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Abstract
Purpose of Review We offer an in-depth discussion of the
time-varying confounding and selection bias mechanisms that
give rise to the healthy worker survivor effect (HWSE).
Recent Findings In this update of an earlier review, we distin-
guish between the mechanisms collectively known as the
HWSE and the statistical bias that can result. This discussion
highlights the importance of identifying both the target param-
eter and the target population for any research question in
occupational epidemiology. Target parameters can correspond
to hypothetical workplace interventions; we explore whether
these target parameters’ true values reflect the etiologic effect
of an exposure on an outcome or the potential impact of
enforcing an exposure limit in a more realistic setting. If a
cohort includes workers hired before the start of follow-up,
HWSE mechanisms can limit the transportability of the esti-
mates to other target populations.
Summary We summarize recent publications that applied g-
methods to control for the HWSE, focusing on their target
parameters, target populations, and hypothetical interventions.

Keywords Healthy worker survivor bias . Occupational
epidemiology . G-methods . Time-varying confounding .

Selection bias

Introduction

Determination of exposure limits to protect workers’ health
requires accurate estimates of the risks of occupational expo-
sures. Assessments of workplace risk are generally based di-
rectly on observational studies of occupational cohorts [1].
Estimates from these studies, however, are often subject to
bias due to the healthy worker survivor effect (HWSE), an
ubiquitous process that results in the healthiest workers accru-
ing the most exposure over their lifetimes [2–7]. It is therefore
critical to attempt to control for the potential downward bias
caused by the HWSE [1, 8•].

The HWSE can be conceptualized as bias due to either
time-varying confounding or a selection process [5, 7,
9–11]. In a previous review, Buckley et al. detail recent appli-
cations of analytical approaches that control for the HWSE
[8•]. To emphasize the resultant loss of study validity,
Buckley refers to the phenomenon as healthy worker survivor
bias. In the epidemiologic literature, bias is used to refer to the
mechanisms that cause results to deviate from the truth [12,
13]. However, we want to preserve the distinction between the
mechanisms we refer to collectively as the healthy worker
survivor effect and the statistical bias that it often causes, for
which we will reserve the terminology healthy worker survi-
vor bias. These two ideas are discussed in more detail below.

In this paper, we expand on Buckley et al.’s review by
discussing the mechanisms that give rise to the bias in more
depth [8•]. We highlight the role that identification of both
target parameters and target populations plays in allowing
occupational epidemiologists to estimate unbiased exposure
effects from cohorts affected by the HWSE mechanism. We
then review recent applied papers published since Buckley’s
review (Table 1) that attempt to remove healthy worker survi-
vor bias, focusing on their target parameters and populations
[14•, 15•, 16•, 17•, 18•, 19•, 20•, 21•, 22•].
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Table 1 Target populations and target parameters for selected recent applications of g-methods to control for bias due to mechanisms of the healthy
worker survivor effect

Study
reference

Target population Target parameter

Study
population

Inception
cohort

Reported target parameter Estimation
method

Measured
time-varying
confounders

True value of
target parameter
affected by HWSE
mechanism

Neophytou
et al. [14•]

Aluminum
smelter and
fabrication
workers

No Hazard ratio for ischemic heart disease while at
work, comparing hypothetical intervention in
which all workers were always exposed above
the cutoff for PM2.5 to one in which all
workers were always exposed below the cutoff

IPTW Composite health
score

Yes

Keil and
Richardson
[15•]

Copper
smelter
workers

No Cumulative incidence for respiratory cancers,
heart disease, and other causes under each
intervention on arsenic exposure, compared to
the natural course of each disease

G-computation Employment status Yes

Neophytou
et al. [16•]

Underground
non-metal
miners

Yesa Risk ratio/difference and attributable fraction of
lung cancer under interventions eliminating
occupational exposure to diesel exhaust

G-computation Employment status
Job location

Yes

Brown et al.
[17•]

Aluminum
smelter and
fabrication
workers

No 15-year cumulative incidence of ischemic heart
disease under hypothetical intervention in
which all workers remained at work and were
exposed above the median PM2.5 compared to
one in which all workers were always exposed
below median

