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Abstract
Purpose of Review We present the study design and methodological suggestions for population-based studies that integrate
molecular -omics data and highlight recent studies that have used such data to examine the potential impacts of prenatal
environmental exposures on fetal health.
Recent Findings Epidemiologic studies have observed numerous relationships between prenatal exposures (smoking, toxic
metals, endocrine disruptors) and fetal and early-life molecular profiles, though such investigations have so far been dominated
by epigenomic association studies. However, recent transcriptomic, proteomic, and metabolomic studies have demonstrated their
promise for the identification of exposure and response biomarkers.
Summary Molecular -omics have opened new avenues of research in environmental health that can improve our understanding
of disease etiology and contribute to the development of exposure and response biomarkers. Studies that incorporate multiple -
omics data from different molecular domains in longitudinally collected samples hold particular promise.
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Introduction

Environmental health research aims to identify the ways in
which environmental exposures contribute to human disease.
This is a complex task given that around 140,000 [1] and
85,000 [2] chemicals have been registered for use in Europe
and the USA, respectively, demonstrating the vast array of
chemicals, pollutants, and contaminants that humans may po-
tentially be exposed to, the majority of which lack the sub-
stantive data to perform comprehensive risk assessment.
Traditional environmental epidemiology has aimed to charac-
terize how individual or small subsets of exposures are asso-
ciated with one or a few health outcomes. Though this
hypothesis-driven approach has successfully identified and

characterized numerous environmental risk factors for dis-
ease, it cannot efficiently search across this vast exposure
space to discover or characterize all environmentally associ-
ated risks.

Technological advancements over the last decade have
resulted in the improved capacities and precision in the
generation of high-dimensional molecular data, measuring
the quantities and interactions of numerous small mole-
cules in biological samples, that are informative about in-
ternalization of exposures and perturbations to genomic
regulation and physiological activity [3]. These types of
data have broadened researchers’ capabilities for examin-
ing the underlying etiology of environmentally associated
diseases. This approach to studying the environment,
when used as a complement to traditional environmental
epidemiology and experimental studies, can lead to the
breakthroughs in understanding the impacts of chemicals
on health, identification of exposure and/or presymptom-
atic biomarkers of health outcomes, and an expanded un-
derstanding of disease etiology. In this review, we aim to
introduce the role that molecular -omics data currently
play in population-based studies of environmental health
issues, discuss issues to consider when designing an epi-
demiologic study utilizing molecular -omics, and highlight
recent studies that have incorporated these types of data
into investigations of prenatal and early-life exposures.
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Genomics, an extension of genetics beyond individual can-
didate loci to encompass the complete sequence of DNA, was
the first -omics approach to be utilized in population-based
studies. Since publication of the first genome-wide association
study (GWAS) in 2005, the scale of testable genetic loci has
risen from 116,204 single nucleotide polymorphisms (SNPs)
[4] to tens of millions of loci when integrating modern labo-
ratory assays with imputation based on reference genomes [5].
Additionally, other -omics disciplines have emerged and
grown at a similar pace: (1) epigenomics, covalent chemical
additions to DNA and histones that regulate gene-expression
potential without altering the genetic sequence [6]; (2) tran-
scriptomics, RNA expression, which includes protein-coding
and non-coding RNAs [7]; (3) proteomics, the abundance of
and interactions between proteins [8]; and (4) metabolomics,
the identification, quantification, and profiling of metabolites
[9]. While genomics largely represents an individual’s
inherited biological blueprint, these other molecular -omics
features represent intermediary domains that capture a combi-
nation of biological potential, adaptive, or reactive responses
to stimuli, or internalization of exogenous exposures. The ge-
nome is the most proximal to the underlying biological poten-
tial, the metabolome more proximal to the internalization of
exposures and immediate physiological response, with the
epigenome, transcriptome, and proteome representing inter-
mediate steps linking that potential to an actual response
(Fig. 1).

