topics was
23% [12], and a similar study of meta-analyses for neurolog-
ical, psychiatric, and somatic diseases reported a median pow-
er of approximately 20% [13••]. Estimates of average power
in the published scientific literature routinely fall below 50%,
across fields and across decades [14•].
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Taking 50% as an optimistic estimate of the average power
of all published epidemiological analyses, what are the impli-
cations for the reliability of statistically significant results
among those findings? Using α = 0.05 as the threshold for
statistical significance, analyses with 50% power have a
PPVof 53, 9, and 1% for hypothesis with prev values of 0.1,
0.01, and 0.001, respectively. If the average power of pub-
lished analyses is 23%, similar to the neurosciences, then the
PPV is 34, 4, and 0.5% for hypothesis with prev values of 0.1,
0.01, and 0.001, respectively. Average values of power and
PPV for environmental epidemiology are unlikely to be any
higher than these values, and could be even lower.

This framework for evaluating the reliability of statistical
significance testing does not account for bias resulting from
uncontrolled confounding, selection bias, information bias, p-
hacking (fitting various models until a statistically significant
result is obtained), variable selection routines, selective
reporting, publication bias, or other potential sources of bias.
Such biases are often in a direction away from the null hy-
pothesis (e.g., there is a true association in the reference pop-
ulation, but it is not causal), which further decreases PPV. In a
widely cited paper, discouragingly titled “Why Most
Published Research Findings Are False,” Ioannidis expanded
the framework of Eq. 2 to account for the combined effect of
those impacts using a single bias parameter, showing that
moderate bias can push PPV below 50% even when power
and prev are large [6••].

Implications for Environmental Epidemiology

Although one of the lessons of the replication crisis is that
every field of study is at risk, environmental epidemiology
has some particular characteristics and trends worth noting.
Epidemiologists are fortunate that we already have an
established culture of avoiding overemphasis on statistical
significance, and of “replication before belief,” treating isolat-
ed results with skepticism until they are reported in multiple
studies. Our journals are generally interested in publishing
replication studies with or without statistical significance, lim-
iting publication bias to some extent.

However, some features of our study designs may put our
field at higher risk of irreproducible results. In particular,
chemical exposures are often difficult to characterize at the
individual level, limiting sample sizes that can be obtained
with a given budget—particularly using exposure biomarkers
or personal exposure monitoring for air pollutants. Because
statistical power decreases at smaller sample sizes, obtaining
higher quality exposure metrics can hamper reproducibility
even as it decreases bias by reducing measurement error. We
also have a history of avoiding formal adjustment for multiple
comparisons, based on the argument that they overemphasize
the joint null hypothesis and discourage scientists from

exploring potentially important associations [15]. However,
some of our papers contain hundreds or thousands of models
[16], which virtually guarantees multiple statistically signifi-
cant findings when each test is performed at α = 0.05, regard-
less of whether there are any true associations.

Recent years in environmental epidemiology have seen
greater emphasis on the study of exposure mixtures, epigenet-
ic mechanisms, and susceptible subpopulations. Although
these developments are scientifically important and well
intentioned, they should be expected to worsen reproducibility
for the reasons described below.

Effect estimation and hypothesis testing for each individual
component of a mixture of correlated exposures is difficult
enough, due to the need for larger sample sizes to achieve
the desired precision/power than would be required for a sin-
gle exposure variable, but investigation of synergy, antago-
nism, or other types of effect modification can require a dra-
matic increase in sample size if more than a few exposure
variables are included. Because the toxicological effects of
mixtures are often poorly understood, these analyses are typ-
ically exploratory, suggesting lower values of prev than tradi-
tional, hypothesis-driven studies of single exposures. The im-
pact of lower values of prev is, of course, lower PPV and less
trustworthy study results.