TMLE Composite health
score

Co-morbidities

No

Keil et al.
[18•]

Uranium
miners

No Ratio of median survival times for lung cancer
mortality corresponding to a 100
working-level month increase in cumulative
radon exposure

G-estimation Employment status No

Björ et al.
[19•]

Iron ore
miners

No Hazard ratio formortality not known to be related
to dust exposure, comparing hypothetical
intervention in which all workers were
exposed above the cutoff for respirable dust
during the first 15 years of follow-up to one in
which all workers were never exposed above
the cutoff

G-estimation Employment status
Sick leave/time off
Job location

No

Picciotto et al.
[20•]

Autoworkers Yes Total number of person-years of life lost in the
cohort due to cardiovascular disease that could
have been saved by enforcing various
exposure limits on certain metalworking fluids

G-estimation Employment status
Intermittent time off
Other metalworking

fluids

Yesb

Picciotto et al.
[21•]

Autoworkers Yes Average number of years of life lost due to
cardiovascular disease that could have been
saved per person among the ever-exposed
workers by enforcing a ban on exposure to
certain metalworking fluids

G-estimation Employment status
Intermittent time off
Other metalworking

fluids

Yesb

Costello et al.
[22•]

Aluminum
smelter
workers

Yes Hazard ratio for ischemic heart disease while at
work, comparing hypothetical intervention in
which all workers were always exposed above
the cutoff for PM2.5, to one in which all
workers were always exposed below the cutoff

IPTW Composite health
score

Yes

Costello et al.
[22•]

Aluminum
fabrication
workers

Yes Ratio of risk within a population of workers who
were hired and then assigned to specific jobs
by the employer thereby defining their
exposure histories to PM2.5 without
intervention

Cox model Composite health
score

Yes

HWSE healthy worker survivor effect, IPTW inverse probability weighting, TMLE targeted maximum likelihood estimation, PM2.5 particulate matter
<2.5 μm in diameter
a Follow-up started at dieselization at each mine so the cohort was an inception cohort with respect to diesel exhaust exposure, though not with respect to
employment
b Estimate of model coefficient that is unaffected by HWSE mechanism was combined with data and assumptions to obtain an estimate of a target
parameter that is affected by HWSE mechanism
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Target Parameters

Epidemiologic studies try to answer questions about the rela-
tionship between an exposure and a health outcome in a pop-
ulation. Target parameters provide answers to those questions;
they summarize the relationship of interest with a single num-
ber, or a series of numbers [23]. Familiar target parameters
include standardized mortality ratios, odds ratios, hazard ra-
tios, and regression slopes.

The directed acyclic graph (DAG) presented in Fig. 1a
describes the data generating process for a simplified occupa-
tional cohort study with two time points. Researchers use this
study design to estimate the effect that long-term workplace
exposure has on an adverse health outcome, with the ultimate
goal of evaluating limits to mitigate lifetime risk in the work-
force [9, 11, 13, 24]. Measured variables for these data are:
exposure assessed at the two time points (A1 and A2), time-
varying health status measured at the end of time point 1 (H),
and an outcomemeasured at the end of time point 2 (Y). There
also are unmeasured shared predictors (U) of underlying
health status and the outcome, representing differences in sus-
ceptibility or other risk factors within the population.

There are two direct pathways by which exposure causes
the outcome: A1→Yand A2→Y. There are also two indirect
pathways by which exposure causally affects the outcome:
A1 → H → Y and A1 → H → A2 → Y. We represent the
pathways in the DAG that constitute the healthy worker sur-
vivor effect mechanism using hollow arrows.

One of the basic processes by which the healthy worker
survivor bias perpetuates itself is via the arrow between H and
A2. Workers in poorer health tend to accrue less exposure,
whether by reducing the amount of time that they work, by
switching to lower exposed jobs, or by leaving the workforce
entirely. The workers who tend to survive in the active work-
force and to accrue the most exposure, conversely, are the
healthiest ones. The variable H acts as a time-varying con-
founder on the causal pathway: it both contains a portion of
the effect of past exposure (A1 → H → Y) and acts as a

confounder of the future exposure-response relationship
(A2 ← H → Y). Estimation of unbiased causal effects of
exposure from data structures including these pathways re-
quires the use of a class of modern statistical estimation ap-
proaches known collectively as g-methods [25–28].

