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Abstract
The material point method (MPM) is a popular and powerful tool for simulating large deformation problems. The hybrid
Eulerian–Lagrangian nature of the MPM means that the Lagrangian material points and the Eulerian background mesh are
often nonconforming. Once the material and mesh boundaries become misaligned, imposing boundary conditions, such as
Neumann boundary conditions (i.e., traction), becomes a challenge. The recently developed virtual stress boundary (VSB)
method allows for imposing nonconforming Neumann boundary conditions without explicit knowledge of the boundary
position. This is achieved through a problem transformation where the original boundary traction problem is replaced by
an equivalent problem featuring a virtual stress field. This equivalent problem results in updated governing equations which
are ultimately solved using a combination of particle-wise and cell-wise quadrature. In the current work, a modification
to the VSB method is proposed to eliminate the need for cell-wise quadrature. Despite removing cell-wise quadrature, the
modified VSB method maintains the accuracy observed in the original approach. Several numerical examples, including 1D
and 2D benchmark problems, as well as a 3D demonstration problem, are presented to investigate the accuracy and illustrate
the capability of the modified VSB method. Mesh refinement studies are included to show the method’s good convergence
behavior.
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1 Introduction

Thematerial point method (MPM) is a continuum-based par-
ticle method utilized for solving the governing equations
through a combined Eulerian–Lagrangian approach [1, 2].
In the MPM, the material domain is discretized into a set
of Lagrangian material points which are used in conjunction
with an Eulerian background mesh to solve Newton’s equa-
tion of motion. The MPM is classified as a meshless method
since the material points store all information throughout
the simulation, and the background mesh primarily plays
a supportive role in the calculation process, with Newton’s
equations being solved at the mesh nodes. Utilizing mesh
nodes to solve the equations of motion bears similarity to
the approach used in the finite element method (FEM) [3].
However, in the MPM, the Eulerian nature of the mesh
means there is no accumulated distortion within the mesh.
The Lagrangian nature of the material points allows for the
inclusion of history-dependent parameters, such as plasticity,
in the MPM. This combined Eulerian–Lagrangian approach
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means that the MPM may provide advantages over the FEM
in some situations, such as modeling large deformation prob-
lems, since the FEMoften struggleswith excessive numerical
errors as mesh distortion accumulates. Recently, the MPM
has been successfully used to simulate a wide variety of large
deformation phenomena including hypervelocity impact [4–
7], penetration [8, 9], explosion [10, 11], fracture evolution
[12–16], fluid–structure interaction [17–20],multiphase flow
[21], shear band evolution [22], geotechnical failure [23–26],
etc. The reader is referred to [27–29] for a complete descrip-
tion of the MPM, more applications of the MPM, and further
references.

Despite the widespread application of the MPM in many
engineering fields, one critical aspect that still limits its
application is the imposition of the boundary conditions,
including both Dirichlet [30] and Neumann boundary con-
ditions. Although some researchers have studied this issue
in the previous publications [31–33], further advancements
are necessary to fully address this challenge. Depending on
whether the material boundary aligns with the computational
mesh, the boundary conditions can be classified into two
categories, namely, conforming boundaries and nonconform-
ing boundaries. The imposition of conforming boundaries
is straightforward [34, 35] where a homogeneous Dirich-
let boundary (i.e., fixed boundary) is imposed by explicitly
setting nodal velocity to zero in the fixed direction and aNeu-
mannboundary (i.e., traction boundary) is imposedby adding
equivalent forces at the corresponding nodes. However, non-
conformingboundary conditions require additional attention,
particularly for the MPM. Unlike Lagrangian mesh-based
methods, the MPM discretizes the material domain into a
set of particles, eliminating the explicit material boundary
position. This characteristic makes it inconvenient to apply
nonconforming boundary conditions even when employing
regular background mesh [36].

Various strategies have been proposed to handle noncon-
forming boundary conditions within the MPM framework.
The most common way is to define traction boundary con-
ditions on the outermost layer of particles of the material
domain and then map the equivalent forces to the related
nodes [27, 37]. This approach requires mesh refinement in
the near-boundary region to improve numerical accuracy,
given that the particles are close to, but not precisely on, the
material boundary [38, 39]. An improved method involves
introducing massless points to track the boundary position,
which enables the application of the boundary traction on a
more accurate location comparedwith the previous approach.
However, bothmethods need to update the particle/point area
during the simulation usingNanson’s formula [40]. Updating
the boundary area ranges from inconvenient for 3D problems
that feature large deformation to impossible for problems
where the boundary undergoes fracture.

Several alternative strategies are available for tracking
the material boundary. The dual-grid concept [41] is an
alternative framework to impose boundary conditions. This
approach involves utilizing the standard background grid
as well as an additional grid. However, even for 1D prob-
lems, this approach is sensitive to element size and boundary
position. Bing et al. proposed a cubic B-spline boundary
representation within the MPM framework [31, 42]. This
method was integrated within the implicit boundary method
(IBM) to handle both homogeneous and inhomogeneous
Dirichlet boundary conditions as well as inhomogeneous
Neumann boundary conditions. The Neumann boundary
conditions were enforced by integrating the known traction
along the boundary segment. However, the authors empha-
sized that boundaries must remain intact throughout the
analysis (i.e., not fracture). If fracture occurs, additional
detection routines are required to determine the new bound-
aries. Additionally, in the case of self-contact, routines are
required such that boundaries cease to exist. Finally, the
B-spline approach has been exclusively presented for 2D
boundary representations.

Another alternative approach involves employing the con-
cept of a moving mesh [37], where the background mesh
remains dynamic rather than fixed, allowing for direct appli-
cation of boundary conditions on the nodes akin to the
FEM. This approach aims to convert nonconforming bound-
ary conditions into conforming ones. However, it requires
that the boundary maintains a consistent shape and under-
goes relatively minor deformations, which contradicts the
primary advantageof theMPMineffectively simulating large
deformation problems compared to conventionalmesh-based
methods.

For nonconforming boundaries in fluid problems, the
MPM has been recently extended into the Lagrangian–
Eulerian stabilized collocationmethod (LESCM) [43, 44]. In
the LESCM, both fluid and structures are represented using
Lagrangian particles, with information from the Lagrangian
particles mapped to the nodes in the Eulerian mesh using
a reproducing kernel approximation. This approach has
been demonstrated to be efficient for a variety of problems
involving rigid structures, including fluid–structure interac-
tion (FSI) and free surface flow. Additionally, the LESCM
has been extended to determine Lagrangian coherent struc-
tures (LCSs) based on the simulated flow. Similar to the
approaches described above, the nonconforming boundaries
for rigid structures must be explicitly defined. Using this
explicit definition, the LESCM employs a cell-cut algorithm
to identify the cells where fluid and solid particles interact,
and subsequently computes the appropriate interaction forces
to account for the fluid flow and the rigid structures.

Different from the above methods that require boundary
tracking or boundary reconstruction, Liang et al. recently
proposed a new strategy [36] to impose Neumann bound-
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ary conditions without boundary representation, namely,
the virtual stress boundary (VSB) method. To avoid the
complexity of boundary representation, the VSB method
transforms the original problem with a traction boundary
condition into an equivalent problem with a virtual stress
field. This virtual stress field is defined everywhere around
the material boundary and necessitates modifications to the
governing equation. The updated equations contain only vol-
ume integral terms which are subsequently computed using
both particle-wise quadrature and cell-wise quadrature. The
accuracy, efficiency, and capability have been demonstrated
by several numerical examples, including problems in 3D
with complex boundary geometry. In the current work, an
additional modification is proposed to further simplify the
governing equation so that the cell-wise quadrature in the
original VSB method is avoided without any changes to the
method’s numerical accuracy.

The remaining paper is structured as follows. First, Sect. 2
outlines the requisite strong and weak formulations for
the balance of linear momentum. Additionally, this section
includes the corresponding discretized formulation of the
governing equation for the MPM. Next, Sect. 3 provides a
review of the existing approaches to impose nonconform-
ing Neumann boundary conditions. Particular emphasis is
placed on summarizing the originally proposedVSBmethod.
Furthermore, this section includes a proposed modification
for the VSB method. Following that, Sect. 4 is comprised of
three benchmark problems and one demonstration problem
to assess the accuracy and capability of the proposed update
for the VSB method. Finally, Sect. 5 presents the conclusion
of this paper as well as suggestions for future works.

This paper has the following objectives:

1. Propose a modification for the VSBmethod which elimi-
nates cell-wise quadrature to reduce someof themethod’s
complexity.

2. Show that the proposedmodification for theVSBmethod
is generally compatible with the MPM and exhibits
acceptable convergence behavior.

3. Demonstrate that theVSBmethodmaybe used to explore
3D problems with evolving boundary geometry resulting
from material damage and subsequent removal.

2 Problem discretization

This section presents the necessary discretized balance equa-
tions to solve solidmechanics problemsusing theMPM.Both
the strong and weak formulations for the balance of linear
momentum are provided before deriving the corresponding
discretized formulation. The reader is referred to [27–29] for
a complete description of the MPM including the computa-

tional algorithm, stress and velocity update schemes, and a
number of numerical examples.

