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Abstract
The coefficient of lateral earth pressure at rest, K0, is an essential parameter for analyzing earth pressure distribution and
the safe reliability of structures in geotechnical engineering. This paper presents a series of numerical one-dimensional
compression tests on granular soils with particle size distribution (PSD) and rolling resistance (RR) effects using a real-
particle 3D discrete element model. The corresponding macro–micro behaviors are investigated in a parallel way. Both PSD
and RR affect K0 and the related compression characteristics. A higher coefficient of uniformity (Cu) or rolling resistance
coefficient (μr) results in a monotonic decrease in the mean coordination number, and too much consideration of RR makes
the mean coordination number less realistic in a particle system. The influence of PSD is more sensitive to the local-ordering
structure and contact force network than the RR. The inhomogeneity of normal contact forces enhances as Cu increases and
slightly reduces as μr increases. The strong contacts are much more anisotropic than the weak ones. Specimen with lower
Cu or higher μr induces higher anisotropy and more strong contacts during compression, in which a lower K0 is measured.
A unique macro–micro relationship exists between K0 and deviatoric fabric when strong contacts are considered only.
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1 Introduction

The coefficient of lateral earth pressure at rest, K0, is
commonly used to quantify the effective horizontal earth
pressure, which is relevant to many geotechnical engi-
neering issues, including tunnels, pile foundations, high
rockfill dams, and deep shaft walls [1–3]. K0 represents the
ratio between the effective horizontal pressure (σ ′

h) and the
effective vertical pressure (σ ′

v) under the condition of zero
horizontal movements. Although the mathematical descrip-
tion is given clearly, there is no fully accepted theoretical
calculation of K0 [2, 4, 5]. In practice, the widely-used K0

equation proposed by Jaky [6] is adopted to predict the values
of K0, which is simply related to the internal friction angle
of granular soils and given as follows

K0 � 1 − sin φ′ (1)
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where φ′ stands for the internal friction angle of granular
soils. Numerous researchers have verified the validity of
Eq. (1) through experimental studies [1, 2, 7–9].

On the whole, most previous experimental methods on
the measurement of the stress states of granular soils under
at-rest or K0 conditions fall into four classes: flexible or thin
wall oedometer tests [1, 4, 8, 10, 11], rigid wall oedome-
ter tests [5, 12–15], triaxial compression tests [16–19], and
in-situ shear wave velocity tests [20–23]. The K0 condition
means zero horizontal strain and movement. Talesnick [5]
stressed that the testing methodology must have the capacity
to properly maintain at-rest soil conditions and accurately
measure soil pressures. However, the flexible or thin wall
oedometers and the triaxial cells can hardly control the spec-
imen to be zero horizontal strain as axial strain increases,
making the mechanical state inconsistent with the K0 condi-
tion. Unlike the triaxial cells, the main drawback of the rigid
wall oedometers is the existence of frictional stress gener-
ating on the soil-wall interface, which reduces the vertical
pressure and makes the vertical pressure imprecise along the
height, especially for the soils under high-pressure loading.
The seismic wave method is susceptible to environmental
disturbance and is limited to surveying depth.

It is fortunate that the discrete element method (DEM)
proposed by Cundall and Strack [24] enables overcom-
ing the limitations in experimental tests and allows a link
betweenmacro andmicromechanical behaviors.WithDEM,
numerous studies have been carried out to investigate the
macroscopic factors affecting the microstructure of granu-
lar soils and how the microstructure further affects K0. For
example, Gu et al. [25, 26] found that K0 of a certain soil
depends on the coordination number regardless of the void
ratio. Lopera Perez et al. [27] reported thatK0 increases with
void ratio, and the variation of K0 is related to the degree of
structural anisotropy and normal contact force anisotropy.
Khalili et al. [28] prepared both isotropic and anisotropic
samples in the initial state and found that K0 is related to the
evolution of force anisotropy. Chen et al. [29] conducted a
series of DEM simulations with two kinds of particle shapes
and built a relationship between K0 and anisotropy of fabric
measures (i.e., contact normal and contact force).

