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Abstract
A numerical model based on the total Lagrangian (TL) and weakly compressible (WC) smoothed particle hydrodynamics
(SPH) coupling is developed for complex hydroelastic FSI problems. In this coupling scheme, the fluid phase is based on
the WCSPH formulation improved by a numerical diffusion term. A TLSPH framework, stabilized by the hourglass control
scheme and artificial viscous force, is employed for the solid phase, based on a linear-elastic constitutive model. The proposed
model is verified using a variety of benchmark tests involving the free oscillation of a cantilever plate, the hydrostatic water
column on an elastic plate, and dam-break flows interacting with deformable solid domains. In addition, the effect of time
integration on the solution accuracy of the proposed model is investigated using two different time-integration schemes
in the literature with/without a predictor–corrector stage required for multiple calculations in each time step. Comparisons
indicate that the proposedmodel computations obtained with both time-integration schemes have a reasonable agreement with
experimental and other numerical model results and provide smooth pressure/stress fields without numerical instability thanks
to special treatments. Although numerical computations obtained with both of the time-integration schemes are generally
quite similar, it is observed that the time-integration scheme with a predictor–corrector stage provides higher stability in
specific cases.

Keywords Smoothed particle hydrodynamics (SPH) · Total Lagrangian · Fluid–structure interaction (FSI) · Hydroelasticity ·
Hourglass

1 Introduction

Fluid–structure interaction (FSI) is a phenomenon frequently
encountered in varied engineering topics, e.g., hydrodynamic
slamming of marine vessels, wave/tsunami surge impact on
offshore/coastal structures, and sloshing in liquid contain-
ers [1, 2]. FSI problems contain a variety of challenges
involving violent fluid motions, rapidly moving interfaces,
and deformable solid boundaries. Considering the lack of
comprehensive analytical solutions and the limitations in
experimental studies, numerical models play a significant
role in the analysis of such problems [3, 4].

Smoothed particle hydrodynamics (SPH) is a mesh-free
particle method developed originally for astrophysics [5, 6].
Themethod can easily handle large deformations and rapidly
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moving interfaces through its meshless fully Lagrangian
nature. Many researchers have successfully applied SPH to
various fluid flow simulations [7–13]. With the success of
the method in the numerical modeling of fluid flows, many
researchers purposing to utilize the capabilities of SPH in
complex FSI problems have performed numerical analyses
based on the coupling of SPH with other numerical frame-
works (e.g., finite element method (FEM) [14–16], discrete
element method (DEM) [17], element bending group (EBG)
[18], and peridynamics (PD) [19, 20]). In parallel, some
researchers have focused on coupling SPH with rigid multi-
body systems involving mechanical constraints to simulate
elastic FSI problems [21, 22]. In such partitioned approaches,
while SPH is commonly used to simulate the fluid phase, a
separate solver is employed for modeling the solid one.

An alternative way to simulate FSI problems is to use
the SPH technique in both the fluid and solid phases. Such
numerical models allow a precise and consistent imposition
of fluid–structure interface boundary conditions [23] and can

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-023-00591-0&domain=pdf
http://orcid.org/0000-0002-8595-2208


1812 Computational Particle Mechanics (2023) 10:1811–1825

be classified based on SPH forms used for problem subdo-
mains [4]. In early works, the conventional SPH model was
commonly used for solid dynamics. Several researchers used
WCSPH-SPH [24, 25] and ISPH-SPH [26] couplings in FSI
simulations. Khayyer et al. [23] employed the coupling of
ISPHwith a newly developed SPH-based structuremodel for
various FSI problems and later extended that model using a
multi-resolution scheme [27].

The conventional SPH-based structure models have three
drawbacks named inconsistency, tensile instability, and hour-
glass mode [3, 4, 28]. In this regard, many researchers have
proposed several improvements to overcome these draw-
backs. A detailed brief can be found in the work of Zhan
et al. [4]. The totalLagrangianSPH(TLSPH) framework sug-
gested by Belytschko et al. [29] provides a suitable structure
for the solid phase of coupled SPH models for FSI prob-
lems. The method avoids tensile instability using material
coordinates in the initial configuration and restores high-
order consistency with the corrected kernel implementation.
In addition, an hourglass control technique proposed by
Ganzenmüller [30] can be used to eliminate the hourglass
mode resulting in distorted particle distribution in theTLSPH
analyses.