2.1 Strong formulation

In the updated Lagrangian frame of reference, the so-called
strong formulation for the balance of linear momentum may
be defined for a continuum body occupying the material
domain, �. This balance law is expressed as

ρ ü = ρb + ∇ · σ , (1)

where ρ is the current mass density, ü is the acceleration
vector, σ is the Cauchy stress tensor, and b is the body force
per unit mass vector. Bold symbols indicate that values are
in tensor form. Additionally, single and double over dots,
�̇ and �̈, denote the first- and second-order material time
derivatives, respectively. InEq. (1), the second-ordermaterial
time derivative links the material displacement to material
acceleration.

Let � represent the boundary of the material domain �.
This boundary may be decomposed into two parts: � =
�u ∪ �t , where �u and �t denote the Dirichlet boundary
and the Neumann boundary, respectively. In solid mechan-
ics problems, Dirichlet boundary conditions involve imposed
displacement and Neumann boundary conditions involve
imposed traction. Boundary conditions are required to solve
Eq. (1) such that

u = û on �u, (2)

t = t̂ on �t , (3)

where û and t̂ are the imposed displacement and the imposed
traction on �u and �t , respectively. Note, the traction, t , may
be defined in terms of the Cauchy stress tensor such that
t = σ · n̂, where n̂ is the outward unit normal vector on �t .

2.2 Weak formulation

The weak formulation can be derived from expressing the
balance of linear momentum in an equivalent weighted resid-
ual form. This representation requires a virtual displacement,
δu, where δu ∈ W (withW representing the space of admis-
sible virtual displacements). The space of admissible virtual
displacements is defined such that Dirichlet boundary con-
ditions are automatically satisfied (i.e., δui = 0 on �ui ).

Following the establishment of δu, the weighted residual
form is derived bymultiplying Eq. (1) by the virtual displace-
ment and integrating over the entire material domain. Then,
using integration by parts, the divergence theorem, and the
definition of space W , the weak formulation can be written
as
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∫
�

δu · ρ üd� +
∫

�

∇δu : σd� −
∫

�

δu · ρbd�

−
∫

�t

δu · t̂d� = 0. (4)

2.3 Discretized formulation

Equation (4) is generally solved using a numerical approach,
such as the MPM [1, 2]. Using the MPM requires the bal-
ance of linear momentum to be expressed in a discretized
formulation.

First, thematerial domain,�, is split into n p particles (i.e.,
material points) such that

� =
n p∑
n=1

Vp, (5)

where Vp is the particle volume. Throughout the simulation,
the particles store all information such as mass, velocity,
stress, strain, and history-dependent parameters. Note, �p

denotes a variable is associated with particle p.
In the standard MPM, each particle has constant mass,

mp. Consequently, the conservation of mass is automatically
enforced in theMPM.Additionally, particle density, ρp, may
be defined using the standard relationship between mass and
volume expressed as

ρp = mp/Vp. (6)

In addition to storing all information throughout the sim-
ulation, particles are used as quadrature points in the MPM.
Therefore, the volume integrals in Eq. (4) are approximated
and rewritten as

n p∑
p=1

δup · mp üp +
n p∑
p=1

∇δup : Vpσ p −
n p∑
p=1

δup · mpbp

= 0. (7)

Notice that the boundary integral term in Eq. (4) is temporar-
ily discarded in Eq. (7) since this term cannot be directly
computed with particle quadrature. However, Sect. 3 outlines
a variety of approaches to properly account for this boundary
integral term.

In addition to particles, the MPM requires a background
mesh consisting of nodes and cells (i.e., elements). The mesh
nodes are used to solve the balance of linear momentum for
each step in the simulation. Quantities, like displacement
or acceleration, are mapped between the mesh nodes and
particles using a nodal basis function, NI , and the expression

�p =
nn∑
I=1

NIp�I , (8)

where nn is the number of nodes and NIp ≡ NI (ξ p) (i.e.,
the value of the basis function for node I at particle p with
ξ p corresponding to the local coordinates of the particle).
Note,�I denotes a variable is associated with node I . Linear
basis functions are employed in the current study.Others have
shown that higher-order basis functions may be used in the
MPM to map quantities between the particles and nodes [45,
46].

Using Eq. (8) to map displacement, the virtual dis-
placement, and acceleration from the nodes to particles,
then substituting the resulting expressions into Eq. (7), and
invoking the arbitrariness of δuI , leads to the discretized for-
mulation for the balance of linear momentum at the mesh
nodes. This is expressed as

ṗI = mI üI = f intI + f extI + f ext,tractionI ∀I /∈ �u, (9)

where f intI and f extI are the internal and external nodal forces,
respectively. Additionally, f ext,tractionI is the traction part of
the external nodal force which is a consequence of the pre-
viously omitted boundary integral term in Eq. (4). In the
traditionalMPM, nodalmass is lumpedvia row summation to
reduce computational cost. Internal and external nodal forces
are defined as

f intI = −
n p∑
p=1

Vp∇NIp · σ p, (10)

f extI =
n p∑
p=1

mpNIpbp. (11)

3 Treatment of nonconforming Neumann
boundary conditions

Nonconforming boundaries arise when the material bound-
ary and mesh boundary do not align. As discussed in Sect. 1,
thismisalignment is a commonoccurrence in theMPMdue to
the hybrid Eulerian–Lagrangian nature of the method. Con-
ventional approaches to handle nonconforming boundaries
rely on either boundary tracking or boundary reconstruction
to apply nonconforming boundary conditions. The recently
proposed VSB method [36] offers an alternative approach
where explicit knowledge of the material boundary position
is not required when imposing nonconforming Neumann
boundary conditions. This section provides an overview
of the conventional approaches to impose nonconforming
boundary conditions, presents a summaryof the originalVSB
method, and proposes a modification for the VSB method.
The methods discussed in this section are demonstrated
through various example problems presented in Sect. 4.
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3.1 Imposing nonconforming Neumann boundary
conditions with conventional methods

Conventional methods to impose nonconforming boundary
conditions use boundary particles to explicitly track or recon-
struct the material boundary. Once the material boundary has
been explicitly defined, the boundary integral in Eq. (4) may
be approximated or solved exactly.

Boundary tracking may be achieved by using so-called
boundary particles. These particles,which forma subset of all
particles in a simulation, are positioned close to, though not
exactly on, the material boundary. Using boundary particles,
the traction part of the external nodal force vector is computed
as

f ext,tractionI =
n p∑
p=1

ApNIp t̂ p, (12)

where Ap is the surface area associated with each particle.
As the material domain deforms, the particle surface area
must be updated using Nanson’s formula [47]. This approach
inherently introduces error since the boundary traction is
imposed within the material domain rather than directly on
the material boundary.

Alternatively, boundary reconstruction is employed to
impose nonconforming Neumann boundary conditions. In
this method, the exact boundary location is described by
a function (piece-wise polynomial, splines, Fourier series,
etc.). Using the defined boundary function, the traction part
of the external nodal force vector is computed as

f ext,tractionI =
∫

�t

NI t̂d�, (13)

where the integral inEq. (13) is typically solved using particle
quadrature. This approach also introduces some error since
the quadrature points used to solve the integral are mapped to
adjacent nodes, with some nodes located within the material
domain while other nodes are positioned outside of the mate-
rial boundary. The numerical error resulting from imposing
nonconforming Neumann boundary conditions via bound-
ary reconstruction is clearly demonstrated by the numerical
example in Sect. 4.1.

3.2 Imposing nonconforming Neumann boundary
conditions with the VSBmethod

The VSB method was developed to impose nonconforming
Neumann boundary conditions without the need for explicit
boundary tracking or reconstruction [36]. This is accom-
plished by utilizing a problem transformation where the
original boundary conditions are transformed into an equiva-
lent virtual stress field. Figures1 and 2 illustrate the original

Fig. 1 Illustration of the VSBmethod; original problemwith Neumann
boundary conditions

Fig. 2 Illustration of the VSB method; Neumann boundary conditions
replaced with equivalent virtual stress field

problem with Neumann boundary conditions and the trans-
formed problem with a virtual stress field, respectively.

3.2.1 Summary of the original VSBmethod

Let the virtual domain, �̄, entirely surround the material
domain, �, as shown in Fig. 2. Within the virtual domain,
the imposed boundary traction, t̂ , is replaced with an equiva-
lent virtual stress field, σ̄ . Although the Neumann boundary
condition may only be defined along part of the material
boundary, the virtual stress field is defined everywhere in the
virtual domain such that

σ̄ · n =
{
t̂ on �t ,

0 on � − �t .
(14)

Considering the form of Eq. (14), it is apparent that the orig-
inal problem (with a Neumann boundary condition) and the
transformed problem (with a virtual stress field) are precisely
equivalent. Note, �̄ denotes a term is virtual, such as the vir-
tual stress field, σ̄ .
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The virtual stress field, σ̄ , is user-defined based on
the Neumann boundary conditions and problem geometry.
Following [36], it is recommended to select the simplest
conceivable virtual stress field which satisfies Eq. (14). A
unique virtual stress field is not guaranteed to exist. How-
ever, any virtual stress field satisfying Eq. (14) is acceptable.
For example, consider imposing a boundary traction due to
constant pressure, p. In this case, the virtual stress field is
most concisely defined as σ̄ = −pI where I is the second
order identity matrix. In this scenario, Eq. (14) will be satis-
fied for all possible boundary orientations.

