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Abstract

Purpose of Review With the incidence of neurodevelopmental disorders on the rise, it is imperative to identify and understand the
mechanisms by which environmental contaminants can impact the developing brain and heighten risk. Here, we report on recent
findings regarding novel mechanisms of developmental neurotoxicity and highlight chemicals of concern, beyond traditionally
defined neurotoxicants.

Recent Findings The perinatal window represents a critical and extremely vulnerable period of time during which chemical insult
can alter the morphological and functional trajectory of the developing brain. Numerous chemical classes have been associated
with alterations in neurodevelopment including metals, solvents, pesticides, and, more recently, endocrine-disrupting com-
pounds. Although mechanisms of neurotoxicity have traditionally been identified as pathways leading to neuronal cell death,
neuropathology, or severe neural injury, recent research highlights alternative mechanisms that result in more subtle but conse-
quential changes in the brain and behavior. These emerging areas of interest include neuroendocrine and immune disruption, as
well as indirect toxicity via actions on other organs such as the gut and placenta.

Summary Understanding of the myriad ways in which the developing brain is vulnerable to chemical exposures has grown
tremendously over the past decade. Further progress and implementation in risk assessment is critical to reducing risk of
neurodevelopmental disorders.

Keywords Neurodevelopment - Neurotoxicity - Xenobiotic - Neuroendocrine - Neuroimmune

Introduction

Neurodevelopment begins as early as three weeks into gesta-
tion and continues through the neonatal period and puberty,
and, to some extent even spans into adulthood. The perinatal
period, in particular, embodies a unique window of suscepti-
bility during which the rudimentary structures of the central
nervous system (CNS) are formed and organized. During this
phase, intricate and coordinated signaling events control com-
plex processes such as cell proliferation, differentiation, mi-
gration, apoptosis, and synaptic pruning [1-3]. Such develop-

This article is part of the Topical Collection on Mechanisms of Toxicity

P4 Heather B. Patisaul
hbpatisa@ncsu.edu

Department of Biological Sciences, North Carolina State University,
Raleigh, NC 27695, USA

Center for Human Health and the Environment, North Carolina State
University, Raleigh, NC 27695, USA

mental plasticity is necessary for proper brain development
but also leaves the brain vulnerable to perturbation, as it is
highly responsive to both intrinsic and extrinsic stimuli
[4—6]. Therefore, exposure to environmental insults, such as
exogenous chemicals, during these sensitive developmental
periods can result in unwanted long-term or permanent chang-
es in brain form and function [7¢, 8]. Because of the profound
and rapid change that occurs during this time, the gestational
and neonatal periods are critical windows of intense focus for
understanding how and to what degree exposure to contami-
nants can lead to permanent and life-long impacts on the brain
and behavior [9, 10].

Involuntary exposure to environmental toxicants can occur
through inhalation, ingestion, and dermal contact with con-
taminated air, food, water, house dust, and soil [7¢]. The de-
veloping fetus or newborn frequently experiences higher ex-
posure levels than adults for several reasons. First, the fetus
and neonate are not as well protected as once believed, as
many contaminants have been shown to reach the fetus
through placental transfer [11¢] or the developing newbormn
in breast milk [12, 13]. Second, the metabolic enzymes
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responsible for detoxifying exogenous chemicals and the
blood brain barrier are not yet at their full functional capacities
[8, 14ee, 15-18]. Energy demands are also much higher during
development. Therefore, relative to their body weight, the
very young have higher respiration rates and food consump-
tion, which can lead to higher exposures. Additionally, babies
and young children participate in behaviors that increase their
contact with contaminated media, including crawling and fre-
quent hand-to-mouth behaviors [7¢, 9, 19]. With such a high
degree of vulnerability, due to uniquely high levels of expo-
sure and the extremely plastic nature of the developing brain,
it is imperative to understand how and what chemicals can
impact the developing brain in order to curtail risk of
neurodevelopmental disease.