Researchers can apply most g-methods with standard soft-
ware using the traditional tools of epidemiologic research:
standardization, weighting, and regression. Each of the g-
methods (including inverse probability weighted estimation
of marginal structural models, g-computation, targeted maxi-
mum likelihood based estimation (TMLE), and g-estimation of
structural nested models) can be applied to estimate different
target parameters. These parameters are often defined using the
language of interventions to articulate questions that, if an-
swered, capture the causal relationship between exposure and
outcome. Target parameters for these methods are structured as
answers to questions about disease occurrence under counter-
factual scenarios. They estimate the outcome(s) in a target
population if the specified intervention(s) had been imposed.
The ability of researchers to estimate these parameters from
their observed data relies on the key assumptions of consisten-
cy, conditional exchangeability, and positivity [11, 29].

Consider two possible interventions on the system de-
scribed in Fig. 1a. In each intervention, all workers experience
the same fixed level of exposure: in the first, exposure is
always high, and in the second, exposure is always low. If
these two interventions were implemented, health status
would not act as a time-varying confounder in the resulting
data. Workers who in reality would tend to transfer to jobs
with more or less exposure as a function of this health status
would instead remain at their original exposure level for the
entire study period. The effect of exposure could be inferred
from the comparison of the outcomes experienced by the same
worker cohort under each intervention. By defining these
structural parameters with reference to an intervention of in-
terest, epidemiologists can identify questions that isolate the
causal effect of the exposure under study [30]. To be clear,
some of these interventions are not intended to be

Fig. 1 Directed acyclic graphs describing the data generating processes
for theoretical occupational health cohort studies of exposure (A) on an
outcome (Y). The subscripts under A represent the time point of the
exposure, so A1 is exposure that occurs in the first year of follow-up,
A2 represents exposure in the second year, and A0 represents exposure
that occurs at time 0 prior to the start of follow-up. U represents an
unmeasured covariate affecting either an adverse health status (H) or

work status (W) and the outcome (Y). Solid arrows represent the
relevant causal effect of exposure on the outcome unmediated by future
exposure, while hollow arrows represent pathways that constitute the
healthy worker survivor effect mechanisms. a The time-varying
confounding on the causal pathway that occurs via adverse health status
(H). b The selection process that occurs when researchers condition on
work status (W) by choosing a population of active workers for follow-up
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implemented; they are clearly infeasible due to both practical
and ethical considerations. Rather they are chosen because, if
they were to be implemented, their resulting data would pro-
vide an easily interpretable way to estimate the causal effect of
the exposures under study.

By contrast, target parameters from traditional approaches,
such as standardized mortality ratios or Cox proportional haz-
ards, evaluate risk by comparing observed groups who actu-
ally experienced different exposure histories [11, 13]. The risk
among the highest exposed subset is evaluated among a select
group of the healthiest and most robust workers. It is no sur-
prise, therefore, that these estimands underestimate the risk for
the entire population.

We define bias as an expected difference between an
estimand (ξ ) and the true value of its target (ξ0). For an unbi-
ased estimand, the two values are equivalent (ξ¼ ξ0 ).
Counterintuitively, some estimation targets (i.e., some ξ0 s)
are affected by the mechanisms of the HWSE. Thus, a param-
eter can be unbiased, in that ξ ¼ ξ0, even though the value of
ξ0 might depend on the strength of the HWSE mechanisms
(for example, the causal relationship between H and A2).

We distinguish between two types of causal parameters
corresponding to interventions. A causal contrast that corre-
sponds to the biologic effect of exposure on an outcome is an
example of a target parameter whose true value is not affected
by the HWSE mechanisms. A valid way to evaluate this
etiologic effect would be to compare the outcomes of two
hypothetical interventions, one with high exposure, and one
with low exposure, in a working population. All workers
would remain at work for the duration of both interventions
and receive their assigned exposure. In an occupational con-
text, the controlled direct effect [31] estimated by contrasting
the outcomes under these two interventions would represent
the etiologic effect of exposure.