In practice, few epidemiology studies achieve the sample
sizes necessary to conduct traditional statistical analyses of the
individual or interactive effects of all components in an expo-
sure mixture or an omics biomarker; instead, individual expo-
sure models with false discovery rate corrections or variable
reduction techniques are routinely employed first to identify a
smaller set of predictors, making it possible to fit adequate
statistical models [17]. However, because prior data and
straightforward methods for power calculation are often lack-
ing for these studies, power calculations tend to be cursory or
omitted. Such study designs can be assumed to produce rela-
tively low values for both power and prev, and thus poor PPV.
Indeed, a recent simulation study of realistic exposome data
for 1200 hypothetical participants investigated several modern
statistical methods including dimension reduction that were
developed for high-dimensional data, and found that all per-
formed poorly in generating false discoveries for health asso-
ciations with correlated exposures in the exposome [18•]. The
methods examined included including two variations of
environmental-wide association study with false discovery
rate correction, elastic net, sparse partial least squares,
Graphical Unit Evolutionary Stochastic Search, and the dele-
tion/substitution/addition algorithm; false discovery propor-
tions varied from 28 to 86%.

Increasingly, evidence is emerging in support of differences
in risk factor susceptibility by individual characteristics such
as age, sex, and socioeconomic status [19, 20]. Such investi-
gations often have considerable prior biological support, in
which case prev is likely to be comparable to other
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hypothesis-driven investigations. However, these effect mod-
ification analyses will invariably have lower power than risk
factor analyses for the same outcomes in the entire study,
because there are smaller sample sizes in each stratum than
in the overall study, and because the difference in effect sizes
between strata is typically smaller than the overall effect.
Again, lower power results in lower PPV. When such investi-
gations are exploratory rather than being supported by prior
information, they are more likely to have lower prev as well,
and thus lower PPV.

The limitations of epidemiology for investigating effect
modification were discussed extensively in earlier literature
[21, 22], which may be worth revisiting as environmental
epidemiology struggles with these old problems in the context
of its new research priorities.

Proposed Solutions

A variety of solutions to the replication crisis have been pro-
posed. Some are focused on ensuring good laboratory prac-
tices, full disclosure of research methods, study registration,
and other best practices [23–25] that facilitate replication ef-
forts and may offer some improvements to study precision and
bias, but do not directly address the primary causes of the
replication crisis elucidated by Eq. 2. This review focuses on
potential intervention strategies for the key factors in that
equation: high α, low power, and low prev. Several other
proposed strategies that are likely to be effective, including
focus on estimation rather than null hypothesis testing, are
also discussed.

Choose a Lower Value for α

One of the simplest proposed solutions to the replication
crisis is to use a lower value for α. The common choice of
α = 0.05 is based mostly on tradition rather than principle,
and it appears that this somewhat arbitrary choice has
allowed countless doubtful conclusions to appear in the
scientific literature. Inspection of Eq. 2 reveals that lower
values of α can dramatically improve PPV. For example, at
power = 0.80 and prev = 0.10, PPV = 95% using α = 0.005,
much higher than the PPVof 64% using α = 0.05. Choosing
α = 0.005 also protects against somewhat lower values for
prev, but even with 80% power the PPV drops below 50%
for prev < 0.006.

Choosing α = 0.005 as the threshold for statistical signifi-
cance is easily implemented by researchers, grant reviewers,
and journals, though it requires about twice the sample size to
maintain the same statistical power as α = 0.05. Although this
solution has been proposed several times over the past few
decades, larger numbers of researchers now endorse the rou-
tine use of α = 0.005 as a threshold for using the term

“significant,” noting that this approach does not preclude de-
scribing results with 0.005 < p < 0.05 as “suggestive,” which
might be more appropriate given the likelihood of poor PPV
for p values in that range [26•].