Approximately 10-15% of infants born in the USA are
impacted by neurodevelopmental disorders [20], which in-
clude impairments in the growth and development of the
brain, leading to disabilities in learning, memory, and emo-
tion. With the incidence of these ailments on the rise [21], it
has become increasingly important to identify and understand
the mechanisms by which changes to the perinatal environ-
ment influences risk. Although genetic factors clearly contrib-
ute to these non-communicable disorders, the rapid rate of
increase signifies that some other, likely environmental, influ-
ences are also involved [13, 21, 22]. These include quality of
parental care, nutrition, socioeconomic status, and other cul-
tural factors, but also undoubtedly, pollution [13, 23, 24].

With greater than 80,000 chemicals registered with the US
Environmental Protection Agency (EPA) for commercial use,
only a small fraction have been studied for their potential
neurotoxic properties [13, 25]. Although counts differ across
studies, about 200 chemicals are currently characterized as
neurotoxic to humans [13, 26]. Even less is known about
which of these chemicals are developmentally neurotoxic,
and none have been systematically screened for such proper-
ties before entering commercial use [27]. Accumulating epi-
demiological and experimental research has linked exposure
to several neurotoxic environmental contaminants including
lead, mercury, air pollution, and a variety of pesticides and
flame retardants with adverse consequences on brain develop-
ment and heightened risk of neurodevelopmental disease [7,
19, 28e¢]. In this review, we will focus on evidence of
xenobiotic-related mechanisms by which neurodevelopmental
damage may arise.

Defining Developmental Neurotoxicity

Neurotoxicity is defined by the US EPA as an adverse change
in structure and/or function of the central nervous system and/
or peripheral nervous system measured at the neurochemical,
behavioral, neurophysiological, or anatomical levels [19, 29].
Classically, this culminates in cell death and a degree of
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quantifiable pathology. Examples of well-characterized
neurotoxicants include lead, mercury, and organophosphate
(OP) pesticides such as chlorpyrifos (CPF) [13, 14].
Endocrine-disrupting chemicals (EDCs) were identified and
defined nearly 30 years ago, and have rapidly become of great
concern for their potential to impact the brain and behavior
[30, 31]. EDCs, characterized as natural or synthetic
chemicals that can interact with any aspect of hormonal sys-
tems [31, 32¢¢], do not fit in the classical definition of
neurotoxicant in that they do not typically result in overt cell
death and neural pathology, but can have subtle but profound
effects on development, physiology, and behavior [33].
Similarly, neuroendocrine disruption has been described as
alterations in the structure or function of the neuroendocrine
system resulting from exposure to an exogenous chemical or
mixture [30]. For this review, “neurotoxicant” will be used as
an inclusive term defining any chemical that can impact the
developing brain and/or induce behavioral effects regardless
of mechanism.

The majority of chemicals recognized as neurotoxic gener-
ally fall into one of three broad groups, metals, solvents, and
pesticides [13]. Historically, the primary method of identify-
ing these neurotoxicants has been linking high-dose, often
unintentional or occupational, exposures with clinical symp-
toms and/or obvious pathologies in humans [13]. More recent-
ly, a suite of tools including in silico, animal and cell-based
models, has expanded the capacity to identify risk and possi-
ble mechanisms of action at much lower, environmentally
relevant, levels of exposure. A classic example is lead (Pb)
poisoning, which can lead to severe disability and death in the
case of high-dose exposure at any age, or significant behav-
ioral and learning disabilities following early life, low-dose
exposure [13, 14]. Significantly, epidemiologic research has
revealed associations between Pb exposure and reduced intel-
ligence in children [13, 34-36] at doses that do not produce
clinical symptoms in adults. This highlights the importance of
critical periods of sensitivity, but also the recognition that
chemicals can impact the brain via multiple mechanisms. In
the case of Pb, these mechanisms include oxidative stress and
altered neurotransmitter systems, and two more recently de-
scribed modes of action: neuroendocrine and immune system
disruption (Table 1).