These published results have clearly shown that K0 is
related to many factors, including void ratio [8, 16, 18, 25,
27], friction angle [1, 2, 5, 6], initial preparation method [13,
15, 26, 28, 30], stress history [1, 2, 5, 7, 13], particle shape
[8, 29, 31, 32], and particle size distribution (PSD) [15]. Of
these, it is well recognized that particle shape and PSD signif-
icantly influence the mechanical responses of granular soils.
For example, Zhu et al. [15] found thatK0 of gravel decreases
with increasing maximum particle size under the same effec-
tive vertical stress. Still, studies of the effect of PSD on K0

for traditional sands are reported rarely. Guo and Stolle [33]
found that the relation between K0 and particle shape is not

unique because the variation of particle shape may change
particle connectivity. Lee et al. [8] showed that the correla-
tion of K0 to φ′ is effective for uniformly round particles,
while some errors exist in angular ones due to interlocking
effects. Based on the mobilized strength and inter-particle
resistance between particles, Lee et al. [8] further proposed
an inter-particle strength-based relationship for describing
K0, which takes the interlocking effect into account. Never-
theless, the effect of particle shape onK0 remains unclear due
to the differences in testingmethods and diversities in particle
shapes. Particle shape quantification based on shape param-
eters, such as sphericity, aspect ratio, convexity, roundness,
roughness, and overall regularity [34–46], is not only com-
plicated but also difficult to evaluate the microstructure at the
particle level. To take the effect of particle shape into account
for simplicity, a common method is to incorporate a torque
acting on each particle to counteract the rolling motion, i.e.,
rolling resistance (RR) [47–52]. However, the effect of RR
on K0 of granular soils has not been thoroughly analyzed.

The paper aims to examine the effects of PSD and RR
on K0 of granular soils using 3D DEM with non-spherical
particles. The non-spherical particles enable a more real-
istic simulation and a better understanding of the macro-
and micro-mechanical responses of granular soils during K0

conditions. Numerical results are analyzed in detail from
macroscopic and microscopic points of view, e.g., evolutions
of K0, coordination number, contact force distribution, and
fabric anisotropy.

2 DEMmodel description

A series of one-dimensional compression tests were numer-
ically conducted using 3D DEM to study the effects of PSD
and RR on K0 of granular soils. The RR model employed
here is based on the linear model, to which a RR mecha-
nism is added [53–57], as shown in Fig. 1. The interaction
response between particles includes the normal, tangential,
and rotational forces. The contact forces satisfy the following
equations:

⎧
⎪⎨

⎪⎩

∣
∣ f n

∣
∣ � kn|δ|

∣
∣ f s

∣
∣ � min

{∣
∣ f ′

s + ks�u
∣
∣, μ

∣
∣ f n

∣
∣
}

(2)

where kn and ks are the normal and shear stiffness constants,
δ is the penetration depth of two particles at contact, �u is
the relative displacement at each time step, f n and f s are the
normal and shear contact forces, f ′

s is the previous shear con-
tact force, andμ is the interparticle friction coefficient. Given
a particle, its motion satisfies the following Newton–Euler
equations:
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Fig. 1 The rolling resistance
linear model in DEM: a behavior
and rheological components of
the model; b shear
force–displacement law;
c rotational moment–angle law
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where i, j, k are subsequent indexes, mi is the particle mass,
vi is the translational velocity, nc is the number of contacts,
f il is the elastic force at contact c, f id is the viscous damping
force at contact c,ωi is the angular velocity, Ii is the principal
moment of inertia, andMi

s andMi
r are the moments caused

by the shear force and RR at contact c. The RR momentM r

is given by

Mr �
{
Mr ,

∥
∥Mr‖ ≤ μr R fn

μr R fn , otherwise
(5)

Mr∗ � Mr − kr�θr (6)

where μr is the RR coefficient, kr is the RR stiffness, �θ r is
the incremental rotational angle in the rolling direction, and
−
R is the effective contact radius. The normal stiffness kn is
given by

kn � πr2E∗

r1 + r2
(7)

Table 1 Parameters used in the DEM

Particle density ρ (kg/m3) 2650

Normal stiffness of ball kn (N/m) 3 × 106

Shear stiffness of ball ks (N/m) 3 × 106

Normal and shear stiffness of wall (N/m) 3 × 108

Damp ratio 0.2

Friction coefficient between wall and ball 0.0

whereE* is the effectivemodulus, r1 and r2 are the equivalent
radii of particles 1 and 2, and r equals min (r1, r2). The
shear stiffness ks is calculated via ks � kn/κ∗, where κ*

is the normal-to-shear stiffness ratio. The RR stiffness kr is

calculated via kr � ks
−
R2.