Integrative personal -omics profiling (iPOP), gathering
high-throughput data on multiple molecular markers from
the same individual, is increasingly recognized for its utility
in personalized medicine [10, 11]. Initial iPOP studies have
demonstrated that personal molecular profiles may be partic-
ularly useful for identifying molecular events that mark tran-
sitions between healthy and diseased states. The Adverse
Outcome Pathway (AOP) framework, characterizing how
chemical exposures perturb different aspects of biology and
ultimately lead to some adverse biological event, provides a
context in which -omics profiling may be particularly useful in
broadening environmental health research [12••]. This idea
has been proposed in the context of epigenetic epidemiolo-
gy—organizing the findings from these studies into an AOP
framework could improve causal reasoning by characterizing
biologic plausibility in an evidence-based manner [13].
Incorporating other molecular features, beyond those studied
in epigenomics, could help clarify which biological perturba-
tions represent molecular initiating events (MIE), key events
(KE), and key event relationships (KER) on the path to differ-
ent adverse outcomes (AO). In fact, molecular -omics integra-
tion into environmental health studies has been suggested as
an approach that would improve health risk assessment by
informing the development of AOPs via identifying the mo-
lecular targets of environmental exposure and determining
whether groups of chemicals and/or stressors impact related

biological processes [14]. Multiple exposures that have the
same molecular targets or affect similar biological pathways
may be more likely to exhibit joint-effects, multiplicative and/
or additive, on health outcomes and should be studied as mix-
tures or co-exposures. In addition to furthering our under-
standing of AOPs, incorporating iPOP approaches into
population-based studies can distinguish inter- and intra-
individual variations in molecular characteristics [10] and help
to characterize whether the impacts of an exposure depend on
genetics, life stage, or prior exposure and/or disease status
[14].

Design Considerations

Population-based studies that involve molecular -omics need
to consider unique potential sources of bias related to sam-
pling of tissues and analyzing of high-dimensional data, so
that appropriate conclusions can be drawn from these studies.

In human environmental health research, -omics data are
typically measured in tissues or biological matrices that are
easily accessible and may be composed of heterogeneous cell
populations. This presents two potential issues: (1) whether
the expected exposure-outcome relationships are detectable
and meaningful in the accessible tissue, and (2) whether cel-
lular or tissue heterogeneity could confound these exposure-
outcome relationships. Whether the available tissue samples
are the target tissue or can be an effective surrogate is largely
dependent on the exposure-outcome relationships being stud-
ied and whether the specific loci or features demonstrate
tissue-specific patterns [15, 16]. Thus, in epidemiologic stud-
ies, investigators need to consider whether the tissues that will
be accessible or available are expected to capture the associa-
tions between exposures and the biological responses.
Additionally, some epigenetic loci are differentially methylat-
ed [17•] and certain genes are differentially expressed [18] in
highly cell-type specific patterns. Thus, when attempting to
investigate differences between groups of samples (exposed
vs unexposed, or cases vs controls), it is difficult to disentan-
gle whether the observed differences are capturing an average
change across all cell types, a change in just a subset of cells,
or a shift in the distribution or composition of the cell mixture
itself.

