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Abstract
Purpose of Review Selenium, a trace element, is ubiquitous in the environment. The main source of human exposure is diet.
Despite its nutritional benefits, it is one of the most toxic naturally occurring elements. Selenium deficiency and overexposure
have been associated with adverse health effects. Its level of toxicity may depend on its chemical form, as inorganic and organic
species have distinct biological properties.
Recent Findings Nonexperimental and experimental studies have generated insufficient evidence for a role of selenium defi-
ciency in human disease, with the exception of Keshan disease, a cardiomyopathy. Conversely, recent randomized trials have
indicated that selenium overexposure is positively associated with type 2 diabetes and high-grade prostate cancer. In addition, a
natural experiment has suggested an association between overexposure to inorganic hexavalent selenium and two neurodegen-
erative diseases, amyotrophic lateral sclerosis and Parkinson’s disease.
Summary Risk assessments should be revised to incorporate the results of studies demonstrating toxic effects of selenium.
Additional observational studies and secondary analyses of completed randomized trials are needed to address the uncertainties
regarding the health risks of selenium exposure.
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Introduction

Controversies are common and unavoidable in scientific re-
search, and they represent a major impetus for additional re-
search. However, there are probably few areas as controversial
as the health effects of exposure to selenium, a metalloid of
toxicological and nutritional interest for many living organ-
isms [1, 2, 3•, 4•, 5]. Exposure to this trace element mainly

occurs through diet, particularly through intakes of fish, sea-
food, and meat [6], being generally limited to few dozens of
micrograms a day. Additional sources of selenium exposure
are cigarette smoking [7], traffic-related air pollution [8, 9],
coal combustion [10–12], and occupational exposures [13], as
well as dietary supplements [14–16].

The possibility that this trace element can improve or harm
human health depending on the dose has been suggested by a
large number of studies [17–21]. However, despite hundreds
of epidemiologic investigations on this topic, evidence about
the amount of exposure and the specific health outcomes af-
fected by selenium exposure is limited [5, 22•]. At the present
time, most selenium experts would agree on the need to avoid
too low or too high intakes of this element. However, there is a
lack of consensus regarding the safe range of exposure and
disagreement as to the veracity of some of the purported as-
sociations between selenium exposure and health outcomes
such as cancer [3•, 5, 23–26]. The availability of well-
conducted environmental epidemiologic studies and experi-
mental studies (as randomized controlled trials) and the more
in-depth insights from laboratory studies have improved our
knowledge of the health effects of environmental selenium,
the tools for monitoring its exposure, and the need to regulate
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human exposure to this element [1, 17, 20, 27–31]. While the
first period of investigation has concerned the potential for
harm of this element, and the second its possible beneficial
effects, accumulating evidence from recent studies has
highlighted again the potential toxicity of selenium overexpo-
sure [5, 26]. These recent studies have suggested that overex-
posure may occur at much lower levels than believed. They
also implicated new diseases associated with excess selenium
intake and diseases once thought only to arise with selenium
deficiency. These diseases include diabetes; hypertension;
neurodegenerative diseases such as amyotrophic lateral scle-
rosis, Parkinson’s disease, and Alzheimer’s dementia; and
cancer [3•, 22•, 32, 33, 34•, 35, 36]. In this review, we sum-
marize the most recent lines of evidence concerning the hu-
man health effects of environmental selenium, highlighting
key issues currently at the forefront of this research.

Environmental Studies

A PubMed search on the human health effects related to en-
vironmental selenium exposure shows that such observational
studies can be split into two subgroups. One subgroup com-
prises the investigations carried out in environmental contexts
characterized by marked deficient or excess exposures to se-
lenium. Another set of studies has been carried out in non-
seleniferous geographic areas, generally Western countries,
where investigators have examined the association between
environmental selenium and health endpoints. These investi-
gators typically address hypotheses of either beneficial or ad-
verse effects of selenium at the roughly “intermediate” expo-
sure levels that characterize these study populations. For a
detailed assessment of these studies, we refer to previous re-
views [3•, 5, 26, 37].

