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Abstract Human populations are exposed to a wide
spectrum of environmental contaminants, some of which
are considered reproductive toxins. The influence of
such toxins on the male reproductive system has been
investigated extensively in animal models, while epide-
miological studies seek to understand the effect of hu-
man exposures. The basic tenant of epidemiological
studies in male human reproduction is to infer how
one or more substances alter the hormonal profile, sem-
inal characteristics, or both. Determining if a substance
alters semen quality may not always provide the under-
lying mechanism. The mechanisms by which toxins may
alter human sperm and semen quality are typically ex-
amined as a function of hormonal changes and cellular
damage. The possibility that more subtle epigenetic al-
terations underlie some of the reproductive changes has,
until recently, received little attention. In this review, we
discuss the roles of epigenetics in human spermatogen-
esis, while considering the impact of reproductive toxi-
cants on the epigenome.
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Abbreviations
BTB Blood-testis barrier
BEB Blood-epididymis barrier
LC Leydig cell
SC Sertoli cell
SSC Spermatogenic stem cell
sncRNA Small noncoding RNAs
BPA Bisphenol A
DEHP Di(2-ethylhexyl) phthalate
DBP Di-n-butyl phthalate
e.d. Embryonic day

Introduction

The ubiquitous nature of industrial activities in developing and
developed countries results in a continuous exposure to environ-
mental contaminants. Constant exposure to environmental con-
taminants poses a potential risk to health. For example, these can
include carcinogens, drugs, food additives, hydrocarbons, and
pesticides. The long-term health effects of constant low-level
exposure to contaminants, from both individual substances and
mixtures, are often unknown. This is highlighted by the risk of
such exposure to reproductive outcomes. Given the worldwide
decline in sperm count [1] paralleling the increasing use of infer-
tility services, such as assisted reproductive technologies (ARTs),
detailed exploration of exposures to natural compounds
(nutrition) and xenobiotics (environmental contaminants) on
the human germline is necessary to understand how it may im-
pact future generations.
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The Human Male Reproductive System

The male reproductive system is a complex symphony
of cell types orchestrated by Sertoli cells (SCs), Leydig
cells (LCs), germ cells, and epididymal cells. Each is a
critical member of spermatogenesis and essential to
male fertility. The hypothalamic-pituitary-gonadal axis
modulates the production of testosterone and spermato-
genesis (reviewed in [2]), directly interacting with the
male reproductive tract. As shown in Fig. 1a, this is
comprised of testis, epididymis, and vas deferens, as
well as a variety of accessory sex glands. Blood vessels
permeate the interstitial space, providing oxygen and
nutrients to the surrounding tissue. Leydig cells sur-
rounding the blood vessels generate testosterone and
other steroids necessary for the formation of a healthy
male gamete through spermatogenesis. This process of
differentiation guides the development of the male gam-
ete, from stem cell to mature sperm, within seminiferous
tubule. The SCs lining the tubule lend a degree of im-
mune privilege by creating a blood-testis barrier (BTB)
and preventing the immune system from viewing the
germ cells as nonself, against which an immune re-
sponse would be mounted. The SCs also serve to nour-
ish the developing sperm, with progressive cell-cell in-
teractions between the SC and developing sperm mov-
ing the maturing sperm from the basal to apical surface
of the SC toward the lumen of the seminiferous tubule.

Human spermatogenesis occurs over a cycle of approxi-
mately 90 days, with 69–80 days of development within the
seminiferous tubule and 8 days in the epididymis prior to
ejaculation, as illustrated in Fig. 1a [3]. Spermatogenesis be-
gins with the replication of type A (dark) (abbreviated Adark)
spermatogonial stem cells (SSCs), which serve as a germ cell
reservoir. Following asymmetric division, the undifferentiated
Adark spermatogonia are located in the basal compartment of
the seminiferous tubules, flanked by Sertoli cells. Upon com-
mitment, Adark spermatogonia differentiate to type A (pale)
(abbreviated Apale) spermatogonia. Apale spermatogonia repli-
cate to form two type B spermatogonia, considered to be dif-
ferentiated spermatogonia, which are translocated closer to the
apical surface of the Sertoli cell. Type B spermatogonia dif-
ferentiate into primary spermatocytes, which are then secured
behind the blood-testes barrier established by Sertoli cell junc-
tions [4•]. Primary spermatocytes undergo reductive divisions
yielding haploid round spermatids, located near the apical
surface of the seminiferous tubule. In turn, the round sperma-
tid then undergoes a marked morphological transformation as
the histone-packaged genome is primarily replaced by auto-
somal male-specific protamine proteins. As the round sperma-
tid elongates, a residual body forms and the majority of the
cytoplasm is shed as a cytoplasmic droplet, yielding a final
head area of approximately 24 μm2 [5].

