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Abstract
Purpose of Review Epidemiological and animal studies sug-
gest that air pollution may negatively affect the central ner-
vous system (CNS) and contribute to CNS diseases. Traffic-
related air pollution is a major contributor to global air pollu-
tion, and diesel exhaust (DE) is its most important component.
Recent Findings Several studies suggest that young individ-
uals may be particularly susceptible to air pollution-induced
neurotoxicity and that perinatal exposure may cause or con-
tribute to developmental disabilities and behavioral abnormal-
ities. In particular, a number of recent studies have found
associations between exposures to traffic-related air pollution
and autism spectrum disorders (ASD), which are character-
ized by impairment in socialization and in communication
and by the presence of repetitive and unusual behaviors. The
cause(s) of ASD are unknown, and while it may have a he-
reditary component, environmental factors are increasingly

suspected as playing a pivotal role in its etiology, particularly
in genetically susceptible individuals.
Summary Autistic children present higher levels of neuroin-
flammation and systemic inflammation, which are also hall-
marks of exposure to traffic-related air pollution. Gene-
environment interactions may play a relevant role in determin-
ing individual susceptibility to air pollution developmental
neurotoxicity. Given the worldwide presence of elevated air
pollution, studies on its effects and mechanisms on the devel-
oping brain, genetic susceptibility, role in neurodevelopmental
disorders, and possible therapeutic interventions are certainly
warranted.
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Introduction

Airpollutionisamixtureofseveralcomponents, includinggases,
organic compounds, metals, and ambient particulate matter
(PM); the latter is believed to be the most widespread threat and
has been heavily implicated in disease [1, 2]. The populations of
many countries, particularly in South and East Asia, are often
exposed to relatively high levels of PM (≥100 μg/m3) [3, 4•].
PM is broadly characterized by aerodynamic diameter (e.g.,
PM10, equivalent to <10μm in diameter). Traffic-related air pol-
lution is a major contributor to global air pollution, and diesel
exhaust (DE) is its most important component [5]. DE contains
more than 40 toxic air pollutants and is a major constituent of
ambient PM, particularly of fine (PM2.5) and ultrafine (UFPM;
<100 nm) PM [6]. DE exposure is often utilized as a measure of
traffic-relatedairpollution.Theassociationbetweenairpollution
and morbidity and mortality caused by respiratory and
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cardiovascular diseases is well established [7, 8], and oxidative
stress and inflammation are believed to be themost relevant con-
tributors to such effects [9].

In recent years, evidence has been accumulating fromhuman
epidemiological and animal studies which indicates that air pol-
lution may negatively affect the central nervous system (CNS)
andcontribute toCNSdiseases[10–15].PM2.5andUFPMareof
much concern, as these particles can enter the circulation and
distribute to various organs, including the brain [12, 16], in addi-
tion to gaining direct access to the brain through the nasal olfac-
tory mucosa [17–20]. Decreased cognitive function, olfactory
dysfunction, auditory deficits, depressive symptoms, and other
adverse neuropsychological effects have also been reported
[21–26]. Post-mortem investigations in highly exposed individ-
uals have revealed increasedmarkers of neuroinflammation and
of neurodegenerative pathologies [24, 27–29]. Animal studies
corroborate the human observations [2, 30]. For example, dogs
exposed to heavy air pollution presented evidence of chronic
inflammation and neurodegeneration in various brain regions
[10, 31], and mice exposed to traffic in a highway tunnel had
higher levels of pro-inflammatory cytokines in the brain [32].
Controlled exposure to DE has been reported to alter motor ac-
tivity, spatial learning andmemory, and novel object recognition
ability in mice and to alter emotional behavior and learning ca-
pability in rats [33, 34]. Prominent effects of DE exposure in the
CNS are oxidative stress and neuroinflammation [35–40].