Concerning the environmental studies, pioneering studies
on naturally occurring selenium overexposure were per-
formed in Northern and Southern America and were later
followed by studies in China and other parts of the world
[26, 38] (Supplemental Fig. S1). The key details of these stud-
ies are reported in Table 1. More recently, new studies have
been carried out in other seleniferous areas, such as the
Brazilian Amazon [50], the Inuit population of Canada [47,
66], and a seleniferous area in Punjab [64], with Chinese in-
vestigations still continuing to provide relevant information
on this issue [67, 68]. Environmental exposure to selenium
in its inorganic tetravalent form has also occurred in a
Northern Italian community, and this has been the only inves-
tigation of chronic disease risk using a longitudinal study de-
sign [53, 54•]. Overall, these studies have identified toxicity of
selenium to a large number of body organs and systems, such
as the liver, the skin, the endocrine system, and the nervous
system. Despite the nonexperimental nature of most studies,
lack of replication of results on some endpoints, and other

methodological limitations, the overall results provide evi-
dence of toxicity of naturally occurring selenium at high levels
of exposure worldwide (Table 1). However, these studies have
been limited in clarifying the exact amounts of exposure that
are harmful, generally due to inadequate data on biomarkers
of selenium intake [38]. An exception to this pattern has been
the observation of an inverse association between selenium
exposure and triiodothyronine levels in children living in a
seleniferous area of Venezuela starting at around 350 μg/day
of selenium intake [48]. This finding is of interest by taking
into account the recent results of a Danish trial, where seleni-
um supplementation of 100 to 300 μg/day adversely affected
thyroid function in a dose-dependent manner, decreasing se-
rum TSH and FT4 concentrations [69]. In that study, mean
participant age was 66.1 years, baseline plasma selenium
levels were to 87.3 μg/L, and the supplemental selenium is
expected to have been almost entirely organic, being admin-
istered as selenium-enriched yeast. In contrast, no effect of
supplementation was reported in an UK trial among the elder-
ly [70] following administration of 100, 200, or 300 μg/day of
the element through selenium-enriched yeast, despite similar
background selenium status (plasma levels 91.3 μg/L).

In addition to selenium overexposure, selenium deficiency
has been suggested to play a major role in the etiology of a rare
but severe cardiomyopathy described in Chinese populations,
Keshan disease [59, 71]. The major pieces of evidence linking
the etiology of Keshan disease to selenium deficiency have
been its higher frequency in regions low in selenium, and the
beneficial effect of selenium in its inorganic tetravalent form
in community trials on the incidence of Keshan disease [59,
71–73]. However, these community-based trials may have
been prone to bias, as they did not include a double-blind
design, randomization, or allocation concealment on an indi-
vidual basis [59, 71, 74]. In addition, some epidemiologic
features are not consistent with a causal association with sele-
nium, such as the seasonal occurrence of Keshan disease,
which is more compatible with an infectious etiology [75,
76], the decrease over time of the disease independently from
major changes in selenium supply, and the lack of Keshan
disease eradication despite increased selenium intake [72,
77, 78]. Furthermore, well-known antiviral effects of selenium
in its inorganic form may explain the decreasing incidence of
Keshan disease after selenite administration [79]. Even though
an association between selenium deficiency and Keshan dis-
ease has not been firmly established, recent studies linking this
disease to selenium deficiency have prompted recommenda-
tions by WHO/FAO to avoid selenium intakes below 13–
19 μg/day in adults (i.e., thresholds above which Keshan dis-
ease has not occurred) [80].

Another selenium-responsive disease is Kashin-Beck, a
chronic degenerative disorder of peripheral joints and spine
[80]. This osteoarthropathy has been described in some
Chinese areas in both children and adults, and is also
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considered a disease of multifactorial etiology, mainly due to
inadequate nutritional status [81]. Selenium deficiency possi-
bly plays a role considering ecologic data showing low sele-
nium intake in disease-affected areas and the effectiveness of
selenium supplementation in reducing Kashin-Beck disease
incidence [80, 82, 83].

In addition to the limitations of exposure assessment in
environmental observational studies investigating selenium
deficiency and excess, it must be noted that little if any em-
phasis has been given to the specific chemical forms of sele-
nium involved in such settings. In fact, the selenium found in
foods, drinking water, and other environmental matrices such
as soil and ambient air may exist in several inorganic and
organic chemical forms, and comprise different selenium
compounds [3•, 84–86]. The toxicity of selenium species
and compounds may differ markedly, and it is generally much
higher for the inorganic species (such as selenate and selenite)
and some organic form (such as selenomethionine) [3•, 36, 87,
88]. Unfortunately, little is known about selenium speciation
in most environmental matrices, and this is also true for hu-
man tissues and compartments. In addition, the various chem-
ical forms of selenium may have different excretion rates,
being faster for the inorganic forms, as well as metabolism
and distribution in body tissues. Unfortunately, selenium spe-
ciation in both environmental and biological matrices is ana-
lytically complex and resource-consuming, which may ex-
plain the paucity of data in this field [3•, 89, 90].