Sperm: More than Just a Genome

Sperm have been perceived as little more than a vessel that
delivers the paternal genome to the oocyte. However, intense
scrutiny over the past decades has revealedmature sperm to have
a complex organization, marked by a highly specialized epige-
nome that is vastly different from that of a somatic cell. Where
the somatic cell genome is organized by nucleosomes, comprised
primarily of histone complexes, the sperm genome is primarily
organized by protamines. Only a small fraction, approximately
15 %, of the DNA remains associated with histones in human
sperm [6]. During spermatid maturation, specialized transition
proteins, e.g., TNP1 and TNP2, act to displace histones.
Protamines then associate with the freed chromatin, ultimately
rendering protamine-bound DNA to be approximately 10 times
more compact than histone-bound DNA. The mechanism by
which histone-bound regions are designated to be maintained
or replaced by protamines is yet unknown but in part may be
decided by the underlying pattern of DNA methylation [7].
Using genome-wide strategies, regions of histone retention in
mature sperm have been shown to be enriched at loci associated
with embryonic development and repetitive elements, such as
centromere repeats and retrotransposons [8–11].

Effect of Exposures on Sperm Parameters
and Fertility

Inmammalian systems, both in utero and post-natal environmen-
tal exposures can alter fertility through a variety of mechanisms.
Tables 1 and 2 detail examples of work demonstrating that ex-
posures to endocrine disruptors and other toxicants can act on
many different cell types in the reproductive system or exhibit
particular affinity for a select cell type. The cells that underlie
human spermatogenesis originate in the first trimester of fetal life.
Interruptions or changes to this process may lead to testicular
dysfunction and infertility in the adult [12–15]. The establish-
ment of the SSCs and Sertoli cells in utero [14–16], followed
by their subsequent application in pubertal development and
spermatogenesis, provides the opportunity for in utero exposure
to impact adult reproductive health, reviewed in [17].

Leydig Cells

LCs serve as steroidogenesis factories, utilizing lipids to syn-
thesize hormones, with testosterone production being critical
for spermatogenesis and sexual health. As such, toxicity to LC
populations can have a deleterious effect on spermatogenesis
and seminal parameters. The importance of LC to spermato-
genesis in vivo has been investigated through chemical abla-
tion. The administration of ethane dimethanesulfonate (EDS)
is an established method that specifically eliminates LCs [18],
possibly through upregulation of glutathione synthesis in the
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LC [19]. Although LC populations eventually recover with
time [20], their initial death is accompanied by a reduction
in testosterone production [21, 22]. This androgen withdrawal
results in apoptosis of the seminiferous epithelium [21], pos-
sibly through increased expression of the Fas ligand in germ
cells [22]. Although LCs provide critical steroids to the testis,
the presence of the LC itself, outside of testosterone produc-
tion, may be dispensible in spermatogenic processes [22, 23].

Sertoli Cells

The SC is a complex cell responsible for maintaining the BTB
and supporting germ cells during spermatogenesis. Factors
involved in the differentiation and homeostasis of Sertoli cells,
both in the fetus and adult, have been extensively scrutinized
(reviewed in [24]). The importance of SCs to testicular health
and germ cell differentiation has been examined in several
different studies. Targeted ablation of SCs by diphtheria toxin

in transgenic mice rapidly depletes all germ cell populations in
the seminiferous tubule [25]. Disruption of Sertoli cell struc-
ture by toxins is well-documented and can result in decreased
sperm parameters. Exposure of mice to perfluorooctane sulfo-
nate (PFOS), considered a persistant organic pollutant (POP),
decreases sperm count. Concomitantly, SC vacuolization, in-
creased BTB permeability, and a reduction in junction pro-
teins are also observed [26]. In cultured primary human SCs,
acute cadmium (a toxic metal) and bisphenol A (BPA) expo-
sure disrupts F-actin network dynamics and the localization of
cell adhesion proteins [27].