By contrast, a target parameter corresponding to a more
realistic intervention might be affected by the HWSE mecha-
nisms. For example, researchers may be interested in interven-
tions that reduce occupational exposure limits to specific
levels. These interventions are typically of the nature “if at
work then exposure is set at or below the exposure limit.”
These are dynamic interventions dependent on a subject’s em-
ployment status, in contrast to static “always at work and
always exposed” interventions [32, 33]. These realistic inter-
ventions allow workers to leave work and be unexposed if not
at work, as would be expected in a real-world setting where
workers can opt to leave work (the interventions may be un-
realistic in other ways). The counterfactual outcomes under
these realistic interventions can be compared to the observed
outcome (under the natural course of events), and causal pa-
rameters such as the risk difference can be obtained. Under
such interventions and comparisons, the true value of the
estimand is affected by the strength of the associations denot-
ed by the hollow arrows in the DAG in Fig. 1a.

If exposure is an irritant, some workers might leave work
earlier under a high exposure scenario, become subsequently
unexposed, and as a result accumulate less exposure than they
would have under a low exposure scenario. The higher expo-
sure scenario may then result in lower risk for the population
than the lower exposure scenario even though exposure is
harmful. Assessment of such interventions is therefore aimed
not necessarily at estimating the etiologic effect of exposure
on an outcome, but rather at estimating what would happen in
a realistic or real-world intervention on the target population.

Target Populations

A group of people who all start work on the same day may
include workers with varying degrees of susceptibility to the
health effects of exposure. If workers who are more suscepti-
ble leave work and/or experience the outcome prior to the start
of follow-up, then the subset of workers who remain eligible
for the study at the start of follow-up will have a greater pro-
portion of “immune” workers, or survivors, than the popula-
tion of workers from which they came. If the study population
is then defined to include only the workers who were still
employed at the start of follow-up, the study population con-
sists of all surviving workers: those who do not yet have the
exposure-related outcome of interest. One could use these data
to obtain an unbiased estimate of the target parameter for a
population of workers culled of the susceptible, but the esti-
mate would likely not be generalizable to a population of all
workers, potentially dampening its utility in guiding health-
based exposure limits. If, instead, the target population is all
workers ever employed in that workplace, then a study popu-
lation of surviving workers may be a biased sample of the
target population, and any resulting target parameter will suf-
fer from selection bias.

Many occupational cohorts are defined to include a cross-
sectional sample of workers already employed at the start of
follow-up [14•, 15•, 16•, 17•, 18•, 34, 35]. These workers
constitute a left-truncated cohort [34, 36–39]. The DAG in
Fig. 1b demonstrates how this choice of analytical cohort, in
combination with the HWSE mechanisms, can result in bias
due to selection. The DAG includes a conditioning on active
employment at the start of follow-up. This defines a cohort
based on a cross-sectional sample of the workers who began
employment prior to the start of follow-up. The variableW, an
indicator representing active employment, serves as the time-
varying confounder on the causal pathway between exposure
at time 0 and the outcome. The box around W represents the
selection criterion for entry into the cohort (only workers with
W = 1 are included in the study population). This conditioning
opens up a pathway from previous exposure through the un-
measured confounder to the outcome (A0 → W ← U → Y)
and, without additional assumptions, prevents identification of

Curr Envir Health Rpt (2017) 4:364–372 367



the causal effect of exposure prior to the start of follow-up [9].
That is, conditioning on a descendent of exposure usually
results in selection bias that affects any estimates derived from
the resultant cohort [10]. In reality, many occupational cohorts
include those still at work at the beginning of follow-up as
well as any workers hired during follow-up, and therefore will
only be proportionally affected by this mechanism.