A second key limitation of environmental studies has
been the little attention given to neurological diseases and
disorders [91], except for amyotrophic lateral sclerosis and
Parkinson’s disease after low-dose overexposure to inor-
ganic hexavalent selenium [53, 92, 93] and neurological
abnormalities in a high-selenium environment [58]. This
contrasts with the growing evidence from both clinical
and laboratory studies that selenium exposure, and partic-
ularly overexposure, may induce neurotoxic effects [4•, 5,
33, 36, 53, 88, 91, 93–100]. Selenium exposure might also
affect cognitive functions both in adults and children,
though positive, null, and inverse associations have been
reported [101–106].

The possible occurrence of adverse health effects for
selenium exposures in the “average” or intermediate range,
which are typically found in Western countries, is also an
issue of strong interest [25]. This is especially true consid-
ering scientific claims that several Western populations
worldwide might suffer from selenium deficiency and
low selenium status [23, 107, 108] or claims of a beneficial
effect of selenium in cancer prevention issued in the early
2000s [24, 109]. Conversely, recent observational studies
have suggested that the exposure levels found in countries
not definable as “selenium deficient” or “seleniferous”
might be associated with adverse effects attributed to sele-
nium overexposure, such as excess risk of childhood

leukemia [8] and cardiovascular disease [9], esophageal
dysphagia [110], Alzheimer’s dementia [36], hypertension
[32, 111, 112], and type 2 diabetes [113•]. Despite the
potential weaknesses of these studies due to their nonex-
perimental design (apart from diabetes risk), their results
suggest that previous research driven by claims of benefi-
cial health effects of selenium have obscured the detection
of the adverse effects due to overexposure, and these ad-
verse effects might occur at much lower exposure levels
than believed.

Randomized Controlled Trials

Differently from all other toxic elements and most trace
elements of nutritional relevance, selenium has been in-
vestigated in experimental studies, generally in the form
of randomized, controlled, and double-blinded trials
(RCTs) [5, 22•]. The key advantage of this study design
is the better control of both measured and unmeasured
confounding, compared with nonexperimental studies.
Unfortunately, RCTs have rarely been implemented in
areas known or suspected to be low in selenium expo-
sure, with the exception of those aiming at preventing the
incidence of Keshan disease or Kashin-Beck disease [5].
Most RCTs have been conducted in Western populations
(mainly North America) where increased nutritional
availability of selenium, even in the absence of overt
nutritional deficiencies, was envisaged to protect against
chronic diseases, particularly cancer, and more rarely oth-
er health disturbances such as metabolic abnormalities or
thyroid diseases [5]. The key details and location of the
RCTs that were designed to test the ability of selenium to
prevent cancer are shown in Table 2 and Supplemental
Fig. S2.

Compared with nonexperimental studies, experimental
studies are better able to control for confounding and re-
duce potential for exposure misclassification [129].
However, experimental studies may still be hampered by
limitations due to variability and range in selenium expo-
sure, the specific population considered (in some cases
affected by a disease), and the selenium species being ad-
ministered [22•, 26]. In addition, some difficulties arise
when attempting to compare results of experimental stud-
ies with those generated by the nonexperimental “environ-
mental” studies, for differences related to both the specific
outcomes investigated the amounts of exposure.