Developmental Neurotoxicity of Air Pollution

Epidemiological and animal studies suggest that young indi-
viduals may be particularly susceptible to air pollution-
induced neurotoxicity [22, 24, 26–28, 41–45]. Human studies
have revealed a series of biochemical and behavioral alter-
ations in children exposed pre- and/or postnatally to elevated
air pollution. In addition, developmental exposure to air pol-
lution, particularly traffic-related air pollution, has been sug-
gested to play a role as an etiological factor in autism spectrum
disorders (see the following sections).

A series of studies in Mexico City have revealed elevated
levels of neuroinflammatory markers in the brain of children
exposed to high air pollution, as well as cognitive deficits [24,
27, 42, 46]. Saenen et al. [47] found a decreased expression of
genes associated with the brain-derived growth factor signal-
ing pathway in placenta upon exposure to PM2.5. Newman
et al. [48] reported hyperactivity in 7-year-old children asso-
ciated with early-life exposure to traffic-related air pollution.
In six European cohorts, exposure to air pollution during preg-
nancy was found to be associated with delayed psychomotor
development [43]. Similar results were found in a study in
Japan, in which air pollution exposure during gestation was
associated with delays in developmental milestones in chil-
dren at both 2.5 and 5.5 years of age [49]. Additional studies

reported that exposure to traffic-related air pollution was in-
versely associated with sustained attention in adolescents [50]
and with cognitive development in primary school children
[51]. The latter was confirmed in another study in Spain,
in which developmental exposure to PM2.5 was associated
with a 11–30% reduction in cognitive development [52•]. In
a population of children in Eastern Massachusetts, mid-
childhood exposure to air pollution, particularly to black car-
bon, was reported to be associated with diminished executive
functions at 6–10 years of age [53]. Chiu et al. [54] reported
that prenatal exposure to air pollution was associated with a
number of behavioral alterations in children, mostly in boys.
In particular, exposure to PM2.5 in gestational weeks 31–36
was associated with lower IQ, while earlier exposures (weeks
20–26) were associated with lower attention. Deficits in reac-
tion time and memory were also found [54]. In a recent re-
view, Xu et al. [55] identified a total of 41 human studies
which examined the potential effects of ambient or traffic-
related air pollution on children (including those specifically
investigating autism). They concluded that “evidence suggests
that prenatal exposure to air pollutants may have impacts of
child neurodevelopment regardless of different study designs,
study populations, air pollution exposure assessments, and
outcome measurements” [55].

Experimental studies also indicate that developmental ex-
posure to DE may cause neurotoxicity [56]. In utero exposure
to high levels of DE (1.0 mg/m3) caused alterations in motor
activity, motor coordination, and impulsive behavior, as well
as changes in neurotransmitters, in male offspring [34, 57, 58].
Depression-like responses were found in mice exposed prena-
tally to urban air nanoparticles at somewhat lower concentra-
tions (350 μg/m3) [59]. Additional studies have shown that
developmental DE exposure of mice alters motor activity,
spatial learning and memory, and novel object recognition
ability and causes changes in gene expression, neuroinflam-
mation, and oxidative damage [33, 60–64]. Prenatal exposure
of mice to a low level of DE (90 μg/m3) has been found to
enhance territorial aggression induced by social isolation in
male mice [65]. Early postnatal exposure of mice to concen-
trated ambient PM was reported to cause various behavioral
changes, including long-term impairment of short-term mem-
ory, and impulsivity-like behavior [66, 67]. Additional human
and animal studies have focused on the potential effects of
developmental air pollutant exposure on autism-like behaviors
and of their potential etiological role in autism and are
discussed in the following section.