Recall that the balance of linear momentum, Eq. (1),
describes the response within the material domain. In the
same way, an additional governing equation is required to
describe the response within the virtual domain. Thus, the
balance of linear momentum in the virtual domain is given
as

ρ̄ ¨̄u = ρ̄ b̄ + ∇ · σ̄ in �̄, (15)

where ρ̄, ¨̄u, and b̄ are the virtual density, virtual acceleration,
and virtual body force, respectively. Additionally, define f̄ as
the divergence of the virtual stress field such that

f̄ = ∇ · σ̄ in �̄. (16)

Let μ̄ be an intermediate variable that distinguishes
between the material domain and the virtual domain such
that

μ̄ =
{
1 in �̄,

0 in �.
(17)

An updated strong formulation is developed when multiply-
ing Eq. (1) by (1 − μ̄) and Eq. (16) by μ̄. The sum of these
products is

(1 − μ̄)
(∇ · σ + ρb − ρ ü − ∇ · σ̄ + f̄

)
+ (∇ · σ̄ − f̄

) = 0 in � ∪ �̄. (18)

The correspondingweak formulation is formedwhenmul-
tiplying Eq. (18) by the virtual displacement and integrating
over the combined material and virtual domains such that
∫

�

δu · (∇ · σ + ρb − ρ ü − ∇ · σ̄ + f̄
)
d�

+
∫

�∪�̄

δu · (∇ · σ̄ − f̄
)
d� = 0. (19)

Note, the bounds of integration in Eq. (19) are a result of the
definition of μ̄ since (1− μ̄) = 0 within the virtual domain.
Vitally, Eqs. (4) and (19) are equivalent. However, Eq. (19)
does not include any boundary integral terms. When using

the VSB method within the MPM framework, integration
over thematerial domain,�, is computed using particle-wise
quadrature, whereas integration over the total domain,�∪�̄,
is computed using cell-wise quadrature.

Theweak formulationmay be developed into a discretized
formulation following the procedure described in Sect. 2.3.
This leads to the discretized formulation for the unbalanced
nodal force being expressed as

ṗI = mI üI = f̃
int
I + f̃

ext
I ∀I /∈ �u, (20)

where f̃
int
I and f̃

ext
I are the internal and external nodal forces

updated for the VSB method, respectively. As before, nodal
mass is lumped via row summation for reduced computa-
tional cost. The updated internal and external nodal forces
are defined as

f̃
int
I = −

n p∑
p=1

Vp∇NIp · (σ p − σ̄ p) −
nc∑
c=1

Vc∇NIc · σ̄ c

(21)

= f intI +
n p∑
p=1

Vp∇NIp · σ̄ p −
nc∑
c=1

Vc∇NIc · σ̄ c,

f̃
ext
I =

n p∑
p=1

mpNIpbp +
n p∑
p=1

VpNIpf̄ p −
nc∑
c=1

VcNIcf̄ c

= f extI +
n p∑
p=1

VpNIpf̄ p −
nc∑
c=1

VcNIcf̄ c, (22)

where nc is the number of cell quadrature points and NIc ≡
NI (ξ c) (i.e., the value of the basis function for node I at
cell quadrature point c with ξ c corresponding to the local
coordinates of the cell quadrature point). Note, �c denotes
a variable is associated with cell quadrature point c. If no
boundary traction is applied, it is clear that Eqs. (21) and
(22) become equivalent to the standard expressions for inter-
nal and external nodal forces given by Eqs. (10) and (11),
respectively.

3.2.2 Proposed update for the VSBmethod

The current study introduces a modification for the VSB
method that eliminates the need for cell-wise quadrature,
which was required in the original VSB method.

The current study adopts the same problem setup and
development of the strong formulation as the original VSB
method, given by Eqs. (14)–(18). However, Eq. (19) may
be further simplified when considering the definition for the
divergence of the virtual stress field, ∇ · σ̄ − f̄ = 0, which
can be expanded to still hold in the material domain � as its
form is not limited within this domain. Therefore, the weak
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formulation is expressed as

∫
�

δu · (∇ · σ + ρb − ρ ü − ∇ · σ̄ + f̄
)
d� = 0. (23)

Notice that Eqs. (4), (19), and (23) are all equivalent. How-
ever, Eq. (23) has the obvious advantage that the boundary
traction term is imposed using only volume integrals and
that the bounds of integration are limited to only the material
domain, �.

Using integration by parts, the divergence theorem, and
Eqs. (3) and (14), the weak formulation is alternatively
expressed as

∫
�

δu · ρ üd� +
∫

�

∇δu : σd� −
∫

�

∇δu : σ̄d�

−
∫

�

δu · ρbd� −
∫

�

δu · f̄ d� = 0. (24)

It is noted that the integral term related to thematerial bound-
ary �t in Eq. (4) is eliminated due to the virtual stress field.
Then using the particles as quadrature points, Eq. (24) is
approximated and rewritten as

n p∑
p=1

δup · mp üp +
n p∑
p=1

∇δup : Vpσ p −
n p∑
p=1

∇δup : Vpσ̄ p

−
n p∑
p=1

δup · mpbp −
n p∑
p=1

δup · Vpf̄ p = 0. (25)

Equation (8) is employed to map displacement, the virtual
displacement, and acceleration between particles and nodes.
Once the resulting expressions are substituted into Eq. (25),
the arbitrariness of δuI is invoked, leading to the discretized
expression for the unbalanced nodal force

ṗI = mI üI = f̃
int
I + f̃

ext
I ∀I /∈ �u . (26)

The updated internal and external nodal forces are redefined
as

f̃
int
I = −

n p∑
p=1

Vp∇NIp · (σ p − σ̄ p), (27)

= f intI +
n p∑
p=1

Vp∇NIp · σ̄ p,

f̃
ext
I =

n p∑
p=1

mpNIpbp +
n p∑
p=1

VpNIpf̄ p, (28)

= f extI +
n p∑
p=1

VpNIpf̄ p.

Similar to the original VSB method, if no boundary traction
is applied, Eqs. (27) and (28) degenerate into the standard
expressions for internal and external nodal forces given by
Eqs. (10) and (11), respectively. The modified VSB method
removes all cell-wise quadrature found in Eqs. (21) and (22).
Vitally, the nonconforming Neumann boundary conditions
are still imposedwithout explicit boundary tracking or recon-
struction. Therefore, the proposed update is equivalent to the
original VSB method, but the cell-wise quadrature has been
avoided.

3.2.3 Computer implementation

The original VSB method is easily embedded into the
traditional MPM [36]. As shown in Sect. 3.2.1, only the
expressions for internal and external nodal forces must be
updated for the VSB method. Since the virtual stress field is
defined to exist outside of the material domain, only nodes
close to the material boundary need to rely on Eqs. (21) and
(22). Following this rationale, the modified VSB method is
also easily embedded into the traditional MPM. Similarly,
only nodes close to the material boundary need to utilize the
updated expressions for internal and external forces given by
Eqs. (27) and (28), respectively.

Algorithm 1 provides the steps to determine the node set
N1, which utilize the updated expressions for internal and
external force. Let node setN1 be a subset of the active node
set A, where an active node is defined to have at least one
particle located within its support domain.

Algorithm 1 Find the nodes related to the VSB method
1: Loop through all the void cells (no particle within the cell) to find

each cell that has at least one active node (particles within the node’s
support domain); this cell set is denoted as E1.

2: Loop through all the non-void cells (particle within the cell) to find
each cell that shares at least one node with any cell in cell set E1;
this cell set is denoted as E2.

3: Generate a subset of the active node set that is comprised of active
nodes that are also associated with either E1 or E2; this node set is
denoted as N1.

Algorithm 1 is depicted by Fig. 3: cells shaded red repre-
sent void cells and are members of cell set E1; cells shaded
blue represent non-void cells and are members of cell set E2;
red nodes are active nodes associated with E1 or E2, indi-
cating that these nodes are members of node set N1. Active
nodes that are not members of node set N1 are shown as
black diamonds. In Fig. 3, most nodes are in node set N1.
However, in more realistic situations, most active nodes will
not be members of node set N1.

For each node in node setN1, all particles within its sup-
port domain are included in the sums involved in Eqs. (27)
and (28). This implies that particles not located in either cell
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Fig. 3 Illustration of the VSB method; discretized problem with cell
set E1, cell set E2, and node set N1

sets E1 or E2 may be used to impose the nonconforming Neu-
mann boundary conditions.