While experimental studies in regions affected by sele-
nium deficiency sought to assess the beneficial effects of
the element for Keshan and Kashin-Beck diseases, studies
in Western populations typically sought to assess the risk
of cancer, particularly prostate cancer, as reviewed else-
where [22•, 130]. Other endpoints such as cardiovascular
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diseases [131, 132] have been frequently included.
Unfortunately, high-quality trials on cancer and cardiovas-
cular disease have not been conducted in geographic areas
characterized by very low selenium intake, or in the few
instances in which low exposure was studied, the method-
ological quality of the trial was low [22•]. More occasion-
ally in Western populations, RCTs based on selective ad-
ministration of selenium have been designed to assess ad-
ditional health outcomes such as acute illness and septic
shock [133, 134], dementia [135•], blood cholesterol levels
[136], thyroid function [69, 137], immunity [138], and
HIV infection [139–141]. Almost all RCTs assessing risk
of cancer and occasionally cardiovascular disease have
been carried out in the USA [22•, 130], despite the obser-
vation that US selenium levels tend to be much higher than
that in other Western countries, particularly European ones.
In fact, NHANES data showed median serum selenium
levels in the US population on the order of 134 μg/L and
193 μg/L in the 2003–2004 and 2011–2012 surveys, re-
spectively [142, 143], while average serum/plasma seleni-
um levels in the European populations were generally low-
er than 100 μg/L, in the 50–120 μg/L range [18, 127, 144].
Greater interest in performing randomized trials with sele-
nium in the USA, despite the higher average selenium ex-
posure, has been likely due to enthusiasm generated by the
promising ad interim results of the NPC trial [118, 145].
That trial has likely influenced the marked increase in se-
lenium and multivitamin supplementation in the USA
[146], despite the lack of clear evidence of a beneficial
effect [147, 148].

Overall, an evaluation of the RCT results shows that in
almost all RCT studies, there was no beneficial effect on
cancer or cardiovascular disease following selenium sup-
plementation, particularly when looking at the high-quality
studies [22•]. One additional small RCT [108] has been
published after a recent Cochrane review on the relation
between selenium supplementation and subsequent cancer
incidence [22•], but the results [108] did not change the
previously published summary rate ratio (RR). In Fig. 1,
summary RRs for cancer mortality and incidence are re-
ported, including the newly published trial [108], based on
all RCTs and RCTs at low risk of bias.

No clear dose-response association between selenium
intake and cancer risk has emerged from these trials
[22•]. This led to not only a dismissal of claims about
any cancer-preventive effect of selenium, but also to con-
cern following detection of unexpected and, in some cases,
ser ious adverse heal th effects among selenium-
supplemented individuals. Adverse effects ranged from
dermatological side effects to diabetes and cancer, namely
high-grade prostate cancer [34•, 130, 149]. These adverse
effects occurred at exposures much lower than expected,
thus suggesting the inadequacy of the selenium standardsT
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and upper limits established to date [22•, 26]. The excess
r isk of high-grade pros tate cancer in selenium-
supplemented US individuals having the highest back-
ground selenium exposure is of particular concern, given
growing evidence that some selenium species and
selenoproteins have been associated with increased cancer
risk in laboratory models [150–155, 156•, 157, 158] and in
some recent cohort studies [159, 160]. The excess risk of
diabetes is also of considerable interest, having been con-
sistently shown to be associated with selenium in both
experimental and nonexperimental studies, and at low
levels of exposure. In the SELECT trial, the most informa-
tive RCT designed on selenium and cancer, excess diabetes
incidence in the selenium arm influenced the trial’s termi-
nation [125, 161].

The adverse health effects of selenium observed in
RCTs have raised safety issues for the remaining ongoing
RCTs and more generally for the safety of selenium ex-
posure and supplementation in humans, leading to warn-
ings of side effects associated with supplementation, in
the absence of selenium deficiency [35, 53, 162–164]. It

should be noted that selenium levels associated with ad-
verse effects in these RCTs are in a range of exposure
relevant to the general population of several Western
countries [22•].

Biomarkers of Exposure

The search for biomarkers of selenium exposure has long
attracted investigators seeking indicators of short-term
and particularly long-term intake, as well as indicators
of a range of exposures permitting the evaluation of
harmful and beneficial effects of this element [18, 161,
165, 166].