Developmental Exposure to Air Pollution
and Autism Spectrum Disorders

Autism is a neurodevelopmental disorder characterized by
marked reduction of social and communicative skills and by
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the presence of stereotyped behaviors [68]. The term autism
spectrum disorders (ASD) is usually utilized to include autism
and a range of similar disorders, such as Asperger’s syndrome.
The symptoms of ASD are typically present before the age of
3 and are often accompanied by abnormalities of cognitive
functioning, learning, attention, and sensory processing [68].
The incidence of ASD appears to have increased in the past
few decades, and it is now estimated at about 7–9/1000,
though certain studies have identified up to 27/1000 children
affected by ASD [69, 70]. ASD is more common in males
than in females [71] and represents an important societal prob-
lem, as the economic burden of caring for an individual with
ASD and intellectual disability during his/her lifespan has
been estimated at $2.4 million [72]. Children with ASD pres-
ent a number of morphological abnormalities in the brain [68,
73, 74] and alterations in certain neurotransmitter systems
[75]. They also have higher levels of oxidative stress
[76–78], as well as neuroinflammation and increased systemic
inflammation [79–83].

The etiological basis of ASD is unknown, and susceptibil-
ity is attributable to both genetic and environmental factors
[68, 84–88]. Several candidate susceptibility genes for ASD
have been identified, but no single anomaly appears to pre-
dominate, and the total fraction of ASD attributable to genetic
inheritance may be only about 30–50% [85, 89]. DNA meth-
ylation is also altered in the autistic brain, suggesting that
epigenetic dysregulation may also contribute to ASD [90,
91]. It is thus apparent that ASD likely results from the com-
plex interactions between genes conferring vulnerability and
diverse environmental factors. In addition to air pollution (par-
ticularly traffic-related), which is discussed in the next section,
chemicals studied in this regard include metals (e.g., mercury,
lead), pesticides (e.g., organophosphates), and other industrial
chemicals (e.g., polybrominated diphenyl ethers, organochlo-
rine compounds) [87, 88, 92, 93]. Perhaps the strongest asso-
ciation between an environmental factor and ASD has been
found with maternal infection [94]. Studies in humans and in
various animal species have indeed evidenced that maternal
immune activation (MIA), due to viral or bacterial infection,
increases neuroinflammation in the placenta and in the fetal
brain, leading to offspring that display ASD-like behaviors
[95, 96, 97••, 98]. As discussed in a further section, several
effects seen in MIA are also found upon developmental expo-
sure to air pollution.

Traffic-Related Air Pollution and ASD Several studies have
found associations between exposures to traffic-related air
pollution and ASD [2, 99]. Two studies in California by
Volk et al. [100, 101] found that residential proximity to free-
ways and gestational and early-life exposure to traffic-related
air pollution were associated with autism (OR = 1.86; 95%
CI = 1.04–3.45). Similar results were obtained in another ep-
idemiological study in California [102] and, in another one,

part of the Nurses’ Health Study II, in which perinatal DE
exposure was significantly associated with ASD, particularly
in boys [103]. Two further studies in Taiwan [104] and in
Pennsylvania [105] also reported of an increased risk of
ASD associated with PM and air pollution exposure, while a
study by Guxens et al. [106] in four European cohorts found
no associations. An additional study in two cohorts in North
Carolina and California reported an association between PM
exposure and ASD, particularly when exposure occurred in
the third trimester of pregnancy [107•]. The higher suscepti-
bility of third trimester exposure was also evidenced by a
study of Raz et al. [108] in the Nurses’Health Study II cohort.