A corollary to choosing a lower value for α is formal ad-
justment for multiple comparisons. For example, Bonferroni
correction multiplies each p value in a manuscript, table, or
any other group of analyses by k, where k is the total number
of p values in that group of analyses. Or, equivalently, the
original p values can be compared to a threshold of α

k for
statistical significance. Although conservative, this approach
is easy to implement and highly effective in reducing false
discoveries; the effect on PPV can be determined by substitut-
ing α

k for α in Eq. 2. For example, at power = 0.80, α = 0:05
k ,

and prev = 1
k, the PPVexceeds 94% for any value of k. Thus, if

it least one of the p values or confidence intervals in a group of
analyses is for a true association, then Bonferroni correction
ensures a high probability that a statistically significant result
in that group actually reflects a true association. Without any
correction for multiple comparisons, the PPV can be quite
poor for large values of k, as shown in the earlier calculations
using α = 0.05 with prev = 0.01 or 0.001.

In practice, researchers often prefer less conservative
methods of adjustment for multiple comparisons such as the
Holm method or the Benjamini-Hochberg procedure instead
of Bonferroni correction. All of these procedures are widely
implemented in statistical software packages (e.g., the p.adjust
function in R) and are reviewed in detail elsewhere [27].

Notably, selection of a more strict threshold for α, whether
the value is fixed or dependent on the number of tests, is a
reproducibility-enhancing strategy that can be applied to con-
fidence intervals as well as statistical significance testing using
p values. For example, α = 0.005 corresponds to a 99.5%
confidence interval, which is computed for approximately
normal sampling distributions as the point estimate plus or
minus 2.81 times the standard error, rather than 1.96 times
the standard error. Similar adjustments to confidence intervals
are available to account for multiple comparisons [28]. Of
course, any formal adjustment for multiple comparisons re-
quires larger sample sizes to maintain statistical power and
precision.

Increase Power

It is evident from Eq. 2 that increasing statistical power will
increase the PPV. Increasing the sample size is not the only
viable approach to increasing power; epidemiologists can em-
ploy a number of efficient study designs that can achieve more
precise estimation and larger power with fewer participants
than simpler designs, such as pooled sampling, outcome-
dependent sampling and other two-phase designs, hybrid de-
signs, or counter-matching [29–33].
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Researchers can also identify and prioritize populations
with large between-individual disparities in exposure, as
greater exposure variation inherently produces more statistical
precision and power for exposure effects with monotonic
dose-response relationships. For example, PFOA serum con-
centrations in the C8 Science Panel study population ranged
over several orders of magnitude, from background concen-
trations to occupational levels [34], producing substantially
more statistical power for investigating the health effects of
PFOA than general population studies with less exposure
variation.

Grant reviewers and funding agencies can also play a role
by expecting primary aims in confirmatory studies to have
high statistical power or precision, justified by clear calcula-
tions [35]. Investigators and reviewers face more difficult de-
cisions regarding power expectations for secondary hypothe-
ses and exploratory studies. Innovation and true discovery can
be facilitated by funding and conducting studies with low
statistical power, but only at the cost of generating more false
discoveries that are (or worse yet, are not) later refuted. If
nothing else, reviewers should assume that aims not supported
by explicit calculations of power or precision most likely will
have low power and poor precision, affecting the reliability of
those study results.

Increase Prev

If scientific knowledge about an exposure or a particular
health outcome has any relevance, then informed a priori
hypotheses should have higher values of prev than hy-
pothesis-free, data-driven analyses [6••]. For example, ep-
idemiological studies of an emerging toxicant affecting a
similar system or outcomes in rodent studies have stron-
ger biological plausibility, and likely a higher value of
prev, than epidemiological studies of a chemical without
any supporting toxicological evidence. Preconceived, sci-
entifically supported analyses of potential effect modifica-
tion by age, sex, race, and other variables are likely to
have higher values of prev than opportunistic analyses
of potential effect modification not predicated on any par-
ticular rationale.

A sole focus on well-developed, a priori hypotheses
with high prev would greatly increase PPV, but at a cost
of making research less innovative [8•]. Moreover, con-
sidering the large expense of conducting a sizable epi-
demiological study, it seems wasteful to use the
resulting data to investigate only preconceived hypothe-
ses with strong prior support. Exploratory analyses
should continue to have a role in research, but such
analyses have questionable reliability and should be
clearly distinguished from confirmatory, hypothesis-
driven analyses [36].