Some nodes associated with elements in cell set E1 are
inactive. Similar to the original VSB method, the modified
VSB method does not require updated internal and external
forces to be computed for inactive nodes. In other words, the
degrees of freedom in the linear system described by Eq. (26)
remain unchanged when using the VSBmethod compared to
the traditional MPM.

4 Numerical examples

In this section, the numerical quality and capability of the
proposed modification for the VSB method is demonstrated
using four numerical examples:

1. A benchmark problem of a 1D column subjected to axial
loading is simulated. This numerical example directly
compares the imposition of nonconforming Neumann
boundary conditions using explicit boundary reconstruc-
tion, the original VSB method, and the modified version
of the VSB method.

2. A benchmark problem of an internally pressurized thick-
walled cylinder is simulated in the 2D plane strain
scenario. This numerical example demonstrates that the
modified version of the VSB method can accurately
impose traction on circular boundary geometry. Mesh
refinement and particle per cell (PPC) refinement are
studied to show that the modified VSB method exhibits
acceptable convergence behavior.

3. A benchmark problem of an infinite plate with an elliptic
hole under cavity pressure is simulated in the 2D plane
strain scenario.The interactionbetweennon-circular cav-
ity geometry and anisotropic far-field stresses leads to
a more intricate stress solution compared to the previ-
ous benchmark problems. Mesh refinement is studied

to show that the proposed modification for the VSB
method exhibits acceptable convergence behavior for a
more complex problem.

4. A demonstration problem of propagating wellbore fail-
ure is simulated in 3D. Propagating failure means that
the boundary changes throughout the simulation. This
showcases the capability of the modified VSB method to
impose nonconforming boundary conditions on an evolv-
ing boundary without any explicit boundary tracking or
reconstruction.

All numerical examples rely on the modified update stress
last (MUSL) stress update scheme. Additionally, they all
employ the FLIP velocity update scheme.

4.1 Axially loaded column

The first numerical example is a 1D benchmark problem of
an axially loaded column.

This benchmark problem illustrates that using the VSB
method to impose nonconforming Neumann boundary con-
ditions results in reduced error compared to using explicit
boundary reconstruction viamassless particles. Additionally,
this benchmark problem demonstrates that the accuracy of
the VSB method remains consistent regardless of the back-
ground mesh type (e.g., regular mesh versus isoparametric
mesh). Finally, this benchmark problem directly compares
the original VSB method with the modified VSB method.

Column geometry is illustrated in Fig. 4. The initial col-
umn length is set to L0 = 9.5 m for all simulations. A
homogeneous Dirichlet boundary condition is imposed at the
left end of the column, while a Neumann boundary condi-
tion is imposed at the right end of the column. The Neumann
boundary condition is a traction equal to t̂ = 1.0 Pa (com-
pressive).

Figure4 shows the utilized long isoparametric, regular,
and short isoparametric meshes. The regular mesh is entirely
comprised of square elements with characteristic length of
he = 1.0 m. The long isoparametric mesh contains a non-
square final element with a dimension of 1.5 × 1.0 m and
the short isoparametric mesh contains a non-square final ele-
ment with a dimension of 0.5 × 1.0 m. In each mesh, the
Neumann boundary conditions are nonconforming due to
the column compressing under the applied traction. All three
meshes consist of nine fully filed elements and one partially
filled element at the right end. The current study employs
PPC = 8 in each of the full elements and PPC = 4 in the
partially filled element.

The axially loaded column simulations utilize a linear
elastic constitutive model. Table 1 summarizes the elastic
material parameters.
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Fig. 4 Geometry for axially loaded column: initial column length and
location of the applied Neumann boundary condition. Problem dis-
cretization using combination of regular mesh and isoparametric mesh

Table 1 Linear elastic material parameters for axially loaded column

Parameter Unit Value

Density [kg/m3] 1.0

Young’s modulus [Pa] 1.0e+3

Poisson ratio [–] 0.0

Time step, dt , is computed using

dt = κ
he√
M/ρ

, (29)

where κ is the reduction factor from the critical time step and
M is the constrainedmodulus. This benchmark problem uses
a reduction factor of about κ = 0.3. The column is initially
unstressedbefore the boundary traction is slowly appliedover
10,000 steps such that the problem remains approximately
quasi-static.Additionally,Cundall dampingof 0.05 is applied
to reduce the number of steps required to reach the final
steady-state solution [48].

Analytic displacement and analytic stress are represented
by u(x0) and σ(x0), respectively, with the expressions for the
displacement and stress given by Eqs. (A1) and (A2), respec-
tively. For this benchmark problem, the stress distribution
within the column is constant, meaning that the problem is
essentially a patch test. Thus, the numerical solution will not
improve under mesh refinement and a mesh refinement study
is omitted for this numerical example. The displacement and
stress errors are computed using the following expressions

eu =

√√√√√ 1

n p

np∑
p=1

(
u(x0p) − u p

L0

)2

, (30)

Fig. 5 Axial displacement profile along the 1D column

eσ =

√√√√√ 1

n p

np∑
p=1

(
σ(x0p) − σp

t̂

)2

. (31)

Figure5 shows a displacement profile along the column.
While the solutions may seem comparable, Table 2 lists the
computed error for each simulation. Using explicit bound-
ary tracking or the original VSB method produces similar
displacement errors with magnitudes around 1e − 7. Alter-
natively, the modified VSB method results in displacement
errors on the order of 1e − 11. The difference in error stems
from how the full cell volume is computed between Eq.
(21) and Eq. (27). For the original VSB method, the full
cell quadrature corresponds to sum of cell quadrature points
which is always

∑
Vc = 1.0. However, for the modified

VSBmethod, the full cell quadrature is computed as the sum
of particle quadrature points or

∑
Vp = 0.9990005 (for the

current scenario). The sum is less than 1.0 due to the slight
compressionof eachparticle under the appliedboundary trac-
tion.

Figure6 shows a stress profile along the column. By
inspection, it is evident that the largest stress error occurs
when using explicit boundary reconstruction to impose the
nonconforming Neumann boundary conditions. The error is
well understood and arises because the boundary is repre-
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Table 2 Displacement and stress errors when imposing nonconforming
Neumannboundary conditionswithmassless boundary particles and the
VSB method

Mesh eu [-] eσ [-]

Boundary particles Short 5.4751e−7 4.2490e−3

Regular 5.4751e−7 4.2490e−3

Long 5.4751e−7 4.2490e−3

VSB method (original) Short 5.7532e−7 9.7479e−4

Regular 5.7532e−7 9.7479e−4

Long 5.7532e−7 9.7479e−4

VSB method (updated) Short 4.8270e−11 1.8600e−11

Regular 5.4339e−11 1.8029e−11

Long 7.9013e−11 1.8337e−11

sented by a massless boundary particle which is mapped to
the adjacent nodes. Thus, a portion of the boundary trac-
tion is applied outside of the material while the remaining
part is applied inside of the material domain. As indicated
in Table 2, both variations of the VSB method represent an
improvement compared to the explicit boundary reconstruc-
tion approach. However, the original VSB method has error
on the order of 1e − 4 while the updated VSB method has
error on the order of 1e − 11. As before, the difference in
error stems from computing elemental volume via the sum
of cell quadrature points versus computing elemental volume
via the sum of particle volumes.

Previous studies have demonstrated that the original for-
mulation of the VSB method has a reduced computational
cost compared to other existing methods for imposing non-
conforming Neumann boundary conditions [36]. The earlier
study computed the additional computational cost for impos-
ing a nonconforming traction boundary using three methods:
directly applying traction to material points near the material
boundary, applying traction to massless boundary particles
corresponding to the exact material boundary, and the impos-
ing traction with the original VSB method. This efficiency
study has been extended to include the proposed variation of
the VSB method.

Table 3 provides the time per particle per time step as
a 1m × 1m × 10m column is simulated without impos-
ing any Neumann boundary conditions, referred to as the
base simulation. For the column, one end is fixed, and the
other is free, similar to the column geometry depicted in
Fig. 4. This table also reports the additional cost, as a per-
centage of the base simulation, when the column is loaded
using various approaches to impose nonconforming bound-
ary conditions. These approaches include imposing traction
directly on existing material points located near the bound-
ary, imposing traction on massless boundary particles that
exactly represent the material boundary, employing the orig-
inal VSBmethod, and employing the modified VSBmethod.

Fig. 6 Axial stress profile along the 1D column

Table 3 Cost per particle per time step for the base simulation; addi-
tional cost, as a percentage of the base simulation, when imposing
nonconforming Neumann boundary conditions with material points
near the boundary, massless boundary particles, the original VSB
method, and the updatedVSBmethod, or�tmp ,�tbp ,�tvsb, and�t∗vsb,
respectively

he Nodes Particles t �tmp �tbp �tvsb �t∗vsb
[m] [μs] [%] [%] [%] [%]

1.00 52 640 1.40 1.10 3.67 1.55 0.45

0.50 225 5120 2.51 2.51 4.00 2.09 0.56

0.20 2196 80,000 3.67 3.99 4.14 2.79 1.78

0.10 14,641 640,000 3.66 4.77 4.89 2.41 1.81

The additional costs associated with these approaches are
denoted using �tmp, �tbp, �tvsb, and �t∗vsb, respectively.
All reported values are averaged over multiple consecutive
simulations of 1000 steps using an Intel(R) Core(TM) i9-
10900X CPU at 3.70 GHz.