Mechanisms of Developmental Neurotoxicity
Oxidative Stress

Reactive oxygen species (ROS), such as superoxide anions and
hyrdroxyl radicals, can form through multiple mechanisms in
the brain, including induction of mitochondrial dysfunction,
redox cycling, and enzymatic bioactivation of substrates.
These processes occur under normal conditions and are even
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long-term deficits in brain structure and function. One classic
example of neurotransmitter disruption is “cholinergic syn-
drome” which results from exposure to OP pesticides such
as malathion, parathion, and CPF. In the same family as the
notorious nerve agents sarin and cyclosarin, OP pesticides
inhibit the enzyme acetylcholinesterase, resulting in
excitotoxicity as a result of CNS overstimulation due to
prolonged stimulation by acetylcholine. Adverse neurological
symptoms include headache, dizziness, confusion, blurred vi-
sion, slurred speech, and death [62]. Prolonged low-dose ex-
posure heightens risk of cardiovascular and respiratory dis-
ease, cancer, and premature birth. These chemicals can also
perturb other neurotransmitter systems. For example, CPF can
alter serotonin (5-HT) signaling. Developmental exposure to
CPF has been found to impact 5-HT, not by altering its deg-
radation, but by increasing its reuptake and the expression of
5-HT receptors, altering 5-HTergic synaptic function. Finally,
these CPF-induced alterations have been associated with
changes in 5-HT-dependent behaviors, such as learning and
memory [63-66].

Pyrethroids are now the most commonly used insecticides
in US homes, and exposure has been associated with altered
behavioral phenotypes, such as locomotor activity impair-
ments, impulsivity, and memory deficits [67—69]. The dopa-
minergic system has been identified as a potential target of
pyrethroid toxicity. Exposure to the pyrethroid deltamethrin
has been shown to result in increased uptake and release of
DA [70], increased expression of DA transporter (DAT) [69,
71, 72], and reduced expression of DA receptors [73]. DA cell
death in the substantia nigra ultimately culminates in
Parkinson’s disease, a disorder now well recognized to result
from a combination of biological and environmental factors
[74]. More common in men than women and strongly associ-
ated with proximity to agriculturally intense regions, height-
ened Parkinson’s disease risk is linked with several insecti-
cides including rotenone, permethrin, and organochlorine her-
bicides such as 2,4-D. The latter is of particular concern now
that the EPA has approved the use of 2,4-D resistant geneti-
cally modified crops in the USA, thereby all but guaranteeing
increased and widespread exposure via contaminated food
[75]. These examples highlight the exquisite sensitivity of
neurotransmitter systems to environmental chemicals and also
the diverse suite of detrimental outcomes of disruption on
neurodevelopment and brain aging.

Neuroendocrine Disruption

The organization of neural networks relies immensely on hor-
monal signaling. Numerous hormones, particularly steroid
hormones, play critical roles in brain cell differentiation, mi-
gration, synaptogenesis, and sex-specific organization of neu-
ral networks [33, 76-81]. They are therefore vulnerable to
endocrine disruption and EDCs. The most well-characterized

mechanisms of developmental neuroendocrine disruption in-
volve a region of the brain known as the hypothalamus [82¢],
with impacts on reproductive physiology and behavior as the
primary endpoints of concern [83]. The bulk of neuroendo-
crine disruption research has focused on disrupted estrogen,
androgen, and thyroid hormone signaling at various levels of
the hypothalamic-pituitary-gonadal (HPG) axis and
hypothalamic-pituitary-thyroid (HPT) axis. Decades of work
has revealed that exposure to chemicals that target the HPG
and HPT axes can have significant impacts on the brain and
behavior, such as changes in sexually dimorphic brain mor-
phology, masculinization/feminization of neuroendocrine
pathways, and alterations in both reproductive and non-
reproductive behaviors [30, 47, 81, 82+, 84-87].
Neuroendocrine disruption can also occur outside the hypo-
thalamus and to other hormone systems including peptide
hormones such as GnRH, insulin, oxytocin (OT), vasopressin
(AVP), and kisspeptin. For example, exposure to atrazine, a
commonly used herbicide, has been found to inhibit the pre-
ovulatory leutinizing hormone (LH) surge and pulsatile re-
lease associated with reduced GnRH neuronal activity
[88-90]. OT and AVP have been found to be susceptible to
perinatal BPA and methoxyclor exposure, with observed
changes in the number of OT and AVP neurons and disruption
of associated behaviors [91, 92].