Phthalates, esters of phthalic acid, are considered endocrine
disruptors and ubiquitous environmental contaminants. It is
well known that SCs are a major target of phthalates [28]. In
addition to numerous studies on in utero phthalate exposure,
the reproductive sequelae of prepubertal, pubertal, and adult
phthalate exposure is a subject of active research [29–33]. Due
to the marked response of rodent models to a plethora of

Fig. 1 The human male reproductive system and epigenetic aspects of
spermatozoa. a Structure and location of the human testis, epididymis,
and vas deferens. Spermatogenesis occurs in the testis, with the resultant
spermatozoa transited into the epididymis. The sperm undergo a
maturation process while moving through the epididymis. Caudal
sperm are moved into the vas deferens for collection prior to
ejaculation. The process of sperm development in the testis occurs over
approximately 69–80 days, while the movement of spermatozoa through
the epididymis averages around 8 days. In total, a complete seminiferous

cycle is completed in around 90 days. b A detailed cross section of the
seminiferous tubule, the location of which is indicated with a red box in
Fig. 1a. The intersistal space contains blood vessels and Leydig cells,
while the seminiferous tubule is lined with Sertoli cells. Spermatogenic
stem cells, located in the basement membrane of the tubule, are moved
toward the apical surface of the Sertoli cell as spermatogenesis
progresses. The blood-testis barrier is formed behind pachytene
spermatocytes to protect the developing spermatocyte from the immune
system. Adapted in part from [4•]

204 Curr Envir Health Rpt (2016) 3:202–213



Table 1 A nonexhaustive list of studies examining male reproductive system epigenetic outcomes as a function of endocrine disruptor exposures

Agent/compound Organism Dosage and timing Epigenetic findings Study

Phthalates (BPA, DEHP,
and DBP mixture)

Rats (in vivo) In utero exposure during e.d. 8
to 14 of F1 generation. Low and
high doses were applied.

F3 generation sperm DNA methylation
was altered at 197 different promoters.

Manikkam et al. [109]

Phthalates (DEHP) Mice (in vivo) Pubertal exposure of males for 4
weeks, dosed at 0, 125, 250,
or 500 mg/kg/day.

H3K9me1 and H3K9me2 methylation
decreased in the seminiferous tubule.

Liu et al. [33]

Phthalates (DEHP) Mice (in vivo) In utero exposure, dosed at 750
mg/kg/day during e.d. 8.5 to
12.5. Prospermatogonia purified from
e.d. 17.5 fetuses.

RNA transcript levels of prospermatogonia
changed after DEHP exposure, with
48 unique Affymetrix probes altered.

Iqbal et al. [110]

BPA Zebrafish
(in vivo)

Adult exposure at 100 and 2000
mcg/L BPA for 14 days.

No change in paternal global sperm DNA
methylation. F0 and F1 of BPA
exposure have reduced INSR expression.

Lombo et al. [111]

BPA Rats (in vivo) 40 mcg/kg/day of BPA during
gestation and lactation

Global sperm methylation is decreased, while
the sperm promoter
of GCK is hypermethylated.

Li et al. [112]

BPA Rats (in vivo) 400 mcg/kg neonatal exposure
during post-natal days 1–5

IGF2-H19 imprinting control region is
hypomethylated in the sperm from
exposed males.

Doshi et al. [113]

Vinclozolin Rats (in vivo) 1 mg/kg body weight from
conception until post-natal day 80.

Approximately 100 genes in testis
have altered expression.

Eustache et al. [114]

Vinclozolin Mice (in vivo) In utero exposure at 100 mg/kg/
day for e.d. 7 to 13.

Gene promoters in sperm from the
F3 generation have altered DNA
methylation.

Guerrero et al. [105]

Vinclozolin Sturgeon
(in vitro)

Spermatozoa were incubated
with 0.5, 2, 10, 15, 20,
and 50 mcg/L for 2 h.