In recent years, TLSPH has started to be used in the
solid phase of fully integrated SPH models developed for
FSI problems. He et al. [31] presented a TL-WCSPH
model for hydroelasticity analyses. Sun et al. [32] intro-
duced a numerical model coupling multi-phase WCSPH
with TLSPH. In their work, they used adaptive-particle-
refinement (APR) technique to improve the numerical
efficiency of the model. Zhan et al. [4] proposed a three-
dimensional GPU-accelerated TL-WCSPHmodel stabilized
by an hourglass control scheme. Lyu et al. [33] introduced a
coupled TL-WCSPH model modified with tensile instability
control (TIC) and particle shifting technique (PST) formu-
lations. Sun et al. [34] extended the TL-WCSPH model of
Sun et al. [32] with a combination of TIC and PST for com-
plex three-dimensional FSI problems. O’Connor and Rogers
[3] presented a unified TL-WCSPH model with hourglass
control implementedwithin the open-source SPH codeDual-
SPHysics [35]. Meng et al. [36] developed a TL-WCSPH
model based on the Riemann solver for two- and three-
dimensional hydroelasticity analyses.

In thiswork,we developed a numericalmodel based on the
TL-WCSPH coupling for challenging fluid–elastic structure
interaction problems. In the proposed model, while the fluid
phase is simulated using the WCSPH framework, a TLSPH
formulism stabilized by the hourglass control scheme based
on the work of Ganzenmüller [30] is used for modeling the
solid phase. In addition, the proposed TLSPH model con-
tains an artificial viscosity term to treat possible stability
issues except for hourglass mode. The performance of the

proposed numerical model is verified using varied bench-
mark cases in the literature. At first, an analytical solution
of a free oscillating cantilever plate is used to validate the
proposed TLSPH model. Later, the present coupling scheme
is validated by well-known benchmark cases, including a
hydrostatic water column on an aluminum plate and the
interaction of the dam-break wave with an elastic gate. Two
relatively new benchmark cases based on the interaction
of dam-break flows in dry and wet beds with deformable
baffles confined by different boundary conditions are also
used to investigate the numerical accuracy of the present
coupling scheme. In addition, the effect of time integration
on the solution accuracy is investigated using two different
time-integration schemes in the literature with/without a pre-
dictor–corrector stage required for multiple calculations in
each time step.

2 Numerical model

2.1 WCSPHmodel for fluid dynamics

The governing equations of fluid motion can be described by
following conservation of mass and momentum equations:

Dρ

Dt
� −ρ∇ · v (1a)

Dv

Dt
� − 1

ρ
∇P + � + g (1b)

where ρ is the density, v is velocity, P is pressure, � is the
dissipative term, and g is the gravitational acceleration. In
WCSPH, the fluid domain is modeled as weakly compress-
ible, and an equation of state, calculating fluid pressure based
on particle density, is adopted to close the governing equa-
tions [7, 37]:

P � c20ρ0
γ

[(
ρ

ρ0

)γ

− 1

]
(2)

where ρ0 is the reference fluid density and c0 is the numerical
sound speed in the fluid. γ is a constant, which is taken as 7
for fluids. To ensure the weakly compressible condition, c0
is determined by:

c0 ≥ 10max
(
Vmax,

√
Pmax/ρ0

)
(3)

where Vmax and Pmax are the maximum anticipated fluid
velocity and pressure, respectively.

In SPH approximation, the continuum is represented by a
set of discrete particles, and conservation equations for par-
ticle a can be written in the discretized form of a summation
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of the neighboring particles b:

Dρa

Dt
� ρa

∑
b

mb

ρb
vab · ∇aWab +Da (4a)

Dva

Dt
� −

∑
b

mb

(
Pa + Pb
ρaρb

+ �ab

)
∇aWab + g (4b)

where m is the mass, vab � va − vb, and ∇aWab is the
gradient of the kernel function W :

∇aWab � xab
xab

∂Wab

∂xab
(5)

where x is the position vector, xab � −xba � xa − xb, and
xab � |xab|. The performance of an SPH model depends
heavily on the choice of the kernel function [38]. In this
work, the fifth-order quintic kernel [39] is adopted.Da is the
density diffusion term [40], implemented to limit pressure
oscillations faced in WCSPH simulations:

Da � δhc0
∑
b

mb

ρb
ψab · ∇aWab (6a)

ψab � 2(ρb − ρa)
xba

x2ab + η2
(6b)

where h is the smoothing length defining the size of the com-
pact support domain of the kernel function. δ is a constant
that controls the intensity of the diffusion term and is set to
δ � 0.1 in this work. η � 0.1h, which is used to prevent
numerical singularities. �ab is the artificial viscosity term
[41] used for numerical stabilization:

�ab �
⎧⎨
⎩

−
(

αc0
ρab

)(
hvab·xab
x2ab+η2

)
vab · xab < 0

0 vab · xab ≥ 0
(7)

where α is the artificial viscosity constant and ρab �
0.5(ρa + ρb).