Significant progress has been made identifying potential
mechanisms of endocrine disruption and, similarly, develop-
mental neuroendocrine disruption, including changes in ste-
roid metabolism and biosynthesis, receptor degradation, DNA
methylation, and direct and indirect effects on steroid receptor
activity [33, 93]. For example, exposure to well-known EDCs,
such as PCBs and BPA, has been shown to alter circulating
hormone levels [94-97], gene expression [82, 98—105], and
nuclei volume in sexually dimorphic brain regions [106, 107].
In humans, developmental neuroendocrine disruption by these
chemicals and others such as dichlorodiphenyltrichloroethane
(DDT) and tributyltin (TBT) has been linked with cognitive
deficits, obesity and metabolic syndrome, loss of behavioral
sex differences, impaired fertility and reproductive function,
and behavioral deficits [31, 32e°].

Although the hypothalamus has been the primary brain
region of EDC research focus, there is also evidence that
EDCs can impact extra-hypothalamic regions of the brain,
such as the hippocampus. The hippocampus plays an impor-
tant role in learning and memory, and its organization is reg-
ulated by estrogen, androgen, and thyroid hormones [82¢,
108]. Developmental processes, like neurogenesis and synap-
togenesis, have been shown to be particularly susceptible to
EDCs in the hippocampus. For example, exposure to BPA
over the perinatal period has been shown to reduce synaptic
density and maturation in the CA1 region of the hippocampus,
possibly as a result of changes in the expression of synaptic
proteins and glutamate receptors [109]. There is also evidence
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for developmental neuroendocrine disruption in other
hormone-sensitive regions including the amygdala, cortex,
and cerebellum [82¢]. However, more work is needed to fur-
ther understand the vulnerability of underappreciated brain
regions to EDCs, and the functional consequences of EDC-
related changes to these regions.

Disruption of the stress axis, which encompasses the
hypothalamic-pituitary-adrenal (HPA) axis, by EDCs and en-
vironmental contaminants has not received as much attention
as the HPG and HPT axes. However, compelling evidence
indicates that stress can have significant impacts on the devel-
oping brain. The adolescent brain is particularly vulnerable to
stress, resulting in changes in brain organization and structure
such as altered dendritic pruning, changes in hippocampal
volume and function [110, 111], reductions in learning and
memory, depression, and increased participation in risky be-
haviors such as smoking, unprotected sex, and drug use [112].
In the perinatal period, the HPA axis has been shown to be
sensitive to changes in maternal stress and circulating cortico-
sterone (CORT) levels [113—115], with males being possibly
more vulnerable than females [116]. There is some evidence
that developmental exposure to PCBs can impact the HPA
axis, with reductions in corticotropin-releasing hormone
(CRH), adrenocorticotropic hormone (ACTH), and circu-
lating levels of CORT, in juveniles and adults [117-119].
BPA has also been shown to have the potential to interact
with and disrupt the HPA axis. Perinatal exposure to BPA
alters CORT and ACTH secretion, and induces changes in
the expression of CRH and glucocorticoid receptor mRNA
in the adult rat brain [120].

Overall, our understanding of the neuroendocrine mecha-
nisms by which exposure to environmental contaminants, and
in particular EDCs, can impact the developing brain has seen a
lot of recent progress. However, more work is needed to better
understand mechanisms outside of estrogen, androgen, and
thyroid hormone signaling, and functional repercussions of
alterations in extra-hypothalamic regions of the brain.