In Table 3, as the number of particles increases, the rela-
tive efficiency of the VSB method becomes evident. When
he < 1.0 m, both the original and modified VSB methods
correspond to lower additional costs compared to explicit
boundary tracking or reconstruction approaches. For all sim-
ulations considered, the modified VSB method outperforms
the original VSB method in terms of lower additional cost
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to impose the nonconforming Neumann boundary condition.
The relatively lower cost is reasonable given the simplified
formulation of the updated VSB method, which eliminates
the cell-wise quadrature from the original approach. It is
important to note that for more complex deformations, such
as self-contact or fracture, explicit boundary tracking or
reconstruction requires additional computational algorithms
to handle the evolving boundary geometry. Alternatively, no
additional considerations beyond what is described by Algo-
rithm 1 are required for either variation of the VSB method
when handling complicated deformations.

This benchmark problem illustrates three key points.
Firstly, when imposing nonconforming Neumann boundary
conditions, both variations of the VSBmethod exhibit higher
accuracy compared to explicit boundary reconstruction via
massless particles. The increase in accuracy is most evident
when considering the stress profile along the 1D column in
Fig. 6. Secondly, both variations of the VSB method demon-
strate independence from the background mesh. Results
summarized in Table 2 indicate that displacement and stress
errors are approximately mesh independent. Thirdly, the
modified VSB method is comparable to the original VSB
method. In this case, error is lower for the updated version of
the VSB method. However, it is shown that both variations
of the VSB method are capable of imposing nonconforming
Neumann boundary conditions.

4.2 Internally pressurized thick-walled cylinder

The second numerical example is a benchmark problem of an
internally pressurized thick-walled cylinder, modeled using
the 2D plane strain assumption.

In this numerical example, only the VSB method is used
to impose the nonconforming Neumann boundary condi-
tions. The influence of particle distribution and mesh shape
is investigated through mesh refinement and PPC refinement
studies. Overall, this benchmark problem demonstrates that
modified version of the VSB method is capable of imposing
nonconforming traction boundary conditionswith acceptable
convergence behavior.

Figure7 shows the thick-walled cylinder geometry. The
variables a and b correspond to the inner and outer radius,
respectively, with a = 1 and b = 5 in the current study.
Figure7 also indicates that the imposed Neumann boundary
condition is an isotropic pressure boundary applied along
the inner cavity. In the current study, internal pressure is set
as pi = 100.0 kPa (compressive). Due to symmetry of the
thick-walled cylinder geometry and symmetry of the applied
boundary condition, no additional constraints (e.g., Dirich-
let boundary conditions) are required for the thick-walled
cylinder to remain static.

Figure8 illustrates the combinations of mesh shape and
particle distribution utilized in the study, including regular

Table 4 Linear elastic material parameters for thick-walled cylinder

Parameter Unit Value

Density [kg/m3] 1.0e+3

Young’s modulus [Pa] 1.0e+9

Poisson ratio [–] 0.2

mesh with uniform particles, regular mesh with concentric
particles, and isoparametric mesh with concentric particles.
Differences inmesh shape and particle distributionmean that
the total quantity of particles for each specimen cannot be
equal. Particular emphasis was placed on developing speci-
mens with an approximately equal total number of particles.

First, the specimens with regular mesh and uniform par-
ticle distribution were developed. For these specimens, PPC
= N denotes equally spaced particles with an N × N distri-
bution in the element.

Next, the specimens with isoparametric mesh and con-
centric particles were developed. Compared to the regular
mesh, the isoparametric mesh was defined to have the same
number of elements along the x-axis and y-axis. For these
specimens, PPC = N refers to an N × N distribution of
particles with constant radial spacing and rotational offset in
the radial and circumferential directions, respectively. The
number of circumferential elements was selected such that
the total quantity of particles was approximately equivalent
to the specimens with regular mesh and uniform particle dis-
tribution.

Lastly, the specimens with regular mesh and concentric
particles were generated by combining the previously devel-
oped regular mesh and concentric particle files. For these
specimens, PPC≈ N represents the average N × N distri-
bution over all elements. In fact, more particles are located
in cells in the near-cavity region, leading to a gradient of the
actual PPC which decreases from the inner to outer radius.

The thick-walled cylinder simulations utilize a linear
elastic constitutive model. Table 4 summarizes the elastic
material parameters.

Time step is computed using Eq. (29) with κ = 0.2. Ini-
tially the thick-walled cylinder is unstressed before internal
pressure is imposed using the updated VSB method. The
magnitude of pressure is slowly increased over 0.2 seconds
such that the simulation is approximately quasi-static. Addi-
tionally, Cundall damping of 0.05 is applied to achieve the
steady-state solution and reduce the effect of dynamic load-
ing [48].

The analytic solution for an internally pressurized thick-
walled cylinder is well established in the literature [49]. The
expressions for analytic displacement, radial stress, and hoop
stress are given by Eqs. (A3), (A4), and (A5), respectively.
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Fig. 7 Geometry for
thick-walled cylinder: inner
radius, outer radius, and location
of the applied Neumann
boundary condition

Fig. 8 Thick-walled cylinder discretization using regular mesh with uniform material points, regular mesh with concentric material points, and
isoparametric mesh with concentric material points

Error is redefined to consider each particle’s relative vol-
ume such that displacement error is computed using

eu =
√√√√ 1

Vt

np∑
p=1

Vp

(
u(x p) − u p

a

)2

, (32)

and the stress error is computed using

eσ =
√√√√ 1

Vt

np∑
p=1

Vp

(
σ(x p) − σp

pi

)2

, (33)

whereσ(x p) andσp correspond to the analytic and numerical
solutions of stress, respectively. For this benchmark problem,
the stress state is decomposed into the radial stress and hoop
stress or σrr and σθθ , respectively.

Figure9 shows representative contours for the normal-
ized radials stress, hoop stress, and displacement in the
near-cavity region for specimens with he = 0.25 m. Stress
contours for the regular mesh simulations (both the uniform
and concentric particle distributions) show an obvious mesh
dependency pattern for normalized radial and hoop stresses.
These results are mostly due to the utilized linear basis func-

tions and are consistent with previous simulations using
the VSB method [36]. The normalized stress contours for
the isoparametric mesh with concentric particles represent
a better match with the analytic solution. This improve-
ment occurs since the gradient of the linear basis functions
is approximately oriented in the radial and circumferential
directions which subsequently coincides with the orientation
of the stress contours for radial and hoop stress. Overall, all
displacement contours are well aligned between the analytic
and each numerical solution.

4.2.1 Mesh refinement study

The influence of mesh refinement are studied for this bench-
mark problem.

Table 5 compares the total quantity of particles for the
uniform particle distribution versus the concentric particle
distribution.As noted above, specimenswere developed such
that the total quantity of particles is approximately equiva-
lent between these two particle distributions. For the regular
meshwith uniformparticle distribution and the isoparametric
mesh with concentric particle distribution, the total quantity
of particles listed in Table 5 corresponds to PPC = 4. Alter-
natively, for the regular mesh with concentric particles, the
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Fig. 9 Analytic and numerical solutions for radial stress, hoop stress, and displacement in the near-cavity region (results for mesh with he = 0.25
m)

total quantity of particles listed in Table 5 corresponds to
PPC≈ 4.

Table 5 also lists the characteristic length for each of
the regular meshes, ranging from he = 0.0625 m through
he = 1.0 m. Note, these values do not correspond to the
characteristic length of the isoparametricmesh. However, the
characteristic lengths listed in Table 5 are used for plotting
the convergence behavior to directly compare the behavior
of different combinations of mesh shape and particle distri-
bution under mesh refinement. In reality, the characteristic
length of the isoparametric mesh varies for each concentric
ring of elements.

Displacement and stress errors are computed using Eqs.
(32) and (33), respectively. Figure10 shows the conver-
gence behavior of errors under mesh refinement for the
regular mesh with uniform particle distribution (“uniform”),
regular mesh with concentric particle distribution (“con-
centric”), and isoparametric mesh with concentric particle
distribution (“isoparametric”). Stress errors are expect to
converge linearly and displacement errors are expected con-
verge quadratically. The rates of convergence for radial and
hoop stress errors are nearly linear and approximately con-
stant under mesh refinement. For the “uniform” specimens,

the rate of convergence for the displacement error starts as
nearly quadratic but reduces to approximately linear as the
mesh is refined. Alternatively, for the “concentric” speci-
mens, the displacement errors diverge for the smallest mesh
(he = 0.0625 m). This divergence occurs due to an unavoid-
able increase in the quantity of cell crossing occurrences
resulting from the combination of Cartesian mesh and circu-
lar particle distribution. For the “isoparametric” specimens,
the rate of convergence for displacement is nearly quadratic
for all meshes considered.