The most commonly used biomarker of selenium expo-
sure has been serum or plasma selenium levels, and far less
frequently whole blood selenium or erythrocyte selenium
content [18, 22•, 161]. Whole blood selenium levels, how-
ever, can be more difficult to interpret, as they comprise
both cellular and non-cellular constituents that have spe-
cific and non-specific components, and few studies are
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available for whole blood selenium that investigate inter-
individual heterogeneity [166]. In addition, cellular
(erythrocyte-bound) selenium levels appear to be less re-
sponsive to changes in dietary intake of the element com-
pared with plasma/serum selenium, making it more diffi-
cult to compare whole blood selenium levels across indi-
viduals [18]. Plasma/serum selenium tends to reflect expo-
sure up to few days and weeks, and also has the advantage
of allowing speciation analysis, an approach which is be-
coming much more common and relevant. As previously
mentioned, this follows the growing awareness of the dif-
ferent and peculiar biological properties of the various se-
lenium species [36, 79, 90, 100, 167]. A recent study indi-
cates that total selenium content in serum correlates with
levels of only three selenium species: serum albumin-
bound selenium, selenocysteine, and glutathione-
peroxidase-bound selenium. Conversely, for other chemi-
cal forms of the element, such correlation exists [90].
Therefore, the most commonly used biomarker of selenium
exposure in epidemiologic studies, total plasma/serum se-
lenium content, may be inadequate to assess circulating
levels of some species of the metalloid. In addition, serum
selenium species vary according to diet composition [6],
either for the different composition in selenium chemical
forms of the different foodstuffs or for metabolic reasons
[168, 169]. Several other indicators have been proposed
and adopted in both nonexperimental and experimental
studies, including in particular nail and hair selenium
levels [18, 38]. These biomarkers have the substantial ad-
vantage of reflecting more long-term exposure compared
with plasma/serum selenium levels and are considerably
more suitable for epidemiologic research and clinical
screening being less invasive and better tolerated by study
participants. However, the ability of hair and nail measures
to reflect actual exposure to selenium has been challenged,
on the basis of the low correlation with both blood seleni-
um levels and dietary selenium intake seen in some studies,
despite indicating substantially stable selenium exposure
over time [22•, 56, 170]. This might also be due to a ten-
dency for some tissues to preferentially accumulate some
selenium species, generally the organic ones, compared
with other chemical forms and compartments, also depend-
ing on exposure to other factors such as methionine and
heavy metals [3•, 161, 171–174]. However, even if there is
some evidence for differential storage of selenium species
in the nails and other body tissues and compartments (such
as hair and urine), still limited data exist on these relevant
issues [90, 161, 170, 172, 175]. Nails and hair also appear
to be unsuitable for speciation analysis because of difficul-
ties in the extraction procedures, and also since in these
tissues some selenium species (such as inorganic ones)
may be less likely incorporated compared with other sele-
nium forms [170].

Urinary selenium levels have also been proposed as a suit-
able marker to assess selenium exposure, but their reliability
as biomarker of selenium exposure has not been well-studied
[165]. In addition, urinary selenium levels appear to be an
indicator of recent intake of the metalloid, rather than of its
long-term exposure [165, 176]. Overall, these findings con-
firm that misclassification of exposure is a major issue in
selenium research in humans, regardless of the biomarker
adopted to assess selenium status [161, 177], and this is par-
ticularly true when speciation analysis is not included in the
assessment. This greatly hampers exposure assessment in a
living organism and represents a source of bias in epidemio-
logic studies.

More recently, a growing number of studies has used an
additional, highly specific biomarker of selenium expo-
sure, cerebrospinal fluid selenium level (CSF), though this
indicator is clearly unsuitable for population-based studies
[36, 98, 100, 167]. This indicator, in fact, is unique in
allowing in vivo biomonitoring of selenium levels in the
central nervous system, which may have relevance given
the potential involvement of selenium in neurological dis-
ease [4•, 36, 97]. In addition, it allows the implementation
of speciation analysis [36•, 89, 96–98, 100, 167, 178].
However, blood and CSF levels of some selenium species
are uncorrelated. In fact, relying on peripheral indicators of
selenium exposure, such as blood levels, is not ideal for
assessing corresponding exposure in the central nervous
system compartment [89, 100, 167, 179].