Some researchers have suggested that epigenomic studies
should focus on analyses within sorted subsets of specific cell
types [19] and a similar argument could be made for studies of
other molecular features including telomere length, tran-
scriptomics, etc. Performing these types of studies within spe-
cific subsets of cells should yield some important benefits,
including (1) larger magnitudes of associations, (2) improved
sensitivity and specificity for classification, (3) a more focused
understanding of the biological consequences of those epige-
netic changes, and (4) reduced sample size requirements given
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the potentially larger effect sizes [19]. However, this approach
also has some limitations that cannot be ignored. In order to
perform an association study within specific cell types, re-
searchers require a priori knowledge of which cell types are
most likely to be involved in the exposure-response relation-
ship, something that is largely unknown for many prenatal and
early-life exposures and outcomes. Additionally, cell sorting
of most tissues can only be performed on biosamples that have
been collected, transported, and stored in a manner that pre-
serves cellular membranes and epitopes, and the steps to pre-
serve these structures can differ for specific cell types. Thus,
many existing biosamples which were not collected according
to such protocols would be inappropriate for cell type-specific
studies, and the incorporation of such protocols in future stud-
ies would require additional resources that may limit the sam-
ple size that can be investigated. Finally, although cell type-
specific association studies have the potential to yield larger
magnitudes of effect, and possibly improved sensitivity/
specificity as biomarkers, the additional steps required (col-
lection, enrichment, purification, sorting) to utilize those bio-
markers may also make them prohibitive in some settings.

Thus, although these approaches may have utility in directed,
hypothesis-driven mechanistic studies, they may hold less
utility in the broader, discovery-style studies that are the cur-
rent state of the science for prenatal and early-life genomics
research.

For studies that aim to perform molecular assessments in
heterogenous biosamples that will not be sorted, direct measure-
ments of cell mixtures or heterogeneity of tissue should be ob-
tained in parallel to the molecular -omics data when possible, or
estimated when this is infeasible. Numerous tools have been
developed which estimate tissue heterogeneity using
epigenomic [20–22] or transcriptomic [23, 24] data, so that the
mixture can be statistically adjusted during data analysis.
Controlling for cellular heterogeneity in epigenome-wide asso-
ciation studies is often critical to reducing the rate of false-
positive findings [17•]. Even when the goal of an analysis is
solely to detect molecular biomarkers of an exposure or disease,
it is important to explore whether those epigenetic markers are
acting purely as surrogates for different distributions of cell
types, as this can be informative of the toxicant’s mechanism
of action or on the potential consequences of these alterations.
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Fig. 1 Environmental exposures,
as well as behaviors and disease
processes, can influence the
activities of multiple molecular
domains individually or at the
system levels. Epigenomics
includes molecules that interact
with DNA to regulate gene
expression potential,
transcriptomics includes
expression of RNAs, proteomics
includes the expression levels of
peptides, and metabolomics
includes the activities and
interactions of metabolites. While
the genomic sequence is
biologically inherited, genotype
may influence the biological
response to certain exposures
across multiple domains. SNP,
single nucleotide polymorphisms;
CNV, copy number variations;
CpG, cytosine-phosphate-
guanine
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Though similar tools are not yet available in the context of
proteomic or metabolomic data, and it is not as apparent that
these molecular features are as susceptible to confounding by
tissue heterogeneity, studies incorporating these data types
should consider whether cellular heterogeneity may potentially
confound the relationships that the investigators seek to identify.

It is also important to discuss how the tissue of origin can
impact findings in molecular epidemiology. The majority of
studies with research questions about prenatal and early-life
exposures utilize tissues that are most readily accessible, in-
cluding placenta, blood (peripheral or cord), and buccal cells.
In some cases, the accessible tissues are relevant to the expect-
ed exposure-outcome relationships. The placenta, for in-
stance, is known to play critical roles in the growth and devel-
opment of the fetus, and placental activities have been shown
to be responsive to multiple maternal exposures and lead to
restricted fetal growth [25]. Thus, the placenta is a likely target
tissue for environmental exposures that are thought to impair
fetal growth. However, the available tissues do not always
represent the ideal target tissues for some of health outcomes
that are most relevant to the exposures of interest. For in-
stance, neurotoxicants that affect behavior or cognition are
most likely to alter the development and/or functions of brain
cells, but brain tissue can only be obtained from humans post
mortem. Thus, before utilizing a surrogate tissue, such as
blood, to study the impacts of neurotoxicants, it is critical to
consider whether a molecular response in that surrogate tissue
is meaningful for the health outcomes that are relevant for that
exposure. Bakulski et al. (2016) provide a thorough review of
human epigenomic studies of neuropsychiatric disorders in
both target brain tissues and surrogate tissues such as blood
and buccal cells—they found that surrogate tissues could be
useful for both as a biomarker of disorders and to provide
insights into disease mechanisms [26]. Molecular epidemiol-
ogists need to carefully consider their research questions and
examine the existing literature to determine whether the tis-
sues that will be available to them, and the molecular measure
they are considering, can capture the expected exposure-
response relationships.