The specimen used in the 3D DEM was represented in a
cylinder (
 10 mm × 20 mm) by several strain or stress-
controlled rigid and frictionless walls. The specimen is kept
small to improve computing efficiency and has sufficient size
to capture the mechanical behavior while reducing the size
effect as the specimen diameter is larger than 8×mean parti-
cle size d50 [57]. The input parameters for DEM simulations
are listed in Table 1. Figure 2a shows the PSDs of sands
modeled in this study. The properties of the PSDs can be
characterized by different parameters, such as coefficient of
uniformity (Cu), and mean particle size (d50). In this study,
d50 is fixed as 1.2 mm for all specimens, and Cu varies from
1.0 to 2.7. The non-spherical particle used in the model is
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Fig. 2 a Particle size distributions and b specimens with non-spherical particles modeled in the DEM simulations

Table 2 Details of the tested
specimens PSD type Cu d50/mm μ μr

A 1 1.2 0.5 0.1

B 1.5 1.2 0.5 0.1

C 2.0 1.2 0.5 0.1

D 2.7 1.2 0.5 0.0

0.1

0.2

0.4

convex, as shown in Fig. 2b, and its corresponding sphericity
and aspect ratio are 0.864 and 0.738, respectively. Spheric-
ity [58] is defined as the surface ratio of a sphere having
the same volume as the particle to the surface of the particle

itself, i.e. S � 3
√
36πV 2

/
SA, where V � the volume of

a particle, and SA � the surface area of a particle. Aspect
ratio describing the anisotropy of the form of a particle is the
mean of the elongation index (EI � b/a) and flatness index
(FI � c/b) (i.e., a, b, and c refer to the major, intermediate,
and minor principal dimensions respectively). Table 2 lists
the simulation plan in this study.

The specimen was randomly distributed and then rear-
rangedwithout overlap between particles in the cylinderwall.
The interparticle friction coefficientμwas temporarily set to
zero during this rearrangement. The initial void ratio of all
specimens was 0.562, and the corresponding particle num-
bers were 1111, 1400, 2108, and 4076, respectively. Then the
specimens were compressed in the one-dimensional condi-
tion by moving the top and bottom walls towards each other
with the constant rate of 0.01 m/s until the vertical stress σ v

reached 10 MPa. The one-dimensional compression process
is performed with the constant interparticle friction coeffi-
cient (μ � 0.5) and different RR coefficients varying from
0.0 to 0.4.

3 Results and discussion

3.1 Typical macroscale behaviors

In Fig. 3, the one-dimensional compression responses of
specimens with different PSDs are presented. A-0.1 means
that a specimen of grading A was compressed with an μr of
0.1. TheK0 values of the specimenwith a largerCu run above
those with lower Cu, as shown in Fig. 3a. The lower values
ofK0 from the specimen with a lower Cu can be attributed to
the strong force chain along the vertical direction due tomore
significant interlocking, simultaneously resulting in a lower
degree of stress transfer in the horizontal direction. From the
e-lgσ v curves shown in Fig. 3b, it is also observed that the
specimen with lower Cu is harder to compress, further indi-
cating that more strong forces are along the vertical direction
and form a more solid skeleton.