Proteomic analysis based on measuring the induction
of synthesis of selenoproteins is another widely used ap-
proach to assess selenium exposure [3•, 18, 144, 165,
168]. Selenoproteins are proteins that contain at least
one of the amino acid selenocysteine, and generally serve
oxidoreductase functions, though their exact physiopatho-
logical functions are still partially obscure and conflicting
[27, 180–183]. The maximal expression of selenoproteins,
such as plasma levels of selenium-dependent glutathione
peroxidase GPX1 and of selenoprotein P, has been gener-
ally considered as an indicator of an adequate selenium
intake through diet and other sources [3•, 18]. This has
been done under the hypothesis that lower levels of
selenoproteins derive from an insufficient bioavailability
of selenium associated with its inadequate intake.
Therefore, most agencies have based their assessment of
selenium dietary reference values on the intake needed to
upregulate selenoprotein expression [3•, 26], with values
ranging from 55 to 70 μg/day (Fig. 2) [25, 26]. However,
this approach to assess selenium dietary requirements has
been challenged [3•, 26] since it has been suggested that
the selenium-induced maximization of antioxidant en-
zyme syn the s i s , i nc lud ing bu t no t l im i t ed to
selenoproteins, may derive from the pro-oxidant proper-
ties of selenium species [99, 188–192], as long recognized
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[193]. Accordingly, even in the absence of any change in
selenium supply, the induction of oxidative stress by sev-
eral environmental stressors may increase selenoprotein
synthesis. These observations suggest that the basal
selenoprotein levels are not a direct sign of inadequate
availability of selenium, being their levels inducible with-
in the physiological response to stress. Therefore, “low”
levels of these selenoproteins should not be confused with
selenium deficiency per se [194], being potentially attrib-
utable also to the pro-oxidant properties of the element
[3•]. The phylogenetic analysis of selenium utilization in
mammals and lower animals also raises questions regard-
ing the need to maximize selenoprotein expression [195].
In addition, environmental studies have shown that chang-
es in selenium exposure are unrelated to changes in
selenium-containing glutathione peroxidase levels [43,
46]. Finally, little if any demonstration of adverse health
effects is attributable to inadequate selenoprotein synthe-
sis according to the available epidemiologic evidence [26,
80]. Therefore, the approach taken by WHO/FAO in
assessing the dietary reference values for selenium, i.e.,
26 μg/day for females and 34 μg/day for males, may be rea-
sonable since it is not aimed at maximizing selenoproteins
expression.

Overall, proteomic indicators such as selenoprotein expres-
sion may be inappropriate to assess the adequacy of selenium

exposure [26, 80]. This is also true for the use of
selenoproteins to assess selenium overexposure, since the
highest levels of these proteins already reflect overexposure
to selenium, but cannot reflect further increase in exposure.
The proteins reach a plateau in serum or plasma at selenium
intakes of around 70 μg/day, depending on the specific
selenoproteins (and selenium species) involved.
Selenoprotein expression, therefore, appears to be an inade-
quate tool to assess and monitor selenium exposure, both in
case of deficient and excess exposures, and to assess to which
chemical forms of this element the human has been exposed.
It should also be noted that other proteins in addition to
selenoproteins have been shown to be affected (i.e., upregu-
lated or downregulated) by selenium exposure [196–200].
However, the physiopathological mechanisms underlying this
relation and the suitability of these proteins to monitor seleni-
um compound exposure, including its specificity, have not
been elucidated.

To overcome some of the inherent limitations of bio-
markers in assessing selenium intake, the assessment of sele-
nium content of usual diet (e.g., via semi-quantitative food
frequency questionnaire) and other relevant sources of expo-
sure, such as ambient air, has been proposed. However, the
validity and reliability of dietary assessment methods have
also long been debated and challenged, with most studies
suggesting the validity of this approach, in contrast with other
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Adapted from references [25, 34•, 48, 108, 114, 115, 125, 126, 184–187]
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studies [18, 22•, 161, 165]. The main advantage of assessing
dietary content of the metalloid is the possibility to assess
intake of selenium species independently from their subse-
quent metabolism and excretion in the body, known to be
influenced by individual characteristics and other factors.
Conversely, this approach is limited by the variability of sele-
nium in foodstuffs over space and time [18, 22•, 144, 169], by
the difficulties in assessing dietary habits, and by limited
knowledge of selenium species and their bioavailability in
foodstuffs [6, 168, 201]. The assessment of selenium exposure
due to ambient air pollution would also be an attractive ap-
proach, but still very limited evidence is available for its fea-
sibility and reliability, though tobacco smoking and outdoor
air pollution due to motorized traffic or coal combustion ap-
pear to be sources of selenium exposure, the latter being po-
tentially linked to adverse health effects [7–9].