We can also view this effect as an instructive example of
the concept of transportability, or external validity.
Bareinboim and Pearl have given transportability a formal
definition and demonstrated the use of DAGs to identify sys-
tems whose measured effects are transportable to each other
[40]. If we apply this principle to our DAG in Fig. 1b, we can
see that the unblocked pathway between exposure prior to the
start of follow-up (A0) and the outcome prevents simple trans-
portability, or generalizability, between the left-truncated co-
hort and the original group of workers from which they were
selected. This implies that effect measures estimated in the
left-truncated cohort will not necessarily be the same as might
be observed from the original “inception” population. A clear
discussion of the target population should acknowledge that
any cross-sectional cohort may have been subject to a selec-
tion process that distinguishes it from the original full cohort
from which it was sampled.

The question of external validity is fundamental to all ep-
idemiologic research [13, 41]. We emphasize it here to high-
light the fact that the same HWSE structural mechanisms (cf
Fig. 1a, b) that cause time-varying confounding can also cause
bias due to sample selection. Despite the commonalities in
their origins, successfully addressing both biases requires dis-
tinct epidemiologic approaches. In the following sections, we
discuss the roles that identification of target parameters and
target populations played in addressing potential bias due to
the HWSE mechanisms in recent published research.

Methods for Estimating Exposure Effects in Cohorts
With Healthy Worker Survivor Effect Present

Using recent applications in the literature (summarized in
Table 1), we describe several different estimation approaches
used to address healthy worker survivor bias and focus on
how the applications relate to the key ideas of target parame-
ters and target populations developed above.

Inverse Probability of Treatment Weighting

Inverse probability of treatment weighting (IPTW) estimation
reweights observed data using weights that are inversely pro-
portional to the probability that each subject received their
observed exposure history, creating a pseudo-population in
which measured confounders no longer predict exposure
[42–44]. Exposure effects can then be estimated from this

re-weighted population using marginal structural models that
include exposure as the only predictor for the outcome.

In a cohort of actively employed aluminum manufacturing
workers, Neophytou et al. used marginal structural Cox
models to estimate the effect of exposure to particulate matter
<2.5 μm in diameter (PM2.5) on the incidence of ischemic
heart disease while still employed, adjusting for time-
varying confounding by a composite health score [14•]. The
target parameter was the ratio of the average hazard of heart
disease during follow-up that would have been observed if all
workers in the target population were always exposed above
the PM2.5 cutoff while at work, to the average hazard that
would have been observed if all workers were always exposed
below the cutoff while at work. Results from this analysis
were protected from potential bias caused by time-varying
confounding by the health risk score. The analytic cohort
was a population of surviving workers and new hires. The
results are considered unbiased if the target population is de-
fined as this analytic cohort, but may have limited transport-
ability to all workers. Results based on the survivor population
vs. the inception population were explored further in Costello
et al., discussed below [22•].

G-Computation/the Parametric G-Formula

G-computation, or the parametric g-formula, is an extension
of standardization for time-varying exposures. G-computation
allows the estimation of the risk of an outcome as a weighted
sum (or integral) of the probability of the outcome conditional
on its risk factors. The parametric g-formula relies on para-
metric models to predict the probabilities of the outcome and
all other risk factors.

Keil and Richardson apply the parametric g-formula to
estimate the effect of hypothetical interventions modifying
occupational exposures to arsenic in a cohort of copper smelt-
er workers [15•]. Cumulative incidences (from age 20 on-
wards) for respiratory cancers, heart disease, and other causes
were estimated under each intervention and compared to the
natural course (observed cumulative incidence). The interven-
tions of interest allowed workers to leave work, so the true
value of the target parameter was affected by the strength of
the relationship between exposure and leaving work and the
association between leaving work and the outcomes.
However, this does not mean that the findings were biased
due to time-varying confounding by employment status, as
the realistic target parameter of interest was identifiable from
the observed data. Both the analytic population and target
population included workers hired before the start of follow-
up. Thus, their results may have limited generalizability to the
population of all workers at this smelter.