2.2 TLSPHmodel for solid dynamics

In TLSPH formulation, the mass and momentum conserva-
tion equations are given by:

ρs J � ρs
0 (8a)

Dv

Dt
� 1

ρs
0
∇0 · P + g (8b)

where the zero subscripts represent the quantities calculated
considering reference configuration, ρs is the density of the
solid, J is the Jacobian determinant of deformation gradient

tensor F, and P is the first Piola–Kirchhoff (PK1) stress
tensor:

P � Jσ F−T ; F � dx
dX

(9)

where σ is the Cauchy stress tensor, and x and X are the
current and reference positions, respectively. The superscript
–T denotes the inverse of the transposed tensor. In TLSPH,
the momentum equation (Eq. 8b) only depends on the initial
density

(
ρs
0

)
, and therefore, solving the continuity equation is

unnecessary [34]. The Cauchy stress tensor, considering the
linear–elastic constitutive model based on the plane-strain
assumption in two dimensions, is expanded as:

⎡
⎢⎣

σ 11

σ 22

σ 12

⎤
⎥⎦ � E

(1 + ν)(1 − 2ν)

⎡
⎢⎣
1 − ν ν 0

ν 1 − ν 0
0 0 1 − 2ν

⎤
⎥⎦
⎡
⎢⎣

ε11

ε22

ε12

⎤
⎥⎦

(10)

where E is Young’s modulus, ν is Poisson ratio, and ε is
Euler strain tensor expressed as:

ε � F−T EFT (11)

where E is the Green–Lagrange strain tensor given by:

E � 1

2

[
U + UT + UTU

]
; U � F − I (12)

where U is the displacement gradient tensor and I is the
identity matrix.

In the TLSPH framework, the discrete forms of the
momentum equation and deformation gradient are written
as follows:

Dva

Dt
� 1

ρs
0a

∑
b

ms
b

ρs
0b

(
PaL−1

a + PbL
−1
b + Pv

abL
−1
a

)
∇0aW0ab + g

(13a)

Fa �
∑
b

ms
b

ρs
0b

(xb − xa) ⊗ L−1
a ∇0aW0ab (13b)

La �
∑
b

ms
b

ρs
0b

(Xb − Xa) ⊗ ∇0aW0ab (13c)

where ms and ρs
0 are the mass and initial density of the solid

particles, respectively, L is the kernel gradient correction
matrix, and Pv

ab is the artificial viscous force used for numer-
ical stabilization:

Pv
ab � Ja�

s
abF

−T
a (14a)

�s
ab �

{
αscs0hsρ

s
0

vab·xab
x2ab+0.01h

2
s

vab · xab < 0

0 vab · xab ≥ 0
(14b)
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where�s
ab, c

s
0, hs , and αs denote the artificial viscosity term,

speed of sound, smoothing length, and artificial viscosity
constant for the solid, respectively.

Although TLSPH restores first-order consistency and
avoids tensile instability, the method with its current form
suffers from hourglass mode. Some researchers tried to sup-
press that issue by using only artificial viscous force (Eq. 14a)
[31–34]. However, this treatment lacks theoretical back-
ground and often results in excessive energy dissipation
[4]. In this work, an hourglass control scheme proposed by
Ganzenmüller [30] is employed to treat the hourglass mode.
The illustration of the idea of mentioned hourglass control
scheme starts with the definition of ideal linear separation
between particle a and its neighboring particle b:

xaab � FaXab (15)

However, the actual separation is determined based on the
current positions of particles as xab � xa − xb. The error
vector, which is the pairwise symmetric difference between
the idealized linear and actual separations, is expressed as:

eab � 1

2

(
xaab − xab + xbab − xab

)
� 1

2
(Fa + Fb)Xab − xab

(16)