The few available animal studies are in agreement with the
human observations [2, 30]. Prenatal exposure to DE has been
shown to disrupt DNAmethylation in the brain [109]. Prenatal
and early-life exposure of mice to DE is associated with a
number of behaviors similar to those present in humans with
ASD, including higher levels of motor activity, elevated levels
of self-grooming, and increased rearing [110]. Postnatal expo-
sure, on postnatal days (PND) 4–7 and 10–13, to concentrated
ambient ultrafine particles caused persistent glial cell (astro-
cytes and microglia) activation, and ventriculomegaly (lateral
ventricular dilation), which occurred preferentially in male
mice [67, 111•]. Brain region- and sex-dependent alterations
in cytokines and neurotransmitters were also found in exposed
male and female mice [111•]. Using the same exposure pro-
tocol, these investigators also reported a decreased corpus
callosum in both male and female mice, and an increase of
glutamate levels, with an excitatory/inhibitory imbalance
[112]. Chang et al. (in preparation) found that perinatal expo-
sure of mice to DE at environmentally relevant concentrations
[250–300 μg/m3, from gestational day (GD) 0 to PND 21]
caused significant behavioral alterations relevant to ASD, in
the domains of persistent/repetitive behaviors, communica-
tion, and social interactions. Interestingly, the effects of devel-
opmental DE exposure were more robust if exposure occurred
in both the prenatal (GD 0 to Birth) and postnatal (PND 1–21)
periods. Human studies indicated that the association between
air pollution and ASD is stronger when exposure occurs in the
third trimester of pregnancy [107•, 108, 113, 114]. Due to
different rates of brain development, the third trimester of
pregnancy in humans is equivalent to the first few postnatal
weeks in mice and rats [115, 116]. Animal studies, which
report robust effects when exposure occurred or continued
postnatally (66, 67, 110; Chang et al. in preparation), are thus
in agreement with human observations.

Possible Mechanisms of Developmental
Neurotoxicity of Traffic-Related Air Pollution

Currently, the most prominent reported effects of air pollution
on the CNS are related to microglia activation with ensuing
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oxidative stress and neuroinflammation. Such effects have
been found in vivo [35–39] and have been reproduced
in vitro [117, 118]. For example, in the latter study [118], it
was found that diesel exhaust particles activate microglia;
microglia-generated oxidant species and pro-inflammatory
cytokines such as IL-6 cause neuronal toxicity, which can be
prevented by inhibiting microglia activation.

This chain of events may explain many of the observed
effects seen in the brain of rodents following developmental
air pollution exposure. For example, microglia-generated pro-
inflammatory cytokines could lead to the observed
hypomyelination and ventriculomegaly via toxicity to oligo-
dendrocytes [112]. Closely related to ASD is also the hypoth-
esis of a possible impairment by DE of the reelin signaling
system (see Fig. 1). Reelin is a signaling glycoprotein, secret-
ed in the marginal zone of the developing cerebral cortex by
Cajal-Retzius cells [119], which plays a most relevant role in
neuronal migration and establishment of neuronal polarity
[120–123]. In the adult nervous system, reelin is expressed
in GABAergic interneurons in the cortex and the hippocam-
pus, where it modulates learning and memory processes, and
its reduction may contribute to Alzheimer’s disease [124]. The
canonical reelin signaling pathway is activated upon binding
of reelin to VLDL receptor and APoE receptor 2, which trig-
gers tyrosine phosphorylation of the intracellular adaptor pro-
tein disabled-1 (Dab1). Phosphorylated Dab1 then activates a
kinase cascade involving PI-3 kinase, LIM kinase-1, and sev-
eral others [123]. Such complex networks of signaling path-
ways mediate the ultimate effects of reelin on neuronal migra-
tion and polarity in the developing brain. Strong evidence
exists for an involvement of reelin in ASD. First, reelin ex-
pression is significantly decreased in the brain from ASD sub-
jects [121, 125]. Second, the reelin gene, which maps at chro-
mosome 7q22, is affected in several autistic pedigrees

[126–129]. Third, the methylation pattern at the reelin gene
promoter is different in ASD and control post-mortem brains
[130]. Fourth, mice lacking the C-terminal region of reelin
exhibit behavioral abnormalities related to ASD [131]. Fifth,
the reeler (rl−/−) mouse, a spontaneously arising mutant
mouse, displays several ASD-like morphological and behav-
ioral traits [132, 133]. Sixth, cortical disorganization has been
reported in reelin-deficient mice and in ASD patients [74,
134]. Seventh, dysregulation of reelin-driven cortical neuron
migration is present in ASD [133]. In addition to all this, MIA,
which leads to offspring that display neuroinflammation and
ASD-like behaviors [95, 96], has been shown to decrease
levels of reelin protein and mRNA in the brain of offspring
[135–138]. The notion that oxidative stress and neuroinflam-
mation may play an important role in modulating reelin ex-
pression is also supported by studies showing that N-
acetylcysteine completely prevents lipopolysaccharide
(LPS)-induced decreases of reelin [137]. In our laboratory,
we have found that developmental DE exposure (250–
300 μg/m3 from GD 0 to PND 21) causes neuroinflammation
(as evidenced by an increase in IL-6 mRNA) and a decrease of
reelin expression (Chang et al., unpublished results).