Figure 4 shows the one-dimensional compression
responses of specimens with different RR coefficients. The
K0 values of the specimen with a lower μr run above those
with a higher μr , as shown in Fig. 4a. Similar to the above,
the lower values of K0 from the specimen with a higher μr

can be attributed to the strong force chain along the verti-
cal direction due to more intense friction between particles,
resulting in a lower degree of stress transfer in the horizontal
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Fig. 3 Particle size distribution effect on the macroscale behaviors: a K0; b e
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Fig. 4 Rolling resistance effect on the macroscale behaviors: a K0; b e

direction. Figure 4b reveals that the specimen with a higher
μr forms a more solid skeleton. The effect of RR on the K0

values can be identified by comparing the results from Lee
et al. [8], who found that the K0 values for irregular sands
are lower than those for glass beads due to the higher degree
of friction and interlocking between particles.

3.2 Coordination number

One advantage of DEM modeling is that the evolution of
microscale response can be observed and analyzed to reveal
the underlying mechanism. The coordination number (CN)
quantifies the contact number of each particle and reflects the
microstructural evolution. ThemeanCNdefinedbyThornton
and Antony [59] is given by

Z � 2Nc − N 1
p

Np − N 0
p − N 1

p
(8)

where Nc � the total contact number, Np � the total particle
number, N 0

p and N 1
p � numbers of particles with zero and

one contact, respectively. The reason for this definition is that

particles with no contact or one contact miss the contribution
to stress transmission.

Figure 5a shows the evolutions of mean CNs under the
PSD effect. It can be seen that Z increases rapidly with
increasing vertical stress at the early stage and then grad-
ually stabilizes. The higher Cu, the lower Z is. It means that
a wide particle grading range increases the number of float-
ing particles with contact numbers less than two, as shown
in Figs. 6 and 7. Figure 6 also shows the evolution of the
percentage of particles with more than one contact N 2

p; it is
observed that the percentage of N 2

p decreases with increas-
ing Cu. The mean CNs for A-0.1, B-0.1, C-0.1, and D-0.1 at
10 MPa are nearly 6.89, 6.01, 5.62, and 4.84, respectively,
and the relative mean CNs (RCN , ratios of A-0.1, B-0.1, C-
0.1, and D-0.1 to A-0.1) are 1.000, 0.872, 0.816, and 0.702,
which decrease with increasing relative Cu (RCu). Figure 8
shows the relationship between RCN and RCu as the vertical
stress ranges from 0.5 to 10MPa, and the result indicates that
RCN decreases linearly with increasing RCu regardless of the
influence of vertical stress.

Figure 5b shows the evolutions of CNs under the RR
effect. It can be seen that increasing μr causes a monotonic
decrease in the mean CN, where specimen D-0.4 has the
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Fig. 5 Evolutions of coordination number during one-dimensional compressions: a PSD effect; b RR effect
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Fig. 6 Evolutions of particle numbers for particles with no contact, one contact, and more than one contact: a A-0.1; b B-0.1; c C-0.1; d D-0.1

lowest mean CN (3.5–4.5) throughout the simulation. Pre-
vious simulation studies of frictional spheres compressed in
a gravity-free environment have shown that the mean CN is
significantly larger than 4.5 [60]. Existed CT scanning tests
of silica sands have reported that themeanCN is larger than 6
as the vertical stress reaches 10MPa [38, 61]. Obviously, too
much consideration of RR makes the mean CN less realistic
in a particle system [52].

3.3 Radial distribution function

The radial distribution function (RDF), used to explore the
local-ordering structure of a granular assembly, is the prob-
ability of finding the center of a particle within a spherical
shell at a certain distance from a reference particle [62]. The
RDF is defined as follows:
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Fig. 7 Illustrations of particles
with no contact (burgundy), one
contact (bright blue), and more
than one contact (gray)
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Fig. 8 Relationship between RCN and RCu in a wider range of vertical
stress

n(r2) − n(r1) �
∫ r2

r1
g(r)4πr2dr (9)

where n(r) is the number of particles within a spherical shell
of radius r. Figure 9 shows the normalized radial distribution
of particle numbers in a spherical shell as a function of the
dimensionless distance r/〈d〉, where 〈d〉 is the mean particle
diameter. For the monodisperse particles in Fig. 9a, a clear
first peak of g(r) can be seen at r/〈d〉 less than 1. This position
of the first peak is consistentwith the result fromConzelmann
et al. [63] and is lower than the position for spherical particles
(r/〈d〉� 1) [62, 64, 65]. Then, g(r) decreases to minimum
at r � 1.6 〈d〉 indicating a minimum probability of find-
ing particles in contact. g(r) continues to increase to another
peak at r � 2.35 〈d〉. RDF of the specimen with higher Cu