To stabilize the system and suppress the hourglass modes,
themagnitude of the error vector needs to beminimized [30].
In this regard, a correction force in linewith xab, proportional
to the magnitude of the error vector, is used:

f HGa � κ
∑
b

ms
a

ρs
0a

ms
b

ρs
0b

Eab
eab · xab
X2
ab

xab
x2ab

W0ab (17)

where κ is a coefficient determining themagnitude of penalty
force and Eab � 0.5(Ea + Eb). The hourglass force calcu-
lated by Eq. 17 is added into the momentum equation, and
the total acceleration of particle a, thereby, can be written as:

Dva

Dt
� 1

ρs
0a

∑
b

ms
b

ρs
0b

(
PaL−1

a + PbL
−1
b + Pv

abL
−1
a

)

∇0aW0ab +
f HGa
ms

a
+ g (18)

2.3 Boundary condition and fluid–structure
coupling

In the presentwork, the dummyparticlemethod, proposed by
Adami et al. [42], is employed for both boundary treatment
and fluid–structure coupling. In this method, the cut of the
kernel support domain of fluid particles near the boundary
and solid domains is prevented by representing the boundary

and structure domains with dummy fluid particles contribut-
ing to the governing equations. In this regard, pressures of
boundary and structure particles are obtained firstly by a
summation of all contributions of neighboring fluid particles
using the kernel function:

Ps �
∑

f Ws f +
[
ρ f (g − as) · xs f + Pf

]
∑

f Ws f
(19)

where the subscripts f and s represent the fluid and bound-
ary/structure particles, respectively. xs f � xs− x f and as is
the acceleration of the boundary/structure particles. Follow-
ing the pressure calculation, densities of the boundary and
structure particles are obtained using the equation of state:

ρs � ρ0

[
Psγ

c20ρ0
+ 1

] 1
γ

(20)

Obtained density and pressure values of bound-
ary/structure particles are used in the computation of density
change and acceleration of fluid particles and, in addition,
the determination of the external forces on solid particles
caused by the fluid domain. However, this step is unneces-
sary for boundary particles because they remain fixed and do
not move without any imposed or assigned motion function.
Consequently, the total acceleration of fluid and structure
particles can be written in a discrete form as follows:

Dva

Dt

∣∣∣∣
fluid

� −
∑

b∈fluid
mb

(
Pa + Pb
ρaρb

+ �ab

)
∇aWab

−
∑

b∈bound
mb

(
Pa + Pb
ρaρb

+ �ab

)
∇aWab

−
∑

b∈solid
mH

b

(
Pa + Pb
ρaρ

H
b

+ �ab

)
∇aWab + g

(21a)

Dva

Dt

∣∣∣∣
solid

� 1

ρs
0a

∑
b∈solid

ms
b

ρs
0b

(
PaL−1

a + PbL
−1
b + Pv

abL
−1
a

)
∇0aW0ab

+
f HG
a

ms
a

− mH
a

ms
a

∑
b∈fluid

mb

(
Pa + Pb
ρH
a ρb

+ �ab

)
∇aWab + g

(21b)

It should be noted that the superscript H denotes a hydro-
dynamic definition of mass and density variables of solid
particles, which are not physical quantities and are used only
in the treatment of fluid–structure coupling [3].

In the dummy particles method, the implementation of
the free-slip or no-slip boundary condition depends on the
treatment of viscous forces between the fluid and bound-
ary/solid particles. A free-slip boundary condition is applied
by simply omitting viscous effects between fluid and bound-
ary/solid particles [42]. For a no-slip boundary condition,
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viscous forces between fluid and boundary/solid particles
are calculated considering the extrapolated smoothed veloc-
ity field assigned to boundary/solid particles. A detailed brief
can be found in the work of Adami et al. [42]. In this work,
a free-slip boundary condition is adopted. In this regard, it
should be noted that because of the free-slip assumption,
viscous effects between fluid and boundary/solid particles
in Eqs. 21a and 21b are neglected, and only viscous forces
between fluid particles take into consideration in simulations.

2.4 Time integration

2.4.1 Symplectic time-integration scheme

The symplectic time-integration scheme [35, 43] with
second-order accuracy in time involves a predictor and cor-
rector stage. During the predictor stage, the position and
velocity of the fluid and solid particles are calculated as [35]:

x
n+ 1

2
a � xna +

�t

2
vna (22a)

v
n+ 1

2
a � vna +

�t

2

Dva

Dt

n

(22b)

and in the corrector stage, predicted values are used to cal-
culate the corrected velocity and position of fluid and solid
particles:

vn+1a � vna + �t
Dva

Dt

n+ 1
2

(23a)

xn+1a � xna + �t

(
vn+1a + vna

)
2

(23b)

The density of fluid particles is also calculated using the
following predictor and corrector stages as follows:

ρ
n+ 1

2
a � ρn

a +
�t

2

Dρa

Dt

n

(24a)

ρn+1
a � ρn

a
2 − ε

n+ 1
2

a

2 + ε
n+ 1

2
a

(24b)

where ε
n+ 1

2
a � −

(
Dρa
Dt

n+ 1
2 /ρ

n+ 1
2

a

)
�t .