Table 6 presents the calculated rates of convergence for
stress and displacement errors for the three combinations of
mesh shape and particle distribution. Overall, the isopara-
metric mesh with concentric particle distribution shows
convergence behavior that is closest to the expected rates.
This observation is consistent with Fig. 10, where the most
accurate numerical stress and displacement contours are
associated with the specimen utilizing the isoparametric
mesh with concentric particle distribution.

In addition to comparing the various mesh shape and par-
ticle distributions, it is worth considering how the selection
of the original versus updated VSB method influences simu-
lation outputs. Therefore, Fig. 11 shows spatial convergence
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Table 5 Total quantity of
material points used in mesh
refinement study for
thick-walled cylinder
simulations

Parameter Unit Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Characteristic length [m] 1.0000 0.5000 0.2500 0.1250 0.0625

Uniform MPs [–] 1212 4816 19,296 77,224 308,804

Concentric MPs [–] 1152 4608 18,432 73,728 294,912

Fig. 10 Convergence behavior for radial stress, hoop stress, and displacement errors under mesh refinement for thick-walled cylinder simulations

Table 6 Convergence rates for
radial stress, hoop stress, and
displacement errors under mesh
refinement for thick-walled
cylinder simulations

Convergence rate Radial stress Hoop stress Displacement

Regular mesh + uniform MPs 0.97 0.81 1.06

Regular mesh + concentric MPs 0.95 0.77 1.69

Isoparametric mesh + concentric MPs 0.94 0.97 1.83

behavior for the stress and displacement errors, where both
the original and updated variations of the VSB method are
utilized. For both variations, a regular mesh with concentric
particle distribution is utilized. Upon inspection, the stress
errors are very similar for both approaches; the displacement
errors exhibit similar rates of convergence and ultimately
exhibit divergence due to the cell crossing noise. For dis-
placement error results, there is more variability in terms of
relative error between the two methods. Initially, the original
VSB method exhibits lower error, whereas for smaller char-
acteristic lengths, the updated VSB method exhibits reduced
error.

To better quantify the differences in simulation results,
Table 7 lists the computed errors for each simulation. For all
values of characteristic length considered, the radial and hoop
stress errors are well aligned for both variations of the VSB
method. In general, the updated VSB method has slightly
reduced error compared to the original VSB method, and the
maximumdifference between the two stress errors is approxi-
mately 1.9e−3. Themagnitude and trend of the displacement
errors are also aligned, but exhibit a larger relative discrep-
ancy than the stress errors. The maximum difference for the
two displacement errors is approximately 1.8e−6.

4.2.2 Particle per cell study

The effects of PPC refinement is studied for this benchmark
problem.

Table 8 lists the total quantity of particles for the uniform
and concentric particle distributions. As discussed above,
specimens were developed such that the total particles are
approximately the same for both distributions. Recall that
for the isoparametric mesh, the characteristic length in Table
5 does not accurately describe the size of the mesh. However,
the value of PPC is exact for specimens with isoparametric
mesh and concentric particle distribution. The same is true
for values in Table 8. Additionally, for the regular mesh with
concentric particle distribution, the value of PPC in Table
8 represents the approximate average PPC over the entire
domain.

Displacement and stress errors are computed with Eqs.
(32) and (33), respectively. Figure12 shows error behavior
under PPC refinement. In general, there is not an expected
convergence rate as the quantity of PPC increases. For spec-
imens with regular mesh and uniform particle distribution
(“uniform”), the radial stress error, hoop stress error, and
displacement error decrease for all PPC refinement. For spec-
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Fig. 11 Convergence behavior for radial stress, hoop stress, and displacement errors under mesh refinement for thick-walled cylinder simulations

Table 7 Radial stress, hoop
stress, and displacement errors
when imposing nonconforming
Neumann boundary conditions
with original VSB method and
updated VSB method

VSB method Radial stress Hoop stress Displacement

he = 1.0 m Original 9.0277e−2 8.3941e−2 4.1158e−6

Updated 8.8373e−2 8.2979e−2 5.7266e−6

he = 0.5 m Original 4.0449e−2 4.0077e−2 9.7462e−7

Updated 3.9835e−2 4.0892e−2 2.7971e−6

he = 0.25 m Original 2.1615e−2 2.2467e−2 2.2006e−7

Updated 2.1151e−2 2.2901e−2 1.4572e−7

he = 0.125 m Original 1.0888e−2 1.3146e−2 6.0245e−8

Updated 1.0803e−2 1.3632e−2 5.2398e−8

he = 0.0625 m Original 6.4395e−3 9.9134e−3 8.8980e−8

Updated 6.4019e−3 9.7962e−3 1.1752e−7

Table 8 Total quantity of
material points used in PPC
study for thick-walled cylinder
simulations

Parameter Unit PPC = 1 PPC = 2 PPC = 3 PPC = 4 PPC = 5

Characteristic length [m] 0.1250 0.1250 0.1250 0.1250 0.1250

Uniform MPs [–] 4816 19,296 43,440 77,224 120,652

Concentric MPs [–] 4608 18,432 41,472 73,728 115,200

imens with regular mesh and concentric particle distribution
(“concentric”), the radial stress error and hoop stress error
decrease for all PPC refinement. The displacement error ini-
tially decreases, but for PPC = 5, the displacement error
increases. The diverging error is caused by the inevitable
increase in cell crossing quantity due to the combination
of Cartesian mesh and circular particle distribution. For
specimens with isoparametric mesh and concentric parti-
cle distributions (“isoparametric”), stress errors are relatively
insensitive to PPC refinement. The lowest stress errors occur
for PPC = 1 with approximately constant error for the
remaining values of PPC. For displacement, the largest error
occurs for PPC = 1 with approximately constant error for
the remaining values of PPC.

4.3 Infinite plate with elliptic hole under cavity
expansion

The third numerical example and final benchmark problem
is an infinite plate with elliptic hole under cavity expansion.
This is a 2D plane strain benchmark.

The combination of non-circular cavity geometry and
anisotropic far field stresses makes the analytic solution of
stress more complex compared to the previous two bench-
mark problems. Therefore, this numerical example further
verifies that the updated versionof theVSBmethod is capable
of accurately imposing nonconforming Neumann boundary
conditions.

The geometry of this benchmark problem is illustrated
by Fig. 13. The variables a0 and b0 correspond to the semi-
major and semiminor axes of the elliptic hole, respectively.
For the current numerical study, these axes are a0 = 2.0
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Fig. 12 Convergence behavior for radial stress, hoop stress, and displacement errors under PPC refinement for thick-walled cylinder simulations
(for mesh with he = 0.125 m)

Table 9 Linear elasticmaterial parameters for infinite platewith elliptic
hole

Parameter Unit Value

Density [kg/m3] 1.0e+3

Young’s modulus [Pa] 1.0e+9

Poisson ratio [–] 0.2

m and b0 = 1.5 m. Figure13 indicates that the Neumann
boundary condition is an isotropic pressure applied along
the elliptic cavity. The internal pressure is set as pi = 12.5
kPa (compressive). The infinite plate condition is approxi-
mately achieved by imposing the far-field stresses along the
outer boundaries of the model. The far-field stress is set as
σ0 = 10.0 kPa (compressive) with varying values of K .

All simulations of the infinite plate are completed using
regular mesh with a uniform particle distribution. PPC = 4
is consistently employed for this benchmark problem. Addi-
tionally, taking advantage of symmetry, only a quarter of
the infinite plate is simulated. Vertical displacement is con-
strained to zero along the positive x-axis while horizontal
displacement is constrained to zero along the positive y-axis.

The infinite plate simulations utilize a linear elastic con-
stitutive model. Table 9 summarizes the elastic material
parameters.

Appropriate time step is computed usingEq. (29)withκ =
0.2. The internal pressure is applied using the modified VSB
method. The magnitude of pressure is slowly increased over
0.2 seconds such that the simulation remains approximately
quasi-static. Cundall damping of 0.05 is used to quickly reach
the steady-state solution [48].

The analytic solution for an infinite plate with a non-
circular cavity and anisotropic far-field stresses can be
determined using a conformal mapping function in conjunc-
tion with complex stress functions. This approach was first
pioneered by G.V. Kolosov and subsequently detailed by

Muskhelishvili (1953) [50]. A very brief summary of this
method, along with explicit expressions for the Cartesian
stresses, is provided in Appendix 3. Stress error is computed
using Eq. (33).

The influence ofmesh refinement is studied for this bench-
mark problem. Table 10 lists the characteristic length and
associated total quantity of particles for the utilized meshes
(using PPC = 4). The characteristic length ranges from
he = 0.0625 m to he = 1.0000 m.