Sperm exhibit reduced quality and DNA
integrity, along with increased
oxidative stress.

Gazo et al. [115]

Vinclozolin Mice (in vivo) In utero exposure at 50 mg/kg/
day for e.d. 10 to 18.

DNA methylation of imprinted genes
H19 and GTL2, PEG1, SNRPN, and
PEG3 are altered in sperm of F1 generation.

Stouder et al. [116]

BPA bisphenol A, DEHP di(2-ethylhexyl) phthalate, DBP di-n-butyl phthalate, e.d. embryonic day

Table 2 A nonexhaustive list of studies examining male reproductive system epigenetic outcomes as a function of toxin exposures

Agent/compound Organism Dosage and timing Epigenetic findings Study

Chemotherapeutics (undefined
chemotherapy)

Human (in vivo) Measurements taken from
0 to 24 months post-
chemotherapy.

Most seminal characteristics recover by
24 months. However, sperm DNA
damage is increased, and DNA
compaction reduced compared to
controls at 24 months.

Flaherty et al. [117]

Chemotherapeutics
(bleomycin,
etoposide, and cisplatin
combination (BEP))

Rats (in vivo) After 9 weeks of treatment
in adult rats, followed by
9 weeks of recovery,
caudal sperm were
recovered.

Sperm protamine content decreased,
and histone content increased in post-
treatment, while nuclear condensation
was impeded. Post-recovery, 49 proteins
were altered in BEP sperm.

Maselli et al. [118]

Chemotherapeutics
(temozolomide)

Human (case
study)

290 mg/day over 5 days,
repeated six times.

Sequential reduction in methylation of the
H19 locus during and after cessation
of treatment.

Berthaut et al.
[119]

Toxic metal (cadmium) Rats (in vivo) Exposure to 1, 2, or 4 mg/kg
daily for post-natal days
3 to 7.

Testicular DNA methyltransferase
(DNMT)
activity was reduced. Exposure in-
creased
methylation in C-FOS (a proto-
oncogene)
in post-natal day 70 testis.

Zhu et al. [120]

Smoking (cigarette smoke
condensate (CSC))

Mice (in vivo) Adult exposure at 40 mcg
of CSC daily for 7 days.

CSC causes oxidative stress and DNA
damage in spermatocytes.

Esakky et al. [46]

BEP bleomycin, etoposide, and cisplatin combination
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phthalate compounds, rats and mice are typically employed to
assess the reproductive impact of phthalate exposure [34,
35••]. Prenatal epidemiological exposure studies of di(2-
ethylhexyl) phthalate (DEHP) in children suggest a negative
correlation with progesterone (P4) and INSL3, products of
LCs and inhibin B, a product of SCs [36]. However, physio-
logical changes in phthalate-exposed SCs have not been dem-
onstrated in vivo for humans. This is similar to that observed
at high dose (2500 mg/kg bodyweight) DEHP post-natal ex-
posure of marmosets [37]. Both human and primate
(marmoset) studies have thus far failed to recapitulate the tes-
ticular damage seen in rodent models.

Spermatogenic Stem Cells

The SSC is the precursor to all spermatids. Therefore, damage
to SSCs or loss of the population of SSC (Adark) spermatogo-
nia can drastically impact sperm production, even to the point
of azoospermia (absence of sperm in the ejaculate). SSCs rely
on Sertoli cells for maintenance of the stem cell niche, as well
as the signals for commitment to spermatogenesis. It is impor-
tant to note that Sertoli cell health is equally vital for main-
taining SSC populations as SSC health.

In rodent models and human disease, elimination of
SSCs results in oligozoospermia (low sperm concentration)
or azoospermia (absence of sperm in ejaculate). In
humans, this is classified as Sertoli cell only syndrome
(SCOS), also known as germ cell aplasia, and is charac-
terized by the absence of germ cells in the seminiferous
tubule. Due to their stem cell properties and high rate of
division, SSCs are particularly vulnerable to cytotoxic in-
sult. Radiation and agents used in cancer therapies are
known to be gonadotoxic, affecting SSCs. For example,
busulphan, a chemotherapeutic, can induce azoospermia in
rodents and primates by ablating the population of SSCs
[38, 39]. Patients receiving potent gonadotoxic chemother-
apy, such as cyclophosphamide, an alkylating agent, are
often counseled to undergo fertility preservation prior to
treatment [40]. During chemotherapy, the suppression of
spermatogenesis through hormonal therapy reduces SSC
expansion and may reduce SSC damage, although the
success of this approach in human trials has been mixed
[41, 42].