Risk Assessment of Selenium: Facts,
Uncertainties, and Challenges

The aforementioned uncertainties about the health effects and
suitable biomarkers of selenium exposure explain why the
standards for selenium exposure, with reference to both ade-
quate daily intake and upper limits of intakes, are inconsistent
across different countries and agencies. A summary of recom-
mendations from various authorities is given in Figs. 2 and 3.
Figure 2 reports the comparative analysis of the environmental
standard and the nutritional recommendations, both in terms
of recommended dietary intakes and of the LOELs (lowest
observed effect levels). In addition, it shows the levels at
which the human studies , both nonexperimental
(environmental) and experimental, have found adverse effects

in humans, and applies them an uncertainty factor of either 3
or 10 to derive safe upper limits of selenium intakes.

The overall picture shown by the comparison of these fig-
ures is the variability of the current standards concerning rec-
ommended dietary intakes, with consequent implications on
the assessment of the safety of selenium exposure in a sub-
stantial part of the world population, to avoid both deficiency
and excess of this element. In addition, the comparison be-
tween the safe upper limits of selenium exposure suggested by
the most recent epidemiologic studies (applying an uncertain-
ty factor to the LOAELs) and the upper limits identified in
even the most recent assessments show their inconsistencies
and call for their reassessments. In addition, this further high-
lights the potential pitfalls of using a proteomic approach
based on selenium-driven selenoprotein upregulation when
assessing selenium adequacy.

In addition to the conflicting results and uncertainties aris-
ing from the aforementioned patterns, Fig. 3 shows the differ-
ent drinking water standards adopted worldwide [26, 57].
Variations in the standards for water human consumption are
large, showing a factor of 50 between the lowest one (that
applied in Russia, 1 μg/L) and the highest one (issued by
EPA, 50 μg/L). The European Union and the French
ANSES standard (10 μg/L) are at the lower range of the dis-
tribution. However, most of these standards have been based
on a clearly inadequate assessment of human data, and there is
a concern for the health effects of selenium exposure around
10 μg/L and above [37, 57, 202, 203]. Though unusually high
levels of selenium in underground and drinking water may
occur throughout the world and are being increasingly detect-
ed [57, 68, 203–209], the number of individuals exposed to
high selenium levels through drinking water is unknown, also
in the USA and the European countries. This mainly depends
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on the still limited information about distribution of selenium
levels in underground and tap waters, also taking into account
that such distribution may be uneven across different wells
and locations even within small areas [57, 93]. Such situations
deserve to be further investigated both in order to gain insight
into the disease risks of this element through drinking water,
and to protect individuals at risk of selenium overexposure
through this source.

More generally, as far as selenium exposure limits and
recommendations for both diet and drinking water are con-
cerned, available evidence suggests that more conservative
standards should be considered [26, 57]. Finally, we believe
that an in-depth assessment of the underlying scientific evi-
dence is required, also taking into account the different sele-
nium species and their potential effects on human health.

Conclusions

Based on epidemiologic studies and particularly on the high-
quality human data recently generated by the trials, we recom-
mend a comprehensive and updated assessment of the safety
of both deficient and toxic exposure to selenium species sup-
ported by an in-depth review of the biochemical and toxico-
logical literature. Such an assessment should be done in the
light of recent literature emphasizing the toxic and pro-oxidant
properties of the various chemical forms of selenium [31, 190,
191], which raises questions about using selenoprotein upreg-
ulation to assess adequacy of selenium intake [3•, 26].
Particular attention should be given to the recent epidemiolog-
ic evidence indicating adverse effects of low-dose selenium
overexposure [26, 34•, 35, 54•]. A comprehensive assessment
of the health effects of deficient and excess selenium exposure
should also focus on neurological disease, in addition to other
diseases, taking into account the most recent epidemiologic
and laboratory studies, and the potential involvement of ge-
netic factors [4•, 33, 36, 53, 54•, 58, 91, 97, 98, 101, 167•,
210–214].

Overall, such a health risk assessment may lead to an ad-
vancement of our knowledge of human health effects of sele-
nium, to a more adequate risk assessment of selenium expo-
sure and to an improvement and harmonization of the con-
flicting standards and reference values recommended world-
wide. This may allow scientists and public health profes-
sionals to identify even subtle conditions of deficient and ex-
cess exposure, thereby ensuring the safety of human exposure
to selenium compounds globally.
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