Figures14, 15, and 16 plot the Cartesian stresses in the
near-cavity region for K = 0.5, K = 1.0, and K = 2.0,
respectively. Each plot includes the analytic stresses, as well
as the numeric solutions for the coarsest mesh (he = 1.0000
m), medium mesh (he = 0.2500 m), and finest mesh
(he = 0.0625 m). For the coarsest meshes, the solutions
are noisy and do not necessarily exhibit the same stress dis-
tribution as the analytic solution. With the medium meshes,
the solutions improve and the numeric and analytic stress
contours are generally aligned. However, there still remains
obviousmeshdependencydue to the utilizationof linear basis
functions (similar to mesh dependency observed in the thick-
walled cylinder simulations). The finest meshes display the
smoothest stress distributionswith further reduced numerical
noise and generally provide a good match with the analytic
solution.

Figure17 shows convergence behavior of the Cartesian
stresses under mesh refinement. Overall, the error decreases
with continued mesh refinement for each stress component
and each value of K . Consider that the initial convergence
behavior occurs as the mesh is refined from coarse mesh
(he = 1.0000 m) to medium mesh (he = 0.2500 m). During
this phase, the initial rate of convergence for σxx ranges from
0.64 − 0.71, while for σxy , it ranges from 0.64 − 0.69. For
σyy , the initial rate of convergence ranges from 0.51 − 1.06
(where the rate of convergence when K = 1.0 and K = 2.0
is > 1.0). The initial rates of convergence may be less than
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Fig. 13 Geometry for infinite
plate with elliptic hole:
semimajor axis, semiminor axis,
location of applied Neumann
boundary condition, and
far-field stress condition

Table 10 Total quantity of
material points used in mesh
refinement study for infinite
plate with elliptic hole
simulations

Parameter Unit Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Characteristic length [m] 1.0000 0.5000 0.2500 0.1250 0.0625

Material points [–] 3563 14,249 56,999 227,990 911,951

linear due to several factors. For instance, using a uniform
particle distribution leads to a poorly resolved curved bound-
ary, which could be alleviated by increasing the quantity of
near-cavity particles. Moreover, the simulations employ lin-
ear basis functions while the analytic distributions of stress
are highly nonlinear. With continued refinement, the mag-
nitude of stress errors continues to decrease, but the rate of
convergence tends to stagnate. This phenomenon has been
observed in the MPM by others [46, 51], and is partly miti-
gated in certain variations of the MPM [52].

4.4 3D simulation with evolving boundaries

The final numerical example simulates a 3D scenario of
evolving boundaries arising from propagating failure in a
wellbore. Instances of wellbore failure are well documented
in both field observations [53] and laboratory testing [54–
57]. ImposingNeumann boundary conditions along evolving
boundaries in 3D poses significant numerical challenges if
the boundary must be explicitly tracked or reconstructed.
However, this numerical example illustrates that the VSB
method is capable of imposing nonconforming Neumann
boundary conditions, even under the complex conditions
associated with evolving boundaries due to material failure
and removal.

Thewellbore is simulated using a 3Dcylindrical shellwith
inner radius of a = 0.0127 m, outer radius of b = 0.0762
m, and height of h = 0.1524 m (equivalent to 0.5 in, 3.0
in, and 6.0 in, respectively), as depicted in Fig. 18. An inter-
nal pressure of pi = 7.0 MPa (compressive) is applied to
the inner cavity wall as the Neumann boundary condition
using the modified VSB method. Additionally, fixed Dirich-
let boundary conditions are imposed on the top and bottom of

Table 11 Mohr–Coulomb material parameters for 3D cylindrical shell

Parameter Unit Value

Density [kg/m3] 2.5e+3

Young’s modulus [Pa] 0.3e+9

Poisson ratio [–] 0.15

Friction angle [Deg] 25.0

Cohesion [Pa] 5.0e+6

Tensile strength [Pa] 10.0e+6

the 3D cylinder to constrain vertical displacements at these
boundaries.

The simulation employs a regular mesh with characteris-
tic length of he = 0.003 m. Partials are initialized using PPC
= 2. For 3D specimens, PPC = N signifies that particles are
equally spaced with an N ×N ×N distribution. Based on the
specific combination of he, PPC, and the problem geometry,
the model is ultimately comprised of 805,392 particles. Time
step is compute using Eq. (29) with κ = 0.5. The model uti-
lizes a Mohr–Coulomb constitutive model with the material
parameters listed in Table 11.

Others have developed semi-analytic approaches to deter-
mine the episodic development of wellbore breakouts [58].
This approach treats the problems as a sequence of quasi-
static problems. A similar procedure, outlined in Algorithm
2, is followed in the current study. Initially, the equilibrium
state is computed based on fully applied boundary conditions
and the current problem geometry. Subsequently, each par-
ticle is checked to determine whether it has exceeded the
failure threshold. Failed particles are then removed from
the simulation, resulting in an updated problem geometry.
Since removing particles disrupts the equilibrium condition,
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Fig. 14 Analytic and numerical solutions in the near-cavity region for infinite plate with K = 0.5

the procedure must be repeated. The propagating failure
may either reach a steady state where no more particles are
removed from themodel, or failure continues until total well-
bore collapse. In the current study, Cundall damping of 0.05
is added to quickly reach the equilibrium state [48].

Algorithm 2 Simulate episodic development of wellbore
failure
1: Compute equilibrium state (stresses and strains) based on current

geometry.
2: Determine particles beyond failure threshold.
3: Remove failed particles from simulation.

Several mechanisms are known to contribute to wellbore
damage, including shear failure, tensile failure, volumet-
ric failure, and fluid erosion failure [59, 60]. Considering
the current boundary conditions, characterized by relatively
high internal pressure, and the symmetricwellbore geometry,
shear failure is expected to be the primary cause of damage
[61]. Therefore, the failure threshold utilized in Algorithm
2 is established as the equivalent plastic deviatoric strain,
ε
p
q . This parameter quantifies the magnitude of plastic shear

deformation within the continuum and is defined as

ε
p
q =

√
2

3
ep : ep, (34)

where ep is the deviatoric part of the plastic strain tensor,
ε p. In the current study, a constant failure threshold of ε

p
q =

0.003 is utilized. Conducting a parametric investigation into
the material parameters and the failure threshold can provide
insights into critical aspects of wellbore failure. For instance,
such studies may indicate factors that influence the rate and
extent ofmaterial removal, conditions leading to either steady
state or total wellbore collapse, and the impact of anisotropic
stresses or geometric variations. However, these analyses are
beyond the scope of the current study. The goal of this study
is simply to demonstrate that the VSB method is capable
of handling complex and evolving boundaries. A remapping
(i.e., smoothing) procedure is employed for the equivalent
plastic deviatoric strain when determining whether particles
have exceeded the failure threshold (Step 2 in Algorithm 2).
Alternatively, the true value of plastic strain is always utilized
to determine the equilibrium state (Step 1 in Algorithm 2).

Figure19 shows contours of the equivalent plastic devia-
toric strain for the 3D cylindrical shell for each equilibrium
state reached when repeatedly applying Algorithm 2. Ini-
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Fig. 15 Analytic and numerical solutions in the near-cavity region for infinite plate with K = 1.0

tially, there is a very small damage zone in the near-cavity
region with only one to two rows of particles exhibiting plas-
tic strain greater than the removal threshold.After these failed
particles are removed and the updated equilibrium state has
been reached, it is observed that the material damage has
propagated outwards. This is caused, in part, by the fact
that the internal pressure remains constant, resulting in an
increased force on the wellbore due to the larger wellbore
surface area after the damaged particles are removed. Based
on the problem geometry and the imposed cavity pressure,
the damage pattern should always be axisymmetric. How-
ever, the observed damage zone appears “+”-shaped due to
a mismatch between the orientation of the stress contours,
backgroundmesh, and particle distribution.Now, six to seven
rows of particles have plastic strain greater than the removal
threshold. After these failed particles are removed, mate-
rial damage continues to propagate outwards until reaching
approximately half of the model with nearly 20 rows of
particles exhibiting plastic strain greater than the removal
threshold. After removing the newly failed particles, the
entire remaining model exhibits plastic strain above the fail-
ure threshold. Additionally, the specimen distorts due to the
large internal forces relative to the remaining ring of parti-
cles. In short, the specimen exhibits total failure.

Overall, this demonstration highlights several advanta-
geous components of the VSBmethod. It effectively imposes
nonconforming Neumann boundary conditions for a prob-
lemwith evolving boundary geometry. As a result ofmaterial
damage and subsequent removal, the inner boundary evolves,
but determining the precise position of the new material
boundary, which presents clear numerical challenges in 3D,
becomes unnecessary when utilizing the VSBmethod. Addi-
tionally, simulation results exhibit approximately symmetric
outcomes in the x–y plane, as well as an approximately con-
stant equivalent plastic deviatoric strain profile in the vertical
direction. This suggests that even as particles are removed,
the simulation remains numerically stable. The true damage
pattern in the x–y plane should be perfectly axisymmetric.
However, the numerical results exhibit planes of symme-
try in the x–y plane due to mesh dependency arising from
the utilization of Cartesian background mesh and uniform
particle distribution. Section4.2 demonstrates that adjusting
particle distribution or mesh shape may mitigate a portion of
the observed mesh-dependent behavior. Vertical symmetry
confirms successful integration of the VSB method within
the MPM framework. In particular, regions of the model
subjected to both nonconforming Neumann boundary condi-
tions and conforming Dirichlet boundary conditions show
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Fig. 16 Analytic and numerical solutions in the near-cavity region for infinite plate with K = 2.0

Fig. 17 Convergence behavior for Cartesian stresses under mesh refinement for infinite plate with elliptic hole simulations

no spurious results. Furthermore, the approximately con-
stant equivalent plastic deviatoric strain profile in the vertical
direction illustrates that the resulting force due to internal
pressure primarily acts in the radial directions, consistent
with the expected resultant forcewithin the pressurized cylin-
drical shell.