shows different behaviors; the first peak (r/〈d〉< 1) shifts to a
lower value, and the peak ismore prominent, representing the
higher coordination of the polydisperse specimen compared
with the monodisperse one and also indicating an increasing
organization in the packing structure [65–67].
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Fig. 9 Radial distribution functions for specimens with a different PSDs and b different RR coefficients

Fig. 10 Closeup views of the
contact force network under the
vertical stress of 10 MPa

Figure 9b shows the RDFs of the four specimens with
different RR coefficients. The first peak of an RDF appears at
the same position r � 0.5 〈d〉, regardless of RR.Additionally,
the number of peaks and the corresponding amplitudes is
almost identical regardless of RR. Similar results have been
found by Zhao et al. [67] that the position of the first peak is
independent of particle shape, and Kramar et al. [68] found
that the RDF is regardless of the friction coefficient.

3.4 Contact force

The microstructure of granular materials can be described in
terms of force chain characteristics. Figure 10 presents the
closeup views of the contact force network in A-0.1, B-0.1,
C-0.1, and D-0.1 as the vertical stress equals 10 MPa. As Cu

increases, the distribution of forces broadens, which reflects
in the increase in the maximum contact force.

The probability distribution function (PDF) of the contact
force is commonlyused to quantify the contact force network.
For the specimen with monodisperse particles (Cu � 1), the
PDF for normal contact force f n less than the average〈f n〉fits

well with the Gaussian distribution (see Fig. 11a) defined as

PDF( fn) � a +
b

c
√

π
/
2
e−2( fn/ 〈 fn〉−d)2

/
c2 (10)

where a, b, c, and d are fitting parameters of the Gaussian
function. As Cu increases, PDF(f n) has an upturn at very
small forces and PDF(f n) fits well with the power law (see
Fig. 11b–d)

PDF( fn) � β2
(
fn

/ 〈 fn〉
)β1 (11)

where β1 and β2 are fitting parameters of the power function.
As usually observed, PDF(f n) above〈f n〉for each specimen
is characterized by an exponential distribution

PDF( fn) � α2e
−α1( fn/ 〈 fn〉) (12)

where α1 and α2 are fitting parameters of the exponential
function. Notably, the differences in the PDF(f n) for a certain
specimen are almost negligible. That is, PDF(f n) maintains
a nearly constant distribution regardless of the influence of

123



Computational Particle Mechanics (2024) 11:1007–1020 1015

0 2 4 6 8
10−4

10−3

10−2

10−1

100

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10
1 MPa (fitting)

2 MPa (fitting)

4 MPa (fitting)

6 MPa (fitting)

10 MPa (fitting)

1 MPa

2 MPa

4 MPa

6 MPa

10 MPa

P
D

F

(a) A-0.1

0 2 4 6 8 10
10−4

10−3

10−2

10−1

100

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10
1 MPa (fitting)

2 MPa (fitting)

4 MPa (fitting)

6 MPa (fitting)

10 MPa (fitting)

(b) B-0.1

0 2 4 6 8 10 12
10−4

10−3

10−2

10−1

100

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.03

0.06

0.09

0.12
1 MPa (fitting)

2 MPa (fitting)

4 MPa (fitting)

6 MPa (fitting)

10 MPa (fitting)

P
D

F

fn / ⟨fn⟩

(c) C-0.1

0 2 4 6 8 10 12 14 16
10−4

10−3

10−2

10−1

100

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.06

0.12

0.18

0.24

0.30
1 MPa (fitting)