Avoid Statistical and Epidemiological Practices That
Introduce Bias

Although the solutions highlighted in the previous sections
(decrease α, increase power, increase prev) can effectively
address problems related to random error, they do not address
confounding, selection bias, or other types of systematic error.
Conducting larger studies can increase power and PPV when
the studies are performed with the same quality, but if a larger
sample size requires other study design changes such as using
a different study population with less exposure variability,
omitting a key confounding variable, or increasing some other
risk of bias, the net effect could be to decrease PPV relative to
a different study design using a smaller sample size. Thus, it
remains important to balance statistical considerations with
other principles in epidemiological study design.

Once data are collected, it is always tempting to examine
associations in a variety of potentially susceptible subgroups,
or to investigate potential effect modifiers, after the primary
analyses are completed. These exploratory analyses can be
dangerous because they are often post-hoc, without clear plans
or sufficient power, and too easily degenerate into a search for
something interesting (i.e., statistically significant or with a
large effect size) to report. Well intentioned or not, the practice
of fitting models until statistical significance is achieved or
relatively large effect sizes are found introduces bias away
from the null. Even with prior selection of models, reporting
bias occurs if “less interesting” results are excluded from pub-
lications. Such practices are often referred to as p-hacking or
data dredging, and should be avoided [14•].

When many models are fit, such as in air pollution
studies with multiple pollutants, outcomes, or lag times,
researchers should take pains to include description of all
results in a publication, not just those that tell the most
interesting story. This is important not only for primary
interpretation of the study results, but also because of the
potential impact on subsequent systematic reviews and
meta-analyses, which can yield biased results if some
analyses were preferentially excluded from publication.
To put results in context when many models are fit, even
without formal adjustment for multiple comparisons, it is
useful to focus on patterns and to count the proportion of
significant results among any group of related analyses. If
that proportion is less than α, the results for the group are
indistinguishable from chance, and not particularly per-
suasive. For example, in an epidemiological analysis with
multiple time lags, multiple particulate matter measures,
and multiple hourly heart rate variability measures, we
noted that our six “statistically significant” associations
(p < 0.05) constituted only 4.8% of the 126 odds ratios
we computed for this pollutant, and therefore did provide
support for an association between particulate matter and
hourly heart rate variability [37].
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Researchers can reduce the potential for bias by developing
detailed data analysis plans before statistical analysis is actu-
ally performed [14•]. Ideally these plans should include spe-
cific statistical models, covariate selection, plans for identify-
ing and handling outliers, and any other necessary details that
can be anticipated in advance of data analysis. Although sta-
tistical methods may change after diagnostics are used to
check assumptions, those contingencies can be included in
advance planning. In addition to enhancing reproducibility,
detailed data analysis plans can also strengthen grant
applications.

Focus on Estimation Instead of Null Hypothesis
Testing

Although some investigators and journals advise abandoning
p values altogether in favor of estimation and confidence in-
tervals, this change will have no impact on reproducibility if
confidence intervals excluding the null continue to be empha-
sized or selectively reported [8•]. This is because hypothesis
testing using either a p value < 0.05 or a 95% confidence
interval relies on α = 0.05, producing the same PPV in Eq.
2. Although it is easy to avoid using p values and the phrase
“statistically significant,” it is much more rare to see a paper in
epidemiology that does not emphasize confidence intervals
that exclude the null hypothesis. It is customary to highlight
those findings in the discussion section and abstract, even in
journals that ban p values. Interpretation of results without
emphasizing significant findings seems particularly difficult
for papers with dozens, hundreds, or thousands of effect esti-
mates; it might become necessary to interpret each effect esti-
mate and confidence interval in some detail, or perhaps not at
all, so as to avoid any emphasis of statistically significant
results. Abandonment of hypothesis testing in favor of estima-
tion without null hypothesis comparisons could solve the rep-
lication crisis, but this shift would require a cultural revolution
in scientific research [8•].