Other, more ubiquitious toxins can also be detrimental to
SSCs. For example, tobacco use is suspected to impact SSC
proliferation. Despite a small sample size, maternal cigarette
smoking has been significantly associated with a reduction in
germ cells in first-trimester human embryonic gonads [43]. In
utero exposure through maternal smoking has also been
shown in rodents to deplete SSCs [44]. Post-natal exposure
to cigarette smoke, at least in rats, also negatively affects SSC
proliferation, an effect which may be mediated by antagonism
of the aryl hydrocarbon receptor (AHR) [45, 46].

Spermatocytes

Spermatocytes are established within an intermediate
transitioning stage of sperm development, during which a se-
ries of reductive divisions occurs. Depletion of spermatocytes,
through immune attack, Sertoli cell dysfunction, DNA dam-
age, or other insults, can result in the loss of a generation of
sperm. 2-Methoxyethanol (ME), a solvent used as a de-icing
agent, is known to primarily target pachetyne spermatocytes
in mammals. In rodents and guinea pigs, ME administration is
toxic to spermatocytes, resulting in the degeneration of the
germ cells [47]. Acrylamide, formed by cooking starchy foods
at high temperatures, can also impact spermatocytes through
the formation of glycidamide-DNA adducts [48]. Chronicmu-
rine exposure to low-dose acrylamide similar to human dietary
estimates (1 μg/kg bodyweight/day) over the course of
12 months produced germ cell DNA damage [49•]. Both the
epididymis and germ cells express Cyp2e1, the enzyme that
metabolizes acrylamide to the DNA adduct-forming
glycidamide, making them a major target of acrylamide expo-
sure [50, 51].

Spermatids

After spermatogenesis is complete, the maturing spermatids
move from the seminiferous tubule into the epididymis, where
they spend approximately 8 days completing maturation prior
to entering the vas deferens in preparation for ejaculation [3].
As sperm mature during this transit, protamine compaction
through the action of thiol peroxidases continues, proteins
are glycosylated, and the spermatozoa are exposed to epidid-
ymal exosomes (epididymosomes), reviewed in [52•] and
[53]. The period prior to and during compaction is primarily
when the effects of environmental exposures may be felt and
when biochemical processes gone awry take their toll. For
example, dysregulation of the epididymis and/or the blood-
epididymis barrier (BEB) that tightly regulates epididymal
immune system activity [54], may result in a continual reduc-
tion in living sperm or sperm quality, potentially resulting in
oligozoospermia, azoospermia, or necrospermia (immobile or
dead sperm in ejaculate). Sperm autoimmunity, in which the
male’s immune system generates anti-sperm antibodies,
which are subsequently found in seminal fluid, can alter fer-
tilization capacity. This is reflected in sperm motility as
assessed by post-coital testing. It is inversely correlated with
sperm antibodies, predictive of male autoimmunity [55].

As with SSCs, spermatids may also be sensitive to cigarette
smoking [56, 57]. Alterations in epididymal proteins respon-
sive to oxidative stress, endoplasmic stress, and glutathione
production have been observed [57]. It is important to note
that the excessive generation of reactive oxidative species
(ROS) and the oxidative imbalance in the epididymis may
be a pathophysiological mechanism of many different toxins
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and etiologies of disease. For example, testicular heat
stress, such as is seen in patients with variocele and
various murine models, can generate ROS, resulting in
altered balance of ROS and antioxidant systems
[58–60].

Characteristics of the Mammalian Sperm
Epigenome

The epigenome of mammalian sperm is suspected to play a
key role in the mechanism by which environmental exposures
can alter fertility and produce intergenerational effects. A
summary is briefly presented considering the contribution of
DNA methylation, chromatin structure, and RNAs. Some of
the primary contributions to our understanding in the field are
highlighted below.