2.4.2 Verlet/One-step Euler time-integration scheme

Following the work of O’Connor and Rogers [3], two sepa-
rate approaches for the fluid and solid phases are used in this
section for time integration. For the fluid phase, Verlet [44]

scheme is applied to calculate field variables in each time
step as:

vn+1a � vn−1
a + 2�t

Dva

Dt

n

(25a)

xn+1a � xna + �tvna +
1

2
�t2

Dva

Dt

n

(25b)

ρn+1
a � ρn−1

a + 2�t
Dρa

Dt

n

(25c)

To prevent the divergence of the integrated values, for
every Ns time step (which Ns � 40 is recommended [35]),
field variables are calculated according to:

vn+1a � vna + �t
Dva

Dt

n

(26a)

xn+1a � xna + �tvna +
1

2
�t2

Dva

Dt

n

(26b)

ρn+1
a � ρn

a + �t
Dρa

Dt

n

(26c)

This scheme provides a lower computational cost com-
pared to predictor–corrector schemes as it does not require
multiple calculations in each time step [38]. For the solid
phase, a one-step semi-implicit Euler scheme is employed
[3]:

vn+1a � vna + �t
Dva

Dt

n

(27a)

xn+1a � xna + �tvn+1a (27b)

2.5 Time stepping

In the present coupling, the time step �t is limited based
on the fluid and solid phases. For the fluid phase, �t f is
calculated depending on the Courant–Friedrich–Levy (CFL)
condition, force per unit mass on fluid particles

(
�t f

)
, and

viscous diffusion term (�tcv) [35, 45]:

�t ff � CCFL min

(√
h/

∣∣∣∣Dva

Dt

∣∣∣∣
)

(28a)

�t fcv � CCFL min

⎛
⎜⎜⎝ h

c f
0 + max

(
|hvab·xab|
x2ab+η2

)
⎞
⎟⎟⎠ (28b)

where CCFL is a constant of CFL condition and is taken
as CCFL � 0.2 in this work. The time step for the solid
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Fig. 1 Schematic view of benchmark case (lengths in cm)

phase (�t s) also bounded by the following CFL condition is
calculated:

�t s � 0.6
hs
cs0

; cs0 �
√
Ks/ρ

s
0 (29)

where Ks is the bulk modulus of the solid, defined as Ks �
E/[3(1 − 2ν)]. Consequently, the new time step criterion of
system �t is determined as:

�t � min
(
�t ff , �t fcv, �t s

)
(30)

3 Numerical validations

In this section, the performance of the proposed numerical
model is verified using various benchmark cases in the liter-
ature. At first, the solution accuracy of the TLSPH model is
investigated using an analytical solution of a free oscillating
cantilever plate. Later, the TL-WCSPH coupling is validated
using various benchmark cases, including hydrostatic water
column on an elastic plate, dam-break flow through an elas-
tic gate, and dam-break wave impact in dry and wet beds
on deformable baffles confined by different boundary con-
ditions. In addition, the effect of the time integration on
the solution accuracy of the proposed TL-WCSPH coupling
is investigated using two different time-integration schemes
described in Sect. 2.3.

In all numerical simulations, the smoothing length for both
WCSPH and TLSPH models is set to hf � hs � 1.35dp. The
dimensionless hourglass coefficient is chosen as κ � 50
following the suggestion of Ganzenmüller [30] for beam
bending problems, and a slight artificial viscous force with
αs � 0.03 is adopted to prevent possible numerical instabil-
ities.

3.1 Free oscillation of a cantilever plate

An analytical solution of a free oscillating cantilever plate
[46] is used to investigate the solution accuracy of the present
TLSPH model. A schematic view of the solution domain is
shown in Fig. 1. The length of the cantilever plate is Ls �

Fig. 2 Snapshots of numerical result at t � 0.57 s(top) and t � 0.7
s(bottom) for ts/dp � 80

0.2 m, the thickness ts � 0.02 m, Young’s modulus of E �
2 MPa, and the Poisson ratio of ν � 0.3975. The cantilever
plate is subjected to an initial velocity distribution defined
as:

vy(x) � ξcs
f (x)

f (L)
(31a)

(31b)

f (x) � (cos kwL + cosh kwL) (cosh kwx − cos kwx)

+ (sin kwL − sinh kwL) (sinh kwx − sin kwx)

where ξ � 0.01 is the velocity amplification factor; kw is
wave number satisfying kwL � 1.875 for the first mode of
vibration.