Neophytou et al. use a similar approach to estimate risk of
lung cancer under interventions modifying occupational ex-
posure to diesel exhaust in a cohort of underground non-metal
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miners [16•]. The authors report risk differences and risk ratios
comparing each intervention to the natural course of each
disease, as well as the attributable fraction of lung cancer cases
for the exposure of interest. The intervention of interest
allowed workers to leave work, so the true value of the effect
being estimated was affected by the strength of the relation-
ship between exposure and leaving work, but again, the find-
ings are not affected by bias resulting from time-varying con-
founding by employment status. The start of follow-up in the
analytic population coincided with dieselization of participat-
ing mines, but included workers hired before the start of fol-
low-up. Although this may be considered as an “inception”
cohort from the point of view of the exposure of interest, the
results may still not be transportable to a population of all
underground non-metal miners.

Targeted Maximum Likelihood Estimation

Targeted maximum likelihood estimation is a generalized
methodology for performing causal inference introduced by
van der Laan and colleagues [45]. Applied to a longitudinal
cohort, TMLE uses a sequential estimation process to remove
the time-varying confounding at each time point, allowing the
estimation of intervention-based target parameters [46, 47].
Each sequential estimation is targeted to the parameter of in-
terest, providing efficient estimation and double robustness.

Brown et al. studied the effects of airborne exposure to
PM2.5 on the development of ischemic heart disease while
employed in an active cohort of aluminum workers [17•].
They estimated the marginal 12-year cumulative incidence
of heart disease under different exposure interventions. The
target parameter compared the incidence that would have been
observed if all workers had remained at work and were con-
tinuously exposed above the median PM2.5 compared to what
would have been observed if each worker were continuously
exposed below the median PM2.5 and remained at work. They
adjusted for potential time-varying confounding of the expo-
sure assignment and employment termination processes by
the underlying health risk score, hypertension, dyslipidemia,
and diabetes. The cohort included previously hired workers,
thereby limiting the transportability of the results to the cohort
of all workers ever employed.

G-Estimation of Structural Nested (Accelerated Failure
Time) Models

Instead of combining exposures over time to compute cumu-
lative exposure and then estimating its composite effect on the
outcome, g-estimation of a structural nested accelerated fail-
ure time model removes time-varying confounding by esti-
mating the effect of exposure at each time separately, adjusting
only for past covariates, and then combining those effects

together over time. In this way, the effect estimate is free from
confounding by measured time-varying covariates [48, 49].

This approach assumes that the effect of exposure (if such
exposure could occur) would be the same after leaving em-
ployment as it is during employment [11]. This allows us to
estimate an etiologic effect and avoid considering inter-
ventions on employment status. In the papers discussed
below, the models chosen assume that there is no effect
measure modification by any covariate. These applica-
tions of structural nested accelerated failure time models
yield a parameter corresponding to the ratio of median
survival times comparing what would have happened un-
der two counterfactual exposure interventions. The exact
nature of the scenarios depends on the model and exposure
metric. Because this ratio compares two interventions on
exposure, ignoring employment status, the true value of
the target parameter does not depend on the observed
strength of the relationship between employment status
(or other variables H) and later exposure. Nevertheless,
estimation of this target parameter still requires correct
adjustment for time-varying covariates.

Keil et al. use this approach to assess the effect of occupa-
tional exposure to radon on lung cancer mortality in a cohort
of male uranium miners in Colorado [18•]. The authors esti-
mated the ratio of median survival times that would have been
observed for an increase in cumulative exposure equivalent to
100 working level months, assuming the relationship between
exposure and survival time to be linear. The analysis adjusted
for employment status as the main time-varying confounder.
The analytic population included workers hired before study
initiation, possibly limiting generalizability of the results to a
population of all workers in these mines.

The estimate of the primary parameter of an accelerated
failure time model has also been used to derive estimates of
other target parameters. Examples include (a) the hazard ratio
comparing everyone being exposed for the first 15 years of
follow-up to everyone never being exposed [18•] and (b) the
total and/or average number of person-years of life that could
have been saved in the cohort by enforcing various exposure
limits [19•, 20•, 21•]. These other target parameters generally
require additional assumptions and depend on other properties
of the observed data, such as the distribution of survival time
or exposure; those listed under (b) compare what would have
happened under an intervention to what actually happened
and are therefore affected by the HWSE mechanisms in the
observed data.