2 MPa (fitting)

4 MPa (fitting)

6 MPa (fitting)

10 MPa (fitting)

fn / ⟨fn⟩

(d) D-0.1
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vertical stress. The main reason for this phenomenon is that
the stress field or K0 in a one-dimensional state is less var-
ied. The result is in accordance with the findings in previous
one-dimensional tests [37], and isotropic compression tests
[69, 70]. Additionally, Fig. 11 shows that the distribution of
normal forces varies in the other two ways as Cu increases.
One is that the distribution becomes broader with the aver-
age of α1 decreasing from 1.20 to 0.71, as shown in Fig. 12,
and maximum forces get to be as large as sixteen times the
average, implying that the inhomogeneity of normal forces

enhances asCu increases. Another is that the average propor-
tion of weak contacts increases from 59.29% for Cu � 1 to
68.77% for Cu � 2.7. Similar observations were made in 2D
DEM simulation investigated by Estrada and Oquendo [71],
and 3D simulations investigated by An et al. [72], Cantor
et al. [73], and Mutabaruka et al. [74].

Figure 13 shows the PDF(f n) of normal forces normalized
by the average under the effect of RR. It can be seen that
the PDF(f n) below〈f n〉for each specimen fits well with the
power law, and the PDF(f n) above〈f n〉is characterized by an
exponential distribution, implying that the function type of
PDF(f n) is independent of RR. The average proportion of
weak contacts decreases slightly from 69.36% for μr � 0.0
to 67.96% for μr � 0.4. The average of α1 increases from
0.66 for μr � 0.0 to 0.77 for μr � 0.4 in a narrow range,
indicating that the homogeneity of normal forces slightly
enhances as μr increases.

The second-order fabric tensor introduced by Satake [75]
is frequently used to quantify the fabric anisotropy, which
characterizes the distribution in contact normal orientations.

φi j � 1

Nc

Nc∑

k�1

nki n
k
j (i , j � x , y, z) (13)

where nki � the contact normal vector of the contact k in
the ith direction. The principal values of φi j , ordered by
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Fig. 13 Probability distribution function of normal contact forces f n normalized by the average〈f n〉in log-linear scale: a D-0.0; b D-0.1; c D-0.2;
d D-0.4

decreasing magnitude, are φ1, φ2, φ3. To quantify the fabric
anisotropy, a deviatoric fabric δd proposed by Barreto et al.
[76] is adopted as follows

δd �
√

(φ1 − φ2)
2 + (φ2 − φ3)

2 + (φ1 − φ3)
2

2
(14)

Radjai et al. [77] proposed that the average normal
force〈f n〉is a characteristic force separating the interparticle
contacts into two complementary groups: the “weak” con-
tacts bearing forces smaller than the average and the “strong”
contacts bearing forces larger than the average. Numerous
numerical studies have shown that the distribution of weak
contact forces is nearly isotropic, indicating that the weak
forces only contribute to the isotropic stress or have little con-
tribution to the deviatoric stress [64, 77–80]. Take specimen
D-0.1 for example, the value of δd for strong contacts (δsd )
is higher than the weak contacts, indicating that the strong
contacts are much more anisotropic and much more simi-
lar to that of the K0 versus σ v curve, as shown in Fig. 14a.
Furthermore, the shape of the contact normal distribution for
weak contacts is close to a sphere because the distribution of
weak contacts is approximately isotropic, and the shape for
strong contacts, by contrast, is thin in the middle, as shown
in Fig. 14b and c.

In terms of the link between the macroscopic behavior
and the strong force network, Essayah et al. [81] found that
the deviatoric stress in the triaxial test is carried by strong
contacts, and Mahmud Sazzad et al. [82] and Mahmud Saz-
zad [83] found that the tendency of δd for strong contacts
coincides with the stress–strain curve of granular material
during cyclic loading and true triaxial loading. To emphasize
the main ideas and to allow for concise analytical discussion,
the contribution of the strong contacts to the stress tensor is
considered here only.

Figure 15 shows the evolution of δsd under the effect of
PSD. The δsd increases initially with increasing vertical stress
σ v and then gradually levels off. The value of δsd and strong
contact proportion depends on the PSD. The specimen with
lower Cu induces higher anisotropy and more strong con-
tacts during compression, in which a lower value of K0 is
measured.