The ability to detect true associations, statistical power, is
dependent on the magnitude of effect, the variation in the
effect, and noise. Studies with small sample sizes are more
likely to be underpowered, which increases the probability
of false positives, false negatives, and exaggerated estimated
effect sizes [27]. Additionally, variations in levels of DNA
methylation [28], transcription [28], and metabolite concen-
trations [29] can originate from many sources including
within- and between-individual variability, as well as technical
variability. Thus, when designing environmental health stud-
ies that will incorporate molecular -omics data, power calcu-
lations must be performed to estimate adequate sample sizes
to identify the estimated effects in the face of these multiple
sources of variability. Additionally, all of these molecular data

need to undergo appropriate quality control, normalization,
processing, and statistical adjustments to correct for batch ef-
fects to limit the influence of technical variability on study
results [30–33].

A number of experimental considerations also must be
contemplated when designing an -omics experiment. The
timing of sampling may be critical, on multiple scales of time.
In considering disease outcomes, prospective sampling will
allow for unbiased assessment of causality, but may be diffi-
cult to obtain dependent on the type of outcome being inter-
rogated. On a more immediate scale, time of day can impact
certain -omics measures, particularly metabolomics or tran-
scriptomics where circadian patterns or timing specific con-
founders may alter specific readouts. In addition, timing and
protocol from sample collection through processing is also a
critical consideration, particularly when the molecular feature
may be labile, such as those of RNA and some metabolites.

Carefully addressing the above considerations when de-
signing an -omics-based environmental health study can help
investigators deal with the potential sources of bias proactive-
ly and improve the rigor and reproducibility of those studies.
In addition to the above potential issues that are specific to
molecular analysis in population-based studies, other tradi-
tional epidemiologic concepts should be carefully considered,
including confounding, selection bias, effect modification,
mediation, and temporality.

We present illustrative examples of how molecular -omics
data have been successfully integrated into environmental
health studies to date, with a focus on prenatal and/or early-
life exposures. Prenatal exposures may be particularly impor-
tant to human health since organs are undergoing develop-
ment and programming at this time, and alterations to these
processes can have acute consequence to the fetus and alter
long-term risk of disease later in life [34]. The mechanisms
through which prenatal environmental exposures may impact
birth outcomes and long-term health in humans have primarily
been studied through the lens of fetal epigenetics [34], though
transcriptomics, proteomics, and metabolomics have begun to
provide valuable insights into these exposure-outcome rela-
tionships as well.