Numerical analysis is performed with three different par-
ticle resolutions as ts/dp � 20, 40, and 80. The one-step Euler
time-integration scheme is adopted in numerical simulations
considering the lower computational cost. Note that the sym-
plectic time-integration scheme is also tested in preliminary
works, and quite similar results are obtained. The numeri-
cal analyses are performed for t � 1 s simulation time, and
the snapshots of numerical results at different time instants
are shown in Fig. 2. It can be seen from the figure that the
proposed model provides a smooth stress field on the plate
section.

Time histories of plate tip point deflection reproduced by
the proposed TLSPH model are shown in Fig. 3 compared
with the analytical solution. It can be observed that the pro-
posed TLSPH model computations are in good agreement
with the analytical solution. Table 1 presents the root-
mean-squared error (RMSE) for numerically reproduced
deflections. Results show that the solution accuracy of the
proposed model increases in proportion to the particle reso-
lution.
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Fig. 3 Time histories of free oscillating plate tip point deflections

Table 1 RMSE of free oscillating plate numerical computations

ts/dp � 20 ts/dp � 40 ts/dp � 80

RMSE 3.76E-03 1.71E-03 1.68E-03

Fig. 4 Schematic view of solution domain and measurement point M1
(lengths in cm)

3.2 Hydrostatic water column on an elastic plate

The accuracy of the present coupling scheme is investigated
using a benchmark case based on the hydrostatic water col-
umn on an elastic plate [16]. The initial configuration of the
benchmark case is shown in Fig. 4. The water column has a
height of H0 � 2m and a width ofW0 � 1m. An aluminum
plate with a length of Ls � 1 m, a thickness of ts � 0.05 m,
a density of ρ � 2700 kg/m3, Young’s modulus of E � 67.5

(b) Symplectic(a) Verlet/One-step Euler 

Fig. 5 Snapshots of numerical results at t � 0.3 s

GPa, and a Poisson ratio of ν � 0.34 is located at the bottom
of the initially still water column.

Numerical analyses are performed using the initial parti-
cle spacing dp � 6.25 × 10–3 m, corresponding to ts/dp � 8
and H0/dp � 320. For the fluid phase, the artificial viscosity
constant is set to α � 0.1. A snapshot of the numerical com-
putations is shown in Fig. 5. It can be seen from the figure
that, for both time-integration schemes, the proposed model
reproduced smooth pressure and stress fields for the fluid and
solid phases, respectively.

Figure 6 shows the mid-span (M1) deflection (δ) history
comparisons. The present model computations are compared
with the analytical solution (δ � 6.85 × 10–5 m [16]) and the
ISPH-SPH results of Khayyer et al. [23] with the same ts/dp
ratio. Results indicate that the proposed model computations
obtained with both time-integration schemes showed quite
similar oscillations at the initial stage and reached the equilib-
rium state early than the ISPH-SPH results of Khayyer et al.
[23]. After the equilibrium state, the proposed model repro-
duced plate deflection consistent with ISPH-SPH results and
showed reasonable accuracy with the analytical solution. In
addition, it is observed that while numerical computations
obtained by Verlet/One-step Euler time integration showed
some deviations at the equilibrium state, symplectic time
integration provides higher stability in computations.

3.3 Interaction of a dam-break wave with elastic
gate

A well-known benchmark case based on the deformation of
the elastic gate subjected to water pressure is used to validate
the present model. Figure 7 shows the initial geometry of
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Fig. 6 Comparisons of mid-span
deflections at M1

Fig. 7 Schematic view of solution domain and measurement point M1
(lengths in cm)

the solution domain. The height and width of the still water
column have dimensions of H0 � 0.14 m and W0 � 0.1
m, respectively. An elastic gate with a length of Ls � 0.079
m, a thickness of ts � 0.005 m, Young’s modulus of E �
7.8 MPa, and a Poisson ratio of ν � 0.4 is fixed from the
upper side, and the downside is free. The solution domain is
discretized using the initial particle spacing dp � 5 × 10–4 m
corresponding to ts/dp � 10 and H0/dp � 280. For the fluid
phase, the artificial viscosity constant is taken as α � 0.01.