5 Conclusion

This paper introduces a modification to the VSB method
that eliminates the need for cell-wise quadrature present in
the original approach. Both the original and modified VSB
methods rely on a problem transformation where a boundary
traction is replacedwith a virtual stressfield.This transforma-
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Fig. 18 Geometry for 3D
cylindrical shell

Fig. 19 Contours of equivalent plastic deviatoric strain (ε p
q ) for each equilibrium state before specimen collapse

tion introduces a virtual domain containing the virtual stress
field and necessitates an additional governing equation. This
additional governing equation serves as the basis for develop-
ing an updated strong formulation and corresponding weak
formulation. Essentially, the modified VSB method further
simplifies the expression for the weak formulation found
in the original approach. The simplified weak formulation
is then utilized to develop a discretized formulation for the
balance equations, enabling the imposition of nonconform-
ing Neumann boundary conditions using only particle-wise
quadrature. ThemodifiedVSBmethod is easily embedded in
the MPM framework since only the expressions for internal
and external nodal forces must be updated.

The numerical benchmark problems presented above
cover a range of scenarios, including an axially loaded 1D
column, internally pressurized thick-walled cylinder, and an
infinite plate with elliptic hole under cavity expansion. These

cases demonstrate the versatility of the VSB method, which
can be applied to scenarios with various mesh type, par-
ticle distributions, and boundary geometries. In all cases,
the computed results exhibit good agreement with the avail-
able analytic solutions and good spatial convergence. The
final numerical example highlights the capability of the VSB
method to impose Neumann boundary conditions for 3D sce-
narios with complex and evolving boundaries.

Future research should prioritize enhancing numerical
accuracy and gaining insight into the factors that contribute
to stagnating convergence rates.
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Appendix A: Summary of analytic solutions

Appendix A provides a summary of analytic solutions used
for the three benchmark problems in the current study.

Axially loaded column

Analytic expressions for displacement and stress along the
1D column are represented by u(x0) and σ(x0), respectively.
These terms are defined in terms of the initial position, x0.
The magnitude of displacement depends on both the true
strain and the initial position such that

u(x0) = x0 ln
(
1 + t̂/E

)
, (A1)

where t̂ is the applied boundary traction (compression pos-
itive) and E is the Young’s modulus. Alternatively, stress is
constant throughout the column such that

σ(x0) = t̂ . (A2)

Internally pressurized thick-walled cylinder

Resulting from rotational symmetry of the thick-walled
cylinder geometry, displacement and stress depend on only
the radial position, r (and not the current orientation, θ ). The
analytic expressions for radial displacement, radial stress,
and hoop stress follow the notational conventions found in
[63]. Analytic displacement, u(r), is given by

u(r) = (1 + ν)

E

pir(( b
a

)2 − 1
)

(
(1 − 2ν) +

(
b

r

)2
)

, (A3)

where a, b, and r are the inner radius, outer radius, and radial
position, respectively. Additionally, E is the Young’s modu-
lus and ν is the Poisson ratio. Finally, pi is the applied internal
pressure. Analytic radial stress and hoop stress, σrr (r) and
σθθ (r), respectively, are given by

σrr (r) = pi(( b
a

)2 − 1
)

(
1 −

(
b

r

)2
)

, (A4)

σθθ (r) = pi(( b
a

)2 − 1
)

(
1 +

(
b

r

)2
)

. (A5)

Due to symmetry of the thick-walled cylinder geome-
try and applied pressure boundary, analytic shear stress is
σrθ (r) = 0 throughout the entire domain.

Infinite plate with elliptic hole under cavity
expansion

The elastic solutions for stress in an infinite plate with an
elliptic hole under cavity expansion are derived using the con-
formal mapping function and complex stress functions. This
methodology follows the classicwork ofG.V.Kolosovwhich
has been widely shared in the translated work of Muskhel-
ishvili [50]. Further insights into the development of explicit
expression of stress are found in [64].

The conformal map function is defined as

z = w(ζ ) = R

(
1

ζ
+ mζ

)
, (A6)

where z = x + iy and ζ = ξ + iη with i2 = −1. This
function maps the interior of the unit disk in the phase plane
to the exterior of an ellipse in the physical plane as illustrated
by Fig. 20.

The coefficients of R andm are defined based on problem
geometry such that

R = a0 + b0
2

, (A7)

m = a0 − b0
a0 + b0

, (A8)

where a0 and b0 are the semimajor axis and semiminor axis
of the ellipse, respectively.

Cartesian stresses are related to the conformal mapping
function and complex stress functions by

σxx + σyy = 4Re

[
φ′(ζ )

w′(ζ )

]
, (A9)
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Fig. 20 Illustration of the conformal map between the exterior of an
ellipse (physical space) and the interior of the unit disk (phase space)

σyy − σxx + 2iσxy = 2

w′(ζ )

[
w(ζ )

(
φ′(ζ )

w′(ζ )

)′
+ ψ ′(ζ )

]
,

(A10)

where φ(ζ ) andψ(ζ ) are the complex stress functions found
in [64]. Note, �′ indicates the first derivative of a function
and � indicates the complex conjugate of a function.

Equation (A9) is explicitly expressed as

σxx + σyy

= 4Re

[
−4pimζ 2 + σ0

(
1 + K + K (m − 2)ζ 2 + (m + 2)ζ 2

)
4mζ 2 − 4

]
,

(A11)

where pi is internal pressure, σ0 is the far-field stress, and K
is the ratio between horizontal and vertical stress in the far

field. Likewise, Eq. (A10) is explicitly expressed as

σyy − σxx + 2iσxy

= −4ζ 2(ζ 2 + mρ4)

ρ2(mζ 2 − 1)3

(
−pim + (1 + K )σ0m

2
+ (1 − K )σ0

2

)

−(1 − K )σ0 − 2pi
(1 + m2)(1 + mζ 2)ζ 2

(mζ 2 − 1)3

+(1 + K )σ0
(1 + m2)(1 + mζ 2)ζ 2

(mζ 2 − 1)3

+(1 − K )σ0
ζ 2

[
(m2 − 1)mζ 4 + (3 − m2)ζ 2 + 2m

]
(mζ 2 − 1)3

,

(A12)

where ρ is the absolute value of the phase space complex
coordinate ζ .

Appendix B: List of symbols

Roman symbols (lower)
a Inner radius of thick-walled cylinder
a0 Semimajor axis of ellipse
b Outer radius of thick-walled cylinder
b0 Semiminor axis of ellipse
b Body force per unit mass vector
b̄ Virtual body force per unit mass vector
dt Time step
ep Deviatoric part of the plastic strain tensor
eu Displacement error
eσ Stress error
f ext External force vector
f ext,traction Traction part of external force vector
f int Internal force vector

f̃
ext

Updated external force vector

f̃
int

Updated internal force vector
f̄ Divergence of the virtual stress field
he Characteristic length
m Mass
n Outward unit normal
n̂ Outward unit normal on Neumann boundary
nc Number of cell quadrature points
nn Number of nodes
n p Number of particles
p Pressure
pi Internal pressure
p Momentum vector
ṗ Rate of momentum vector
r Radial position
t̂ Imposed traction vector
u Displacement vector
û Imposed displacement vector
ü Acceleration vector
¨̄u Virtual acceleration vector
x Position vector
x0 Initial position vector
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Roman symbols (upper)
A Boundary surface area
E Young’s modulus
K Ratio between horizontal and vertical stress
L0 Initial column length
M Constrained modulus
NI Linear basis function
V Particle volume
Letter-like symbols
A Active node set
E1 Cell set 1
E2 Cell set 2
I Second-order identity matrix
N1 Node set 1
W Space of admissible virtual displacements
Greek symbols (lower)
δu Virtual displacement
ε p Plastic strain tensor
ε
p
q Equivalent plastic deviatoric strain

θ Rotation above x-axis
κ Time step reduction factor
μ̄ Virtual stress field variable
ν Poisson ratio
ξ Local coordinate vector
ρ Density
ρ̄ Virtual density
σ0 Far-field stress
σrr , σθθ , σrθ Polar stresses
σxx , σyy , σxy Cartesian stresses
σ Cauchy stress tensor
σ̄ Virtual stress tensor
Greek symbols (upper)
� Material boundary
�t Neumann (traction) boundary
�u Dirichlet (displacement) boundary
� Material domain
�̄ Virtual domain
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