Immune System Disruption

The immune system is inextricably linked with the CNS and
plays a critical role in brain development and function [121].
With evidence of linkages between inflammation and neural
disorders rapidly growing, neuroimmune disruption has be-
come a hot topic in developmental neurotoxicity [122, 123].
Resident immune cells, such as microglia, along with astro-
cytes, produce inflammatory molecules, including cytokines
and chemokines, in response to injury or infection, but these
cells and their signaling molecules are also present under ho-
meostatic conditions [124, 125]. Classically, glia have been
characterized as the support cells for neurons but their role is
far more complex. For example, astrocytes are neuroprotec-
tive via maintenance activities such as buffering ion levels,
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regulating water balance, and modulating synaptic activity,
but also produce anti-inflammatory cytokines and
neurotrophins. Glia and cytokines have been shown to partake
in complex developmental processes, such as apoptosis, axo-
nal growth, formation and maintenance of synapses, and glial
cell migration and differentiation [126—130]. Astrocyte-
microglial interactions are essential to maintain innate CNS
immunity although much remains to be understood about the
nature of that relationship, particularly during development.
Exposure to infectious agents and subsequent activation of
either the maternal or fetal immune system has been associat-
ed with alterations in fetal brain development and increased
risk of neurodevelopmental disorders including ASD
[131-134]. Therefore, perturbations of the immune system
during critical windows of brain development could lead to
abnormal brain structure and function.

There is rapidly compounding evidence that a variety of
environmental contaminants can provoke an innate immune
response and/or alter its trajectory. Several groups have hy-
pothesized that environmental insults may impact the devel-
oping immune system, and result in long-term effects on brain
function by impacting normal colonization of the developing
brain by glial cell populations [125, 135, 136]. Microglia are
derived from the yolk sac and take up residence in the CNS
very early in development, and have therefore become of par-
ticular interest in the context of immune disruption and brain
development [130]. It has previously been established that
microglia are hormone sensitive [137—139], indicating they
may be vulnerable to perturbation by EDCs. Changes in sex-
specific colonization of the brain by microglia have been ob-
served as a result of developmental exposure to BPA [48,
140¢]. Although the functional significance of these findings
remains to be determined, other studies have shown that
changes in microglia colonization can impact synaptic remod-
eling [141]. Changes in signaling molecules produced by res-
ident immune cells have been observed in the absence of
activated microglia [142, 143], suggesting that other cells that
produce cytokines could be responsible for the observed
changes in immune response. Other glial cell populations that
are potential targets include astrocytes, oligodendrocytes, and
NG2 (oligodendrocyte progenitor) cells. Similar to microglia,
these glial cell types are hormone sensitive [144, 145] and
therefore warrant further investigation, as they may also be
vulnerable to perturbation by EDCs.

Numerous proinflammatory cytokines participate in im-
mune function; however, only a handful are believed to play
a particularly critical role in the brain. These include IL-1f3,
IL-6, and TNF . Upregulation of these inflammatory signals
has been observed in the hypothalamus, dentate gyrus of the
hippocampus, and amygdala following immune challenge and
may be associated with an increased risk for mood disorders
[146]. Similar to changes in microglial colonization, the ma-
jority of studies assessing alterations in cytokines in the
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developing brain use approaches that model infection such as
lipopolysaccharide (LPS) injections. These studies have pro-
vided a critical foundation from which effects related to exog-
enous chemicals can be compared, and crucial evidence show-
ing that activation of the maternal immune system can alter
fetal brain cytokines [143, 147]. Various exogenous
chemicals, such as phenols (e.g., BPA) and pesticides (e.g.,
CPF), have been shown to disrupt immune cells and the cyto-
kines they produce [148, 149], including during stages of
development [150, 151], with both increases and decreases
in inflammatory markers observed. There is some evidence
of altered neuroimmune response following exposure to ex-
ogenous chemicals; however, we are just beginning to further
elucidate these mechanisms and assess other immune-related
signaling molecules, such as chemokines. Although there is a
lot of interest in how disruption of the immune system can
impact the developing brain, more work is needed to under-
stand how chemical exposures stimulate an immune response
in the developing brain.