The snapshots of the present model computations at
different time intervals comparatively with experimental
photographs are shown in Fig. 8. Results indicate that the
proposed model results computed by both time-integration
schemes provided smooth pressure and stress fields for fluid

and solid phases, respectively, without an unphysical gap in
the fluid–structure interface.

Figure 9 shows the displacement comparisons at the mea-
surement point M1. The present model results are compared
with the experimental measurements of Antoci et al. [24]
and the numerical results of Zhang et al. [47], Gao et al.
[48], and Yao and Huang [49], which used the same Young’s
modulus of E � 7.8 MPa. Results indicate that the proposed
model reproduced almost the same gate displacement with
both of the time-integration schemes and showed well agree-
ment with other numerical model results. However, there is
a fewer agreement with experimental measurement. Authors
consider that it is caused by the uncertainties in the mechan-
ical properties of the elastic plate used in the experiment.
Some researchers used less stiff material models such as
hyperelasticity and obtained better agreements with exper-
imental measurements [14].

3.4 Interaction of a dam-break wave in wet bed
with an elastic baffle

In this section, the present numericalmodel is validated using
the interaction of a dam-break flow in wet bed with an elastic
baffle, which is studied first experimentally and numerically
by Yilmaz et al. [21]. Figure 10 presents a schematic illustra-
tion of the experimental setup. The experiment is conducted
in a rectangular tank with a length of 1.5 m and a height
of 0.25 m. The rectangular tank is divided into two parts,
upstream and downstream, using a rigid plate of 0.003 m
thickness. The upstream and downstream are filled initially
with the water height of H0 � 0.15 m and H0t � 0.03 m,
respectively. An elastic baffle with a length of Ls � 0.08 m
and thickness of ts � 0.007 m embedded into a rigid foun-
dation of 0.047 m in width and 0.016 in height is placed at a
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t=0.08s 
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(a) Experiment [24] (b) Verlet/One-step Euler (c) Symplectic 

Fig. 8 Comparisons of experimental photographs with snapshots of present model computations

distance of 0.3 m from upstream. The material of the baffle
corresponds with the density of ρ � 1250 kg/m3, Young’s
modulus of E � 5.7 MPa, and the Poisson ratio of ν � 0.4.

The solution domain is discretized using initial parti-
cle spacing of dp � 0.001 m corresponding to ts/dp � 7
and H0/dp � 150. The artificial viscosity constant for the
WCSPH model is chosen as α � 0.04. Figure 11 shows
the snapshots of numerical results with pressure and stress
fields for fluid and solid subdomains, respectively, at differ-
ent time instants comparatively with experimental results.

It is observed that the proposed model with both of the
time-integration schemes reproduced free-surface profiles
consistent with experiments and obtained a smooth pres-
sure field in the fluid phase and around the fluid–structure
coupling without any unphysical gap. In addition, it is seen
from the figure that the proposed model smoothly repro-
duced the stress field of the elastic baffle section in both
time-integration schemes.

Figure 12 shows time variations of horizontal displace-
ments at the measurement point M1. Results indicate that
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Fig. 9 Displacement comparisons at M1

the proposed model reproduces quite similar displacement
computationswith both of the time-integration schemes, con-
sistent with the numerical and experimental results of Yilmaz
et al. [21]. Also, it should be noted that there is an over-
prediction in displacements computed by both numerical
models at first contact (around t � 0.3 s) compared with
experimental data. Yilmaz et al. [21] reported that the differ-
ence in wave-front shape, developing in a wet-bed condition,
in numerical computations can cause that displacement dif-
ference.

3.5 Interaction of a dam-break wave with an elastic
sluice gate

The interaction of a dam-breakflowwith an elastic sluice gate
is used for the present model validation. The phenomenon is
first studied experimentally and numerically by Yilmaz et al.