Highlights of -Omics Studies of Prenatal
Exposures and Early-Life Health

The prenatal exposure that has been most thoroughly studied
in relation to fetal molecular -omics is maternal smoking dur-
ing pregnancy (MSDP), largely because the relationship be-
tween smoking and reduced birth size has been observed con-
sistently across numerous independent studies [34] and small
size at birth is a risk factor for the development of chronic
diseases later in life. Multiple, single-cohort epidemiologic
studies have examined the relationship between MSDP and
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fetal epigenetics, as a potential mechanism through which
smoking may impact birth weight and long-term health out-
comes. To date, the largest of such studies was undertaken by
Joubert et al. (2016) who performed a meta-analysis of 13
independent cohorts from the Pregnancy and Childhood
Epigenetics (PACE) consortium [35], including 6685 new-
borns. This meta-analysis identified over 6000 epigenetic loci
that were differentially methylated in relation to MSDP at a
5% FDR threshold. The top differentially methylated loci was
at the aryl hydrocarbon receptor repressor (AHRR) gene
[36••], which had been associated with tobacco smoke expo-
sure in multiple previous studies. Joubert et al. (2016) imple-
mented numerous epidemiologic principles that contribute to
the strength of evidence surrounding these findings,
performing functional network and pathway enrichment anal-
yses, testing the relationships between methylation and ex-
pression, and testing for associations between MSDP and
DNA methylation in older children, to provide additional ev-
idence for biological plausibility that these epigenetic varia-
tions may impact biological function and can persist after birth
[36••]. This meta-analysis served as a confirmatory study not
only for the AHRR gene, which is predictive of smoking-
associated morbidity and mortality [37], but for 967 epigenet-
ic loci that had previously been reported as differentially
methylated with MSDP, thus identifying numerous candidate
loci that may deserve follow-up in future studies.
Additionally, Reese et al. (2017) have since developed a meth-
od for estimating prenatal exposure to maternal smoking from
cord blood methylation data, demonstrating the utility of high-
throughput epigenomics data for developing biomarkers of
environmental exposure [38]. Epigenetic variations in other
fetal tissues have also been associated with MSDP, such as
placenta [39] and fetal cortex [40]. The top hits from these
studies were in different genomic locations than those identi-
fied in cord blood and may represent tissue-specific responses
to MSDP, which emphasizes the need for additional studies of
MSDP in other fetal tissues, and well as validation studies in
placenta and brain tissue in independent studies with larger
sample sizes.

Studies of the fetal transcriptome in response to MSDP
have also been performed, identifying differentially expressed
genes involved in xenobiotic metabolism, coagulation, and
thrombosis, despite these studies being done in independent
samples with relatively small sample sizes [41, 42].
Additionally, a study of the placental proteome found that
protein networks involved in cellular morphology, organiza-
tion and compromise, or involved in DNA replication, recom-
bination, and repair, energy production, and nucleic acid me-
tabolism may be impacted by MSDP. The authors also exam-
ined difference in selected transcript levels of candidate genes,
again finding genes involved in xenobiotic metabolism to be
differentially expressed [43]. All three of these placental
transcriptome/proteome studies have been performed on small

sample sizes, but produced some strikingly similar results,
warranting more comprehensive examinations in larger
studies.

Multiple studies have also examined the relationships be-
tween air pollution exposure and molecular profiles measured
via -omics technologies in fetal tissues. Small numbers of
differentially methylated loci have been identified in placental
tissue associated with distance to roadway [44] and in cord
blood associated with nitrogen dioxide (NO2) exposure [45],
suggesting possible air-pollution-associated differential epige-
netic regulation of protein tyrosine phosphatase receptors and
mitochondrial activity. Kingsley et al. (2016) also identified
that prenatal exposure to black carbon and PM2.5 was associ-
ated with variations in expression of a large proportion of
placental imprinted genes [46], some of which had been pre-
viously linked to birth weight in the same cohort and are
known to play roles in fetal development [47]. Winckelmans
et al. (2017) examined relationships between maternal long-
term and short-term PM2.5 exposure and gene expression pat-
terns in cord blood related to immune and DNA damage re-
sponse, and that many of the observed relationships may be
highly dependent on fetal sex [48]. While Martens et al.
(2017) studied associations between PM2.5 and cord blood
oxylipins, a subset of metabolites generated from fatty-acid
oxidation, observing associations with metabolites derived
from the lipoxygenase pathway which is involved in inflam-
matory signaling [49]. These studies have begun to elucidate
how maternal air pollution exposure can impact the molecular
activities in fetal tissues, but independent studies with large
sample sizes are needed to validate many of these findings.