DNA Methylation

DNA methylation is catalyzed by methyltransferases that add
a methyl group to DNA. In the case of cytosine methylation,
the addition occurs on the 5′ carbon of the nucleotide base.
Although DNA methylation can occur in the context of 5-
hydroxymethylcytosine, 5-formylcytosine, and 5-
carboxycytosine, the most commonly studied form is 5-
methylcytosine [61]. 5-Methylcytosine has been studied ex-
tensively as general regulator of gene expression within the
context of CpGmethylation. The level of DNAmethylation in
the sperm genome, compared to somatic cells, is both altered
and complex. Large-scale genomic sequencing has shown that
mammalian sperm are primarily hypermethylated compared
to other cell types [62, 63], a pattern which extends to
zebrafish [64]. While the sperm genome is hypermethylated,
as is seen in some classes of repeats [65, 66], hypomethylation
occurs in developmental promoters [8], satellite repeats, and
SVA retrotransposons [63]. Upon fertilization, the uniquely
compacted sperm decondenses, essentially exploding as the
paternal protamines are displaced and replaced by maternal
histones [67]. Concomitantly, the paternal genome is actively
and rapidly demethylated only to be followed by
remethylation after the blastocyst stage. Even though the ma-
jority of the original paternal DNA methylation marks are
removed [68], the knowledge of their parental origin is main-
tained in early embryogenesis as evidenced by the preserva-
tion of imprinted loci.

DNA methylation is not a static feature of the mammalian
sperm genome. It can be modified in response to weight loss
[69], exercise training [70], and environmental exposures, in-
cluding exposure to BPA [71]. Males exposed to BPA present
sperm with reduced LINE-1 (a repeat family) methylation
[71]. Although epidemiological studies in humans have yet
to provide a definitive link between the sperm methylome

and offspring phenotype, rodent models have provided some
clues. Locus-specific patterns of altered sperm methylation
have been associated with metabolic alterations in the off-
spring after in utero undernourishment in mouse [72].

DNA Methylation and Fertility

The prognostic value of DNAmethylation in infertility studies
has yet to be shown. This is complicated by its variability
between sperm with differing Bquality^ (i.e., high-quality vs
low-quality sperm) [73]. However, Aston et al. suggest that a
genome-wide analysis of sperm methylation can distinguish
sperm of fertile and infertile individuals [74•]. Currently, it
appears that DNA methylation changes are a consequence,
not a cause, of poor spermatogenesis and spermatid
aberrations.

Chromatin Structure and Fertility

As described above, the chromatin structure of sperm is vastly
different from that of a somatic cell. The histone-protamine
exchange that occurs during spermatogenesis is a key
differentiative control point as the spermatid transitions to
the mature spermatozoon. A protamine-bound genome is
much more tightly packaged than its histone counterpart.
This can serve to protect the paternal genome during epididy-
mal transit and transition through the female reproductive
tract. Protamine deficiency is associated with an increased
incidence of abnormal sperm morphology [75, 76], and an
aberrant protamine/histone ratio is associated with increased
DNA damage in humans and in animal models [77, 78]. The
latter can be assessed using the comet assay [79], sperm chro-
matin dispersion (SCD), DNA breakage detection-
fluorescence in situ hybridization (DBD-FISH), or the
TUNEL assay.

RNAs

The mammalian testis yields a complex transcriptome [80],
which is echoed in the transcriptionally and essentially
translationally silent sperm [81, 82•]. This reflects several dif-
ferent mechanisms that impair both transcription and transla-
tion. Notably, ribosomal RNA is largely fragmented, eliminat-
ing translation in the mature sperm [83]. Although the major-
ity of spermatid RNAs are expunged as the residual body is
shed during elongation, the mature sperm still contains a va-
riety of RNA species. The transcripts that remain provide a
record of past events during spematogenesis, before and after
the last burst of transcription. The fate and purpose of the
sperm RNAs in the zygote are unclear in humans [84], but
in mouse models, functional transcripts can be transferred to
and transcribed (or utilized) by the fertilized oocyte [85, 86••].
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Whether spermatozoal RNAs are required for embryogenesis
and/or implantation is still debated [87, 88].