Bias Analysis and Triangulation

As most epidemiologists will recognize, multiple studies on
the same topic can yield consistent but incorrect effect esti-
mates if they are all biased due to lack of adjustment for key
confounding variables, selection bias, recall bias, or other
common threats to validity. The solutions addressing param-
eters in Eq. 2 will not address those threats, but other tools are
available to assess and mitigate them. Some researchers prac-
tice quantitative bias analysis, in which probability distribu-
tions are used to represent the potential magnitude of major
sources of bias, and Monte Carlo sensitivity analysis or
Bayesian methods are used to determine their potential im-
pacts on epidemiological effect estimates [38].

With or without quantitative analysis, consideration of the
likely direction of bias can be useful in interpreting results,
especially when two studies have different sources of bias in
opposite directions, in which case the true effect size is more
likely to be between the two point estimates [39]. Comparison
of results from multiple analyses on the same research ques-
tion but with different threats to validity has been referred to as
“triangulation.” It has been argued that triangulation should be
a key component in designing replication studies and making
science more reliable, considering that systematic errors can
not be prevented by repeating previous study designs with
larger sample sizes [39]. Examples include comparisons of
epidemiological associations for the same outcomes using
both measured and modeled serum perfluorooctanoate con-
centrations in the C8 Science Panel Studies, with measured
values being less prone to measurement error for characteriz-
ing recent exposures, but more susceptible to reverse causa-
tion and physiological confounding than modeled values
[40–42]. Instrumental variables and negative controls have
also been used to triangulate epidemiological effects, and
could be used more widely without much difficulty [43, 44].

Increasing Awareness

Although most of these proposed solutions are focused on
steps that researchers can take to increase replicability when
designing, conducting, and publishing our studies, it is equally
important to combat misconceptions that led to misinterpreta-
tion and misuse of published study findings. One common
misconception is that α = 0.05 indicates that 5% of statistical-
ly significant associations are false; the actual proportion of
statistically significant associations that are false is 1 − PPV,
and therefore depends not just on α, but on power and prev as
well. Thus, interpretation of confidence intervals, p values,
and statistical significance requires understanding the context,
such as whether they were computed to address well-powered,
plausible a priori hypotheses, or computed for larger sets of
underpowered, less plausible exploratory hypotheses. Thus,
two numerically identical confidence intervals or p values
can have very different interpretations.

Perhaps most dangerous is the misconception that “statis-
tically significant” implies that a study result is proven, reli-
able, clinically relevant, or even true in the reference popula-
tion. Students, researchers, and the general public should be
skeptical of study findings that have not yet been replicated,
particularly for findings with low power and prev, and those
that result from testing many associations without accounting
for multiple comparisons. A similar misconception that lack
of statistical significance implies no association or relevance
in the reference population is also dangerous, as it can result in
ignoring strong but non-significant associations that may ac-
tually be true and very important in the reference population.
Focusing on estimation rather than statistical significance can
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help avoid these misunderstandings, but null hypothesis test-
ing is pervasive at present, so it is critical that researchers and
science readers become better educated regarding the factors
that influence its reliability.

Conclusions

Study results using α = 0.05 as the threshold for statistical
significance have poor diagnostic reliability for true risk factor
associations. This finding is not unique to epidemiology, but
appears to be common across all fields using statistical signif-
icance testing. However, statistically significant results in en-
vironmental epidemiology may warrant even greater skepti-
cism as we increasingly study exposure mixtures, epigenetic
mechanisms, and susceptible subpopulations. Fortunately, the
causes of the replication crisis are easy to understand, and
various interventions can be used to mitigate the problem,
including more strict control of type I error rates, using mod-
ern study designs to maximize power, conducting hypothesis-
driven research, avoiding p-hacking and other practices that
introduce bias, focusing on estimation instead of statistical
significance, and using study designs with different threats
to validity for the same research topic in order to triangulate
actual effects.
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