Excluding Workers Hired Before the Start of Follow-Up

If the target population is all workers, one would ideally study
an inception cohort (a group of workers followed from their
very first day at work) in order to completely eliminate the
selection bias induced by the HWSE. Such a cohort emulates
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features of a randomized controlled trial where follow-up
time, exposure, and eligibility all start at the same time
[50–52]. In some situations, study design or statistical power
considerations may prohibit analysis of an inception cohort;
nevertheless, the inception cohort from which the study sam-
ple was drawn is often the target population.

In a recent paper, Costello et al. analyzed data from a cohort
of aluminum manufacturing workers exposed to PM2.5 and
followed for ischemic heart disease while still employed
[22•]. When follow-up started, most workers in the cohort
were currently employed; 38% were hired after the start of
follow-up. Results were presented for the full cohort, for the
sub-cohort hired after the start of follow-up, and for those
hired 10 and 25 years prior to the start of follow-up.
Restriction to those hired after the start of follow-up yielded
the strongest hazard ratios for PM2.5 and heart disease inci-
dence, consistent with reduced selection bias. Results suggest
that restriction by hire date also reduces the magnitude of the
selection bias. Thus, even if restriction to an inception cohort
is not feasible, partial restriction can help alleviate the bias if
the target population includes all workers.

Discussion

Due to their common structural origins, time-varying con-
founding affected by prior exposure and the potential for left
truncation bias generally co-occur in occupational studies. In
several of the works we discussed above in the context of one
of these issues, both were actually addressed to a degree.
Picciotto et al. used g-estimation to address confounding by
both employment status and intermittent time off work; the
study population was also restricted to create an inception co-
hort, thus addressing both aspects of the problem [20•, 21•].
Similarly, Costello et al. used ITPW to address time-varying
confounding affected by prior exposure and cohort restriction
to address left truncation in the aluminum smelter worker sub-
cohort in which both processes were operating [22•].

There are cases in which the target population is not an
inception cohort, but rather includes workers hired before
the start of follow-up. For example, a reasonable research
question might be to quantify the impact an intervention
would have had if implementation had occurred on a particu-
lar date and affected all current employees, similar to the in-
terventions discussed in Keil and Richardson [15•] and
Neophytou et al. [16•]. This question concerns a realistic
workplace intervention that would have impacted both those
workers employed prior to the start of follow-up and those
hired afterwards. The transportability of such a parameter to
other worker populations including future workers, and its
utility for guiding the development of occupational exposure
limits, should be carefully evaluated in future research.

There are several steps that researchers can undertake in
order to best address concerns about bias arising from the
HWSE. First, identify the target population and evaluate
whether it differs from the observed cohort. Determine if an
incident cohort is a viable analytical sample and if there is any
information about workers who left prior to the start of follow-
up. Second, identify the target parameter, which might corre-
spond to an intervention on workers’ exposure and possibly
employment status, and choose an analytic approach that can
estimate that target parameter in the particular dataset available.
No single analytic approach is sufficient to ensure unbiased
estimation in every occupational setting. Each of the estimation
approaches we discuss above offers the ability to control for the
time-varying confounding that characterizes the HWSE.

IPTWestimation is the simplest to implement and has gen-
erally been used when there are no concerns about structural
non-positivity, such as when all follow-up time occurs among
employed workers. When follow-up extends past employ-
ment termination, g-computation or longitudinal TMLE can
be used, although the intervention definition should carefully
consider the role of leaving work. G-estimation also offers the
ability to use follow-up time after leaving work, but has thus
far been applied only with a limited class of models.
Extensions of any of these estimation approaches to different
target parameters should be explored more in future research
for various target populations. Deciding which to use may
come down to ease of implementation and the researcher’s
willingness to make modeling assumptions.

Conclusion

The HWSE has resisted easy classification because of its mul-
tifaceted origins. In this review, we distinguish between the
mechanisms of HWSE and the bias it can cause through dis-
cussion of target populations and target parameters in the con-
text of recent applications of g-methods.We conclude with the
hope that more occupational epidemiologists will structure
their research around these concepts and thereby better esti-
mate the risks associated with workplace exposures.
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