Mature spermatozoa harbor a series of long RNAs, as well
as a variety of small RNAs. The long RNAs consist of both
coding and noncoding RNAs, in various states of fragmenta-
tion. It has been proposed that intact transcripts may represent
those necessary for the final stages of spermatid elongation or
intended for use in the zygote. Recently, they have been
shown to serve as predictors of successful pregnancies in cou-
ples undergoing ART for idiopathic infertility (no known
cause) [89•]. Small RNA species, which include transfer
RNAs (tRNAs), microRNAs (miRNAs), and piwi-
interacting RNAs (piRNAs), are generally referred to as small
noncoding RNAs (sncRNAs) [90]. One of the best understood
species of small RNAs is miRNAs, which function as regula-
tory RNAs through the DICER/DROSHA processing path-
way. Subsequent base pairing with their target RNA leads to
the degradation of the messenger RNA (mRNA) [91]. This is
complemented by the action of piRNAs that can regulate
retrotransposons [92], alter spermatid mRNA abundance
[93], or may serve as part of assessing genome compatibility
by consolidation/confrontation [84].

Transgenerational and Intergenerational Effects

The mammalian sperm epigenome is a putative mediator of
intergenerational and transgenerational transmission of pater-
nal environmental exposures. On one hand, intergenerational
transmission is due to exposure of the germ cells to the agent,
while on the other hand, transgenerational transmission prop-
agates to future generations in the absence of continued expo-
sure [Fig. 1, ref. 94••]. To some extent, these may be mediated
through sperm RNAs. For example, the role of early life stress
on sncRNAs in murine sperm has been examined, suggesting
that seemingly unrelated cues can be transferred. Mice sub-
jected to early life traumatic stress exhibited changes in the
abundance of several spermatazoal miRNAs and piRNAs, in
conjunction with behavioral and metabolic changes compared
to an unstressed control. Progeny generated from injection of
sperm RNA from the stressed fathers into embryos, compared
to unstressed controls, exhibited similar behavior and meta-
bolic patterns as the stressed fathers. This supports the notion
that at least in mice, spermataozoal RNA populations can
transmit the results of an early life stress to their progeny [95].

Paternal characteristics, such as obesity, may also influence
offspring phenotype through sperm RNAs, as observed in a
murine obesity model, which identified a range of differential-
ly methylated miRNAs in sperm [96]. Interestingly, reduc-
tions in male obesity in humans have been shown to alter
specific sperm RNAs [69], raising the possibility of intergen-
erational transmission of human obesity.

Exosomes/Exosomal RNA

While a portion of sperm RNAs are undoubtedly derived as the
result of spermatogenesis, the transmission of paternal experi-
ences, such as a neural signal, to sperm may come from a dif-
ferent source [97]. To address this possibility, soma-to-germline
transmission of RNA in male mice was examined [98••]. In this
study, an enhanced green fluorescent protein (EGFP)-expressing
human melanoma cell line, xenografted into nude mice, was
shown to release exosomes containing EGFP RNA into the
blood. Sperm from the xenografted mice was subsequently
shown to contain EGFP RNA, indicating that the germ cell
can absorb exosomes and their contents [98••].

Sperm RNAs derived from extracellular sources may be ac-
quired during epididymal maturation [86••, 99]. Compared to a
control diet, mice fed a low-protein diet fathered offspring with
altered hepatic metabolism. This was associated with a series of
differentially abundant small sperm RNAs, specifically tRNA
fragments and let-7 miRNAs. These RNAs, acquired by sperm
from epididymal exosomes (epididysomes) during epididymal
maturation, were capable of modulating zygotic expression of
the genomic targets for the small RNAs [86••]. These results
suggested that the sperm RNAs can be acquired from the epi-
didymis and may be responsible for the offspring’s phenotype.
In a complementary murine study, intergenerational transmis-
sion of a father’s high-fat diet through sperm RNA, specifically,
transfer RNA-derived small RNAs, has been shown [100].