Indirect Toxicity

Neurotoxicity can also occur via insult outside of the brain
itself. The brain is linked to and influenced by many other
organs and organ systems in the body, such as the liver, kid-
neys, pancreas, and gastrointestinal tract. Communication
within the “brain-gut axis” for example is now recognized to
influence body weight, sleep, and risk of mood-related disor-
ders [152, 153]. Consequently, there is growing interest in
how disruption to the gut microbiome and inflammation of
peripheral tissues including the gastrointestinal tract might
impact brain development and behavior.

The placenta is the site of nutrient exchange between
mother and fetus, but it also provides critical support of
fetal growth through hormone and neurotransmitter pro-
duction. Not surprisingly, the placenta has been found to
play a unique and critical role in neurodevelopment and
dysfunction of the placenta can impact neurodevelopment
[11, 154]. There are several examples of stress-induced
inflammation leading to placental dysfunction and altered
neurodevelopment [155, 156]; however, almost no studies
have tested whether this type of response can occur from
exposure to exogenous chemicals. Furthermore, although
the placenta is meant to provide some protection for the
fetus, a variety of environmental contaminants, including
heavy metals, OPs, and flame retardants, have been shown
to reach the fetus by passing through the placenta [157,
158]. Growing evidence that contaminants can accumulate
in placental tissue [159—-163] emphasizes the possibility
that the fetus may experience greater exposures than the
mother. Therefore, during the gestational window,
neurodevelopment can be impacted by direct toxicity to

the developing brain, but also, indirectly, via direct toxicity
to the placenta, leading to disrupted placental signaling
factors critical for brain development including neurotrans-
mitters and hormones. These are two examples of novel
targets of xenobiotics that may contribute to neurotoxic
effects of developmental exposures and thus warrant fur-
ther investigation.

Conclusions

There is a significant amount of evidence from experimen-
tal and epidemiological studies indicating that develop-
mental exposure to environmental contaminants can pro-
foundly impact neurodevelopmental endpoints and con-
tribute to neurodevelopmental disease risk. Because of
the dynamic nature of brain development, it is imperative
to recognize that exposure-related outcomes depend on the
developmental exposure window, and that effects observed
in children may not be observed in adults or only at much
higher dose levels. More research is needed to understand
the possibly unique vulnerabilities of the adolescent brain,
and the myriad of exposures this population experiences.

The number of chemical classes identified as neurotoxic
is alarming because it only continues to grow as more is
understood about how the brain is vulnerable to chemical
insult, and our regulatory system continues to fail to rem-
edy known high-risk chemicals, such as CPF, and replaces
compounds, such as BPA, with alternatives for which we
lack toxicity data but appear to be structurally and toxico-
logically similar (such as BPS and other bisphenol ana-
logs). The situation is further complicated by the reality
of multiple exposure routes and continuous exposure to
complex mixtures. Many neurotoxic chemicals have the
potential to elicit their effects through multiple modes of
action (Table 1), and these modes of action are likely to
overlap. The endocrine system has been shown to interact
with the immune system, by mediating gene transcription
of proinflammatory cytokines for example, and mediators
of the innate immune system can feedback on the brain and
regulate endocrine signaling [164]. Finally, although we
have made a great deal of progress in understanding the
mechanisms by which chemical insult directly impacts the
developing brain, it is critical for future efforts to take a
more systems approach and consider the possibility that
neurotoxicity might result from actions on other organs
such as the placenta. Disruption of these relationships
may represent a potentially critical but underappreciated
route of disrupted brain organization.
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