Additionalmechanistichypothesesmayandshouldbeformu-
lated with regard to possible effects of developmental air pollu-
tion exposure on the observed excitatory/inhibitory imbalance,
which is believed to be relevant in ASD [139]. While such im-
balance may be due to a reduced GABAergic action or to an
increased glutamatergic one, recent evidence suggests that in
individuals with ASD, the deficit lies in a reduced GABAergic
action [140]. The “reelin hypothesis” discussed above may pro-
vide at least a partial mechanistic explanation even in this case.
By inducing neuroinflammation, and specifically by increasing
levels of IL-6, air pollution would also increase expression of
DNA methyltransferase-1 (DNMT1) via the JAK/STAT

Fig. 1. Scheme of a proposed
mechanism of developmental
effects of diesel exhaust involving
disruption of the reelin pathway
(see text for details)
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pathway [141].DNMT1,which in turnmodulates theexpression
of reelin [142, 143], has been found to be increased upon devel-
opmentalDEexposure (Changet al., unpublished results). Since
DNMT1alsodecreases theexpressionofGAD67(glutamicacid
decarboxylase 67), a marker of inhibitory GABAergic interneu-
rons [143], this decrease would diminish inhibitoryGABAergic
neurotransmission, thereby disrupting the balance of excitation/
inhibition, as found inASD and inmousemodels ofASD [144].
Of interest is that also maternal immune activation causes a de-
crease of GAD67 [145].

Possible Gene-Environment Interactions
in the Developmental Neurotoxicity
of Traffic-Related Air Pollution

Animal models that resemble core human autistic symptoms
may be useful for studying the etiology and molecular patho-
genesis of autism and for discovering gene-environment inter-
actions [146]. Various strains of mice have been identified that
display at least some behavioral traits relevant to ASD, carry-
ing either specific genetic mutations [144, 147] or others
whose genetic traits have not been fully characterized, such
as the BTBR mouse [148, 149]. However, the marked alter-
ations already present in these mice may represent a “ceiling”
effect, and these strains may not be amenable to investigate
gene-environment interactions. Nevertheless, De Felice et al.
[150, 151] investigated the effects of the organophosphorus
insecticide chlorpyrifos in BTBRmice exposed in utero. They
found that the effects of chlorpyrifos on oxidative stress and
on behavioral maturation were enhanced in BTBR mice com-
pared to C57 mice. These findings suggest that these mice
may also be amenable for studying the developmental neuro-
toxicity of air pollution.

Another interesting transgenic model to investigate poten-
tial gene-environment interactions related to developmental
DE exposure and ASD may be the heterozygote reeler mouse
(rl+/−). In contrast to the reeler mouse (rl−/−) in which the
absence of reelin causes severe disorganization of brain devel-
opment and severe behavioral effects [132], the rl+/− mouse
displays only moderate behavioral abnormalities [152, 153].
The applicability of this model has been shown by the finding
that developmental exposure of rl+/− mice to 6 ppm methyl-
mercury increases ASD-like behaviors, particularly in male
animals, compared to rl+/+ mice [154]. The hypothesis
discussed in the previous section involving a primary role
for reelin in the developmental neurotoxicity of air pollution
would be in tune with a potential gene-environment interac-
tion in rl+/− mice.