Prenatal exposures to toxic metals have also received sub-
stantial attention for their potential impacts on fetal epigenetic
patterns. Multiple studies have demonstrated that DNA meth-
ylation levels in cord blood and/or placenta are associated
with prenatal exposure to metals, including arsenic (As)
[50–54], mercury (Hg) [55, 56], cadmium (Cd) [57–59], and
lead (Pb) [60]. These studies demonstrate how molecular
markers may be able to detect functional changes in develop-
ing tissues associated with maternal exposures to environmen-
tal contaminants, often trace exposure levels, and explore the
implications for health and development. For instance,
Everson et al. (2018) found numerous epigenetic loci associ-
ated with Cd in placental tissues that were consistent across
two populations, then incorporated transcriptomic data to infer
the biological processes in the placenta that may be impacted
by these variations, such as inflammatory signaling, cellular
growth, and metabolism [59]. Prenatal As exposure has also
been studied for associations with fetal metabolomics and
proteomics. Prenatal exposure to inorganic arsenic (iAs) has
been associated with variations in the cord serum metabo-
lome, potentially related to regulation of the citrate cycle, as
well as vitamin and amino acid metabolism [61], and a pilot
study implicated that the toxic effects of in utero iAs on birth
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weight may be mediated through alterations to metabolic ac-
tivity in cord blood, specifically laurate, 17-methylstearate,
and 4-vinylphenol sulfate [62]. Additionally, prenatal iAs
has been associated with the expression of numerous proteins
that are involved in tumor necrosis factor (TNF)-mediated
immune and/or inflammatory response [63].

Other prenatal environmental exposures have been studied
in relation to fetal molecular profiles as well. Using a meet-in-
the-middle approach, Pennings et al. (2016) found that cord
blood expression levels of 52 genes that had been associated
with prenatal PFAS exposure were also associated with epi-
sodes of the common cold or rubella titers, thus providing
supporting evidence that prenatal PFAS exposure may have
immunotoxic effects on offspring [64]. Remy et al. (2016)
examined how the cord blood transcriptome was perturbed
by multiple prenatal environmental exposures, including mul-
tiple endocrine disruptors, metals, and particulates, and iden-
tified p,p′-DDE the most impactful environmental exposure
on the fetal transcriptome, and p,p′-DDE was most strongly
associated with differential expression of the glucocorticoid
receptor (NR3C1) which plays critical roles in fetal develop-
ment [65]. The approach used by Remy et al. (2016) identifies
the molecular targets, in this case RNA transcripts, that are
associated with environmental exposures, which could be in-
formative for identifying sets of exposures that impact the
same molecular features and which exposures have the
greatest impact on individual features.

Although metabolomics does have the ability to describe
molecular profiles that are informative about physiological
activity that may be related to fetal programming, it can also
be utilized to characterize internalized exposures or health
states during pregnancy. Sulek (2017) compared metabolomic
profiles derived from maternal hair samples between cases of
fetal growth restriction (FGR) to controls [66]. They identified
32 metabolites that significantly differed between cases and
controls, and a multivariate model including just 5 of these
metabolites achieved an ROC of 0.998, and speculate that
many of these differences may be related to loss of redox
control [66]. Maitre et al. (2016) examined the relationships
between maternal urinary metabolites with FGR and preterm
birth in the Rhea cohort: FGR pregnancies were less likely
among mothers with higher levels of tyrosine, acetate,
trimethylamine, and formate, while medically induced pre-
term births were associated with higher levels of N-acetyl
glycoproteins and spontaneous preterm birth was associated
with high lysine and low formate levels, and posit that these
metabolites may be related to maternal metabolic health dur-
ing pregnancy [67]. Maternal urinary metabolomics was also
studied in two independent Spanish birth cohorts, Sabadell
and Gipuzka, and the authors observed 10 maternal urinary
metabolites that were strongly predictive of birth weight, in-
cluding branched-chain amino acids (BCAAs) and steroid
hormone by-products [68]. Hellmuth et al. (2017) performed