DNA Methylation/Epimutations

The evidence for diet-induced changes in sperm DNA meth-
ylation is contradictory, with both negative [101] and support-
ive studies [96]. Interestingly, paternal dietary folate does alter
the sperm epigenome. The mechanism by which folate avail-
ability impacts the offspring’s susceptibility to birth defects
may be through changes in histone methylation [102].
Perhaps this reflects a portion of the paternal histones that
remain after fertilization. The apparent significance of the
contribution of histones as compared to DNA methylation
and paternal diet has been emphasized. It has been noted that
the sperm histone composition in fathers fed a high-fat diet
changes, although DNA methylation of several imprinted loci
appears to remain static [103]. The suspected role of histone
modifications may be well founded. In humans, the establish-
ment of embryo constitutive heterochromatin may be directed
by the placement of histone modifications in sperm [104].

Evidence of Toxins/Substances Which Alter
the Sperm Epigenome

Each component of the sperm epigenome, presented above, has
the potential to be modulated by intrinsic and extrinsic factors.
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Examples of epigenetic outcomes in the male reproductive sys-
tem as a function of toxins and/or environmental exposures are
summarized in Tables 1 and 2. The intergenerational studies
described above have provided a basis to begin to understand
the possible transgenerational effects of male environmental ex-
posures. For example, several studies have shown striking inter-
generational effects following murine in utero exposure to the
fungicide vinclozolin. In a series of studies, fetal mice were
exposed to vinclozolin during embryonic days 8–14, a period
of gonadal sex determination. This transient exposure resulted in
altered sperm and Sertoli cell DNA methylation of the F2
(grandchildren) of the exposed fetuses, indicating a
transgenerational effect [105, 106]. In addition to the intergen-
erational effect, with an F1 (children of fathers exposed in utero)
phenotype, a transgenerational inheritance is observed, with the
F2 generation (grandchildren of fathers exposed in utero).
Although the germ cells which become the F1 generation are
exposed to the environmental insult during the in utero devel-
opment of the F0 males, it is important to note that the gametes
destined to become the F2 generation are never themselves ex-
posed. Therefore, in transgenerational inheritance, a phenotype
resulting from an exposure must be propagated through an epi-
genetic mechanism.

Another endocrine disruptor, DEHP, has also been shown
to have multigenerational effects. F0 male mice, exposed to
DEHP (500 mg/kg body weight/day) during embryonic days
7–14, exhibit a variety of reproductive phenotypes (e.g., de-
layed pubertal onset and decreased anogenital distance).
Although the F1 and F2 progeny of exposedmicewere largely
normal, their seminiferous tubules were structurally altered
and sperm counts reduced, which were attributed to reduced
SSC proliferation in the exposed lines [107]. The primary
animal models used to study paternal endocrine disruptor ex-
posure epigenetic effects have employed in utero exposure.
Comparatively, few studies have investigated the
transgenerational or intergenerational effects of post-natal or
adult exposure in animal models. However, one study using
highDEHP exposure inweanedmice observed reduced sperm
motility in the offspring of exposed males, indicating an inter-
generational effect on reproductive tissues after post-natal ex-
posure [108]. This collection of studies suggests that environ-
mental exposure to endocrine disruptors can have robust in-
tergenerational and transgenerational effects in mice.
However, conclusive studies using exposure levels relevant
to the human populations, as well as exposures at the various
stages of germ cell development, as outlined in Fig. 1 of ref-
erence [17], are needed.

Conclusion

The above provides an inroad to the possible mechanisms by
which environmental exposure, including reproductive

toxicants, can impact seminal parameters and male fertility.
Given that certain stimuli, such as obesity, endocrine
disruptors, and other environmental agents, are becoming in-
creasingly common, the mechanisms and physiological con-
sequences of such exposures will continue to be discovered.
Their mechanisms of action are likely to be mediated through
the sperm epigenome, which is suspected to play a role in
intergenerational inheritance of paternal environmental expo-
sure. Within these bounds, the intergenerational sequelae
stemming from toxin exposures will be resolved. Although
much important work has been carried out in rodents, reliance
on this physiological system currently constrains the inroads
to the human male reproductive system. It is essential that we
achieve a better understanding of the father’s contribution in
producing healthy offspring.
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