[15]. Figure 13 shows a schematic illustration of the experi-
mental setup. A rectangular tankwith a length of 1.508m and
a height of 0.25 m is used in the experiment. The upstream
and downstream are divided using a rigid plate with a thick-
ness of 0.003 m. The upstream part is filled initially by the
water with a height of H0 � 0.2 m and a width ofW0 � 0.5
m. An elastic sluice gate with a length of Ls � 0.125 m, a
thickness of ts � 0.007 m, a density of ρ � 1250 kg/m3,
Young’s modulus of E � 4 MPa, and the Poisson ratio of ν

� 0.4 is placed at a distance of 0.3 m from upstream.
The solution domain is discretized using dp � 0.001 m

corresponding to ts/dp � 7 and H0/dp � 200. For the fluid
phase, the artificial viscosity constant is set to α � 0.03.
Figure 14 presents snapshots of numerical computations
comparatively with experimental photographs. It is observed
that the proposed model with both of the time-integration
schemes reproduced free-surface profiles and structure defor-
mations consistent with experimental results and provided a
smooth pressure field for the fluid phase without any unphys-
ical gap around the fluid–structure interface. Once again, it
is seen from the figure that, for both of the time-integration
schemes, the proposedmodel smoothly reproduced the stress
field in the elastic sluice gate.

Figure 15 shows the comparison of horizontal displace-
ments at measurement point M1. The results indicate that the
present model computations obtained with both of the time-
integration schemes captured a reasonable accuracy with
the experimental measurements [15] and numerical results
of Yilmaz et al. [21] and Meng et al. [36]. However, it is
observed that there are oscillations in displacement compu-
tations after t � 1 s. The present validation case includes
chaotic fluid motions with a hydraulic jump that resulted in
violent air entrainment around the fluid–structure coupling.
Figure 16 shows the vortex evolution in the proposed model
computations at the mentioned oscillation period. Authors
consider that vortexes evolving in fluid–structure interface

Fig. 10 Schematic illustration of experimental setup and measurement point M1 (lengths in cm)
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(a)  Experiment [21] (b) Verlet/One-step Euler (c) Symplectic 

Fig. 11 Snapshots of numerical results at different time instants

123



1822 Computational Particle Mechanics (2023) 10:1811–1825

Fig. 12 Time histories of horizontal displacements at measurement
point (M1)

caused those oscillations in displacement computations. In
addition to time-integration schemes used in this work, it is
detected that the dynamics of mentioned oscillation period
also differ depending on the numerical parameters used in
analyses (e.g. artificial viscosity constant and smoothing
length). A similar situation is also reported in the work of
Yilmaz et al. [21]. For a more detailed investigation of the
effects of the air entrainment and vortex evolution around the
coupling on solution accuracy, a set of numerical analyses
based on the multi-phase flow conditions can be conducted
in future works.

4 Conclusions

In this work, a coupled TL-WCSPH model is proposed for
complex elastic FSI problems. In the proposed model, while
the fluid phase is modeled by the WCSPH scheme, the solid
phase is modeled based on a TLSPH framework stabilized

by the hourglass control scheme and artificial viscous force.
The performance of the proposed model is verified by a
set of benchmark cases involving free oscillation of a can-
tilever plate, hydrostatic water column on an elastic plate,
dam-break flow through an elastic gate, the interaction of
the dam-break flow in wet bed with an elastic baffle, and the
interaction of dam-break flowwith an elastic sluice gate. The
effect of the time integration on the solution accuracy of the
proposed TL-WCSPH model is also investigated using two
different time-integration schemes.

For all considered cases, the proposed model reproduced
a smooth fluid pressure field for both of the time-integration
schemes without numerical instabilities and an unphysi-
cal gap around the fluid–structure coupling. In addition,
the stress field in the solid domain was also reproduced
smoothly with both of the time-integration schemes without
any numerical instability and distorted particle distribu-
tion thanks to hourglass control and artificial viscous force
improvements.

The Verlet/One-step Euler and Symplectic time-
integration schemes used in this work provided quite similar
computations for considered FSI benchmark cases. Authors
consider that Verlet/One-step Euler time-integration scheme
for the proposed TL-WCSPH model provides a useful struc-
ture considering the low computational costs. However, it
should be noted that the symplectic time-integration scheme
with a predictor–corrector stage provides more stable com-
putations in the case of the hydrostatic water column on an
elastic plate,which includes highfluid pressure load and solid
bulk modulus values.

Fig. 13 Schematic illustration of experimental setup and measurement point M1 (lengths in cm)
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t=0.2s 

t=0.3s 

t=0.5s 

t=1.0s 

t=1.5s 

t=2.0s 

(a)  Experiment [15] (b) Verlet/One-step Euler (c) Symplectic 

Fig. 14 Snapshots of numerical results at different time instants

Fig. 15 Time histories of horizontal displacements at measurement
point M1

1  
 Symplectic (t=1.10s) Verlet/One-step Euler (t=1.15s) 

Fig. 16 Vortex evolution in numerical results at specified time instants
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