a metabolomics study of cord blood, and found numerous
strong associations with birth weight, but these metabolites
were not strongly predictive of weight gain or BMI in adoles-
cences; they propose that this may be due to the metabolome
being highly influenced by the immediate environment, and
thus may be more sensitive for detecting associations in cross-
sectional settings [69]. On the other hand, Isganaitis et al.
(2015) identified several cord blood metabolites that were
strongly associated with postnatal weight gain, and observed
that the ratio of glutamine to glutamate was lower, a potential
marker of cardiometabolic risk, among those with accelerated
weight gain [70]. Prenatal and early-life vitamin D exposure
has also been shown to influence metabolomic profiles of
children at 3 years of age, which may suggest a potential role
for metabolomics in detecting metabolic reprogramming [71].
Maternal smoking during pregnancy has been associated with
alterations to both the maternal and fetal metabolome [72], as
well as the placental proteome and metabolome, and suggests
that these differences may be related to increased oxidative
stress in the placenta of smoking mothers [43]. Though only
a few studies have currently been performed, early studies of
fetal metabolomics in association with maternal exposures are
promising. These studies demonstrate the promising potential
of metabolomics for examining biomarkers of maternal expo-
sures, as well as maternal and fetal health states, to more
comprehensively assess how the maternal exposome impacts
fetal and neonatal health.

Multi-Omics Analyses

The above studies highlight many of the successful incorpo-
rations of -omics data within environmental health studies of
prenatal exposures. However, most of these studies only in-
clude a single high-dimensional molecular data set and thus
are only capable of identifying associations within the molec-
ular domains they investigated. Multi-omics analyses on the
other hand examine the associations between features across
multiple high-throughput data sets. Two approaches for multi-
omics analyses include the quantitative trait approach and the
multi-omics integration approach.

Quantitative trait loci (QTL) studies seek to identify all
associations between features on different molecular datasets,
or at least those within close genomic proximity to each other,
thus characterizing the functional relationships between mo-
lecular -omics domains. Methylation QTLs (mQTLs) are CpG
sites whose methylation levels are influenced by genetic var-
iants, while expression QTLs (eQTLs) are genes whose ex-
pression levels are influenced by genetic variants, and expres-
sion quantitative trait methylations (eQTM) are genes whose
expression levels are influenced by DNA methylation [73].
Gutierrez-Arcelus (2013) performed eQTL, mQTL, and
eQTM in umbilical cord tissue samples [74•]; Peng et al.

Curr Envir Health Rpt (2018) 5:328–337 333



(2017) performed an eQTL analysis of placental tissues [75];
and Gaunt et al. (2016) have developed a database of mQTLs
in human blood at various ages throughout the life course
[76]. These may serve as valuable resources that should be
accessed by researchers when interpreting -omics data obtain-
ed from fetal tissues. In addition to providing functional con-
text, QTL approaches can be performed within individual co-
horts in a reductive way, to only test the features that exhibit
QTL associations for additional associations with exposures
or outcomes. Teh et al. (2014) did this, identifying mQTLs in
fetal tissue, followed by an association study between mQTLs
and maternal exposures that likely affect the in utero environ-
ment (smoking, maternal depression, maternal BMI, infant
birth weight, gestational age, and birth order). They identified
numerous strong exposure-methylation associations via this
method, also finding that variations in mQTLs were better
explained by gene-by-environment interactions, than by ge-
netics alone at ~ 75% of the identified mQTLs [77]. In the
majority of these G-by-E-associated mQTLs, the environment
tended to be associated with DNA methylation only among
individuals of a particular genotype [77]. An alternative ap-
proach can be applied to the loci identified in epigenome-wide
association studies, correlating DNA methylation with gene
expression, to characterize whether the top hits from an
EWAS may be regulators of nearby gene expression. For in-
stance, the expression of the LYRM2 gene was shown to be
inversely correlated with DNA methylation at the loci identi-
fied from an EWAS of prenatal As exposure [54], and the
expression of the TNFAIP2 gene was positively correlated
with DNA methylation at the loci identified from an EWAS
of placental Cd concentrations [59]. Incorporating gene-
expression analyses into EWAS studies such as these im-
proves the biological plausibility that an environmentally as-
sociated epigenetic variation can influence the functions of the
tissue from which it was measured.