Figure 16 shows the evolution of δsd under the effect of RR.
The value of δsd and strong contact proportion also depends
on the RR coefficient, which has less influence than the PSD.
The specimen with higher μr induces higher anisotropy and
more strong contacts during compression, in which a lower
value of K0 is measured. These findings imply that a possi-
ble correlation exists between δsd and K0 in one-dimensional
tests.

123



Computational Particle Mechanics (2024) 11:1007–1020 1017

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

0.25

0.30

δ d

σv (MPa)

All contacts

Strong contacts

Weak contacts

(a)

Fig. 14 Deviatoric fabric and contact normal distribution in D-0.1: a δd ; b 4 MPa; c 10 MPa

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

δs d

σv (MPa)

 A-0.1

 B-0.1

 C-0.1

 D-0.1

20

25

30

35

40

45

50

55
 Percentage (A-0.1)

 Percentage (B-0.1)

 Percentage (C-0.1)

 Percentage (D-0.1)

P
er

ce
n

ta
g

e 
o

f 
st

ro
n

g
 c

o
n

ta
ct

s 
(%

)

Fig. 15 Evolution and percentage of δsd under the effect of PSD

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

δs d

σv (MPa)

 D-0.0

 D-0.1

 D-0.2

 D-0.4

24

28

32

36

40
 Percentage (D-0.0)

 Percentage (D-0.1)

 Percentage (D-0.2)

 Percentage (D-0.4)

P
er

ce
n

ta
g

e 
o

f 
st

ro
n

g
 c

o
n

ta
ct

s 
(%

)

Fig. 16 Evolution and percentage of δsd under the effect of RR

3.5 Relationship between K0 and fabric anisotropy

Figure 17 shows the relationship between K0 and fabric
anisotropy of strong contacts δsd . It is worth noting that a good
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Fig. 17 Relationship between K0 and δsd for all specimens

linear relationship between K0 and δsd is established as the
strong contacts are used to quantify the fabric tensors. This
linear relationship demonstrates unequivocally that K0 mea-
sured through the rigid walls on the macro-level is directly
connected with the fabric anisotropy of strong contacts on
the micro-level.

4 Conclusion

DEM simulations of one-dimensional compression tests
were carried out to investigate the effects of PSD and RR on
K0 and the corresponding microscopic behaviors of sands. A
non-spherical particle was introduced in the DEM model. A
macro–micro relationship between K0 and fabric anisotropy
of strong contacts δsd is established. Some interesting findings
are summarized below.
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(1) After the vertical stress reaches a certain value,K0 grad-
ually decreases and approaches a comparatively stable
value as vertical stress reaches 10 MPa. K0 of the spec-
imen with a larger Cu runs above those with a lower
Cu. This is attributed to the strong force chain along
the vertical direction due to more significant interlock-
ing, resulting in a lower degree of stress transfer in the
horizontal direction.

(2) K0 of the specimen with a lower μr runs above those
with a higher μr . Similar to the above, lower K0 from
the specimen with a higher μr can be attributed to the
strong force chain along the vertical direction due to
more intense friction between particles.

(3) PSD and RR significantly affect the evolution of the
coordination number. The higher Cu, the lower the
mean CN is. The relative mean CN decreases linearly
with increasing relative Cu regardless of the influence
of vertical stress. Additionally, increasing μr causes a
monotonic decrease in the mean CN, and too much con-
sideration of RR makes the mean CN less realistic in a
particle system.

(4) RDF of the specimen with higher Cu shows that
the polydisperse specimen is more ordered than the
monodisperse one. However, the effect of RR on the
RDF is negligible. The PDF(f n) maintains a nearly con-
stant distribution regardless of the influence of vertical
stress. For the specimen with monodisperse particles,
the PDF(f n) for normal contact force f n less than
the average〈f n〉fits well with the Gaussian distribution,
while PDF(f n) fits well with the power law as Cu

increases. PDF(f n) above〈f n〉for each specimen is char-
acterized by an exponential distribution, from which
the inhomogeneity of normal forces enhances as Cu

increases and slightly reduces as μr increases.
(5) Strong contacts are much more anisotropic than

weak ones. A unique macro–micro relationship exists
between K0 and deviatoric fabric when strong contacts
are considered only.
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