As oxidative stress and neuroinflammation are preponder-
ant responses to DE exposure [35, 36, 38, 39], another poten-
tial interesting model is represented by the Gclm mouse,
which lacks the modifier subunit of glutamate-cysteine ligase,

the first and rate-limiting enzyme in the synthesis of glutathi-
one (GSH), a main player in cellular defense against oxidative
stress. Gclm−/− mice have very low levels of GSH in all tis-
sues including the brain [155], though they may upregulate
other antioxidant pathways; in contrast, Gclm+/− mice have
only moderate reductions in GSH but may not upregulate
alternate defense pathways. In addition, Gclm+/− mice may
more closely resemble a very common human polymorphism
of Gclm [156]. Gclm+/− mice have been shown to be most
sensitive to oxidative stress and neuroinflammation induced
by acute DE exposure (250–300 μg/m3 for 6 h) [30, 39]. This
finding confirms a previous observation of enhanced lung
inflammation in Gclm+/− mice upon exposure to DE com-
pared to wild-type mice [157]. Of great relevance is also the
finding that in the brain of subjects with ASD, there is a 37%
decrease of GCLM protein level, and a 38% decrease in GCL
activity [158], which is in agreement with the reported re-
duced levels of GSH [76]. Thus, the proposed transgenicmod-
el (Gclm+/− mice) would be highly relevant to study gene-
environment interactions related to developmental exposure
to air pollution and ASD.

Conclusion and Research Needs

While several chemicals present in the environment or in the
diet have been considered and studied for potential develop-
mental neurotoxicity, little had been done until recently in this
regard for chemicals present in the air. Yet, the air we breathe
seems a logical potential source of exposure for chemicals
which may exert neurotoxicity or developmental neurotoxic-
ity. Though attention has been limited for several decades only
to effects on the respiratory system, and more recently on the
cardiovascular system, evidence has been accumulating dur-
ing the past several years providing strong support to the no-
tion that exposure to high levels of air pollution, very common
in many cities all around the world, is associated with damage
to the CNS. Human and animal studies have evidenced a
series of common adverse effects of air pollution (particularly
traffic-related), with oxidative stress and neuroinflammation
emerging as the hallmark biochemical effects, and clinical
manifestations which included a variety of behavioral
alterations.

As the developing nervous system is particularly sensitive
to toxic insult [159], the issue of developmental neurotoxicity
of air pollution is especially relevant. Particularly, trouble-
some is the suggestion that air pollution may contribute to
the etiopathology of neurodevelopmental diseases whose in-
cidence seems to be increasing in the global populations. This
review has focused on ASD, which have been the most stud-
ied in this regard, but other disorders such as early onset
schizophrenia, or attention deficit hyperactivity disorder, also
need to be considered.
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Measures to decrease emissions leading to poor air quality
are the obvious first choice to pursue in order to protect human
health. However, further studies aimed at better characterizing
the effects of air pollution on the CNS, its underlying mecha-
nisms, and its role in the etiology of neurodevelopmental dis-
eases are certainly warranted. In particular, the possibility that
sexesmaybedifferentially affectedbyair pollution,withmales
beingmoresusceptible, needs tobe further investigated, in light
of the higher incidence of neurodevelopmental disorders (e.g.,
ASD) inmales [71]. Inaddition, gene-environment interactions
still need tobe investigated in the contextof exposure tohighair
pollution and effects on the CNS, as developmental abnormal-
ities are likely to be manifest only or especially in susceptible
individuals. In this respect, there is the need for experimental
studies utilizing transgenic animal models of certain
neurodevelopmental disorders (e.g., the reelin heterozygote
mouse forASD)orother transgenicanimalsaddressingspecific
mechanistic hypotheses (e.g., theGclm+/−mouse). Markers of
genetic susceptibility should also be incorporated in human
epidemiological studies, something that has been missing so
far. Last but not least, these studies should provide important
novel information for therapeutic interventions involving, for
examples, anti-inflammatory and/or anti-oxidant compounds,
drugs that inhibit microglia activation, or others that facilitate
GABAergic neurotransmission.
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