The other multi-omics approach involves -omics integra-
tion, similar to iPOP, to examine interrelationships between
multiple different -omics data simultaneously, and ideally lon-
gitudinally. To date, the iPOP framework has primarily been
applied to small sample sizes and focused on changes in health
states rather than environmental exposures [10, 11]. Chen et
al. (2012) followed one individual over a 14-month period
while examining changes in molecular profiles over time
and speculated about indicators for the onset risk for type II
diabetes, recognizing that risk cannot be ascertained on a
study of one individual [11], while Piening et al. (2018) ex-
tended this iPOP framework to a sample of 23 individuals,
examining how molecular profiles change with weight gain
and weight loss, compared profiles between insulin-sensitive
and insulin-resistant persons, and evaluated inter- and intra-
individual variations in those profiles [10]. The iPOP frame-
work has primarily been studied through a lens of personal-
ized medicine and the possibility of improved clinical

outcomes. However, the clinical utility of the vast majority
of detectable molecular markers is currently unknown and
requires additional study. We posit that incorporating longitu-
dinal multi-omics profiling in human population-based stud-
ies, particularly in birth cohort studies, can help to characterize
how molecular profiles change throughout the life course, in
response to environmental exposures, and in association with
various health outcomes. Some epidemiologic investigations
have utilized multiple integrated -omics data in larger sample
sizes. Inouye et al. (2010) examined inter-relationships be-
tween genomics, transcriptomics, and metabolomics in rela-
tion to immune response, metabolism, and adiposity [78], then
performed a multi-sample study that incorporated longitudinal
follow-up to validate the original findings and more compre-
hensively characterize immunometabolic cross talk [79••].
These illustrative examples demonstrate the abilities of
multi-omics data integration to comprehensively characterize
physiological activity, but such integrative approaches have
only been applied to environmental health research in a limit-
ed capacity.

Conclusions and Future Directions

The pathophysiology of environmentally induced diseases is
complex and often will not be centered around one individual
molecular target. Instead, environmental exposures may influ-
ence the activity of multiple biological factors, and combina-
tions of these factors may lead to disease development. The
emergence and rapid growth of -omics technologies are open-
ing avenues of research for environmental health that will
allow for better detection and characterization of intermediate
molecular biomarkers along these exposure-response relation-
ships, and provide novel opportunities to develop preventive
strategies or identification of therapeutic targets. Epigenomics
has become a common component to investigating the mech-
anisms underlying how maternal exposures may alter fetal
programming, and thus impact birth outcomes and fetal
health, and has demonstrated substantial utility for this task.
However, studies focused on transcriptomic, proteomic, and
metabolomic data have also yielded promising results, partic-
ularly for identifying biomarkers of exposure and predictors of
outcomes. As -omics technologies continue to improve and
becomemore affordable, epidemiologic studies need to obtain
multiple -omicsmeasures from the same individuals, and from
multiple tissues, ideally in a longitudinal manner so that inter-
and intra-individual variations can bemore well characterized,
and targets identified as possible biomarkers to be validated in
independent populations. The issues and challenges associat-
ed with molecular -omics data require that investigators con-
sider traditional epidemiologic sources of bias, such as con-
founding, selection bias, measurement error, and reverse cau-
sation, but also include unique sources of bias which could be
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biological confounders or technical variability. To ensure that
environmental health research benefits from these advance-
ments, environmental health researchers should receive cross
training in molecular epidemiology and -omics and seek col-
laborations with researchers that have expertise in the use of
these tools.
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