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Abstract
In recent years, particle methods, which are good for moving boundary problems, have become an effective approach to
understand and predict flows in complex geometry, such as lubrication behaviors in rolling bearings. This study adopted a
physically consistent particle method, i.e., the moving particle hydrodynamics for incompressible flows (MPH-I) method.
For capturing the free surface flows in lubrication, a surface tension model was included. In order to maintain the physical
consistency in the MPH-I method, the surface tension model expressed with the two density potentials, which are cohesive
pressure potential (CPP) and density gradient potential (DGP), was adopted. TheMPH-I method with the two-potential-based
surface tension model enabled to handle negative pressure and nearly incompressible flow with very large bulk modulus. In
fact, theMPH-I method could successfully reproduce fundamental pressure generation effects in the fluid film lubrication, i.e.,
the wedge film and squeeze film effects. Furthermore, the computed lubrication pressure agreed well with the experimental
results and the classic prediction with Reynolds equation. This implies that the present numerical method was validated under
the fluid film lubrication problems.

Keywords Fluid film lubrication · Surface tension · Wettability · Smoothed particle hydrodynamics · Moving particle
semi-implicit · Negative pressure

1 Introduction

Particle methods, represented by Smoothed Particle Hydro-
dynamics (SPH) method [1, 2] and Moving Particle Semi-
implicit (MPS) method [3], are mesh-free and Lagrangian
approaches, which are better at capturing moving bound-
ary than conventional mesh-based Eulerian methods. Many
studies on particle methods have been conducted, especially
for free-surface flows with large deformations, multi-phase
flows, fluid-rigid body coupling problems and fluid–struc-
ture coupling problems. In recent years, particle methods
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have realized numerical simulations, which had been diffi-
cult using the conventional mesh-based Eulerian methods,
and they are applied in various engineering field, such as
nuclear engineering, civil engineering, marine engineering,
mechanical engineering. [4–9].

Concerning mechanical engineering, in particular, the
application of particle methods to fluid film lubrication prob-
lemshas beenmakingbreakthroughs.Using theSPHmethod,
Ji et al. [10] simulated lubricant oil behavior and revealed the
flowfield in a gear box.Muto et al. [11] simulated stirred fluid
flows with rotating gears and predicted the fluid resistance
of the gear for a low rotational rate using the MPS method.
Yuhashi et al. [12] simulated stirred fluid flows with rotating
camshafts, and the torque value showed good agreementwith
experimental results using the MPS method. Yuhashi et al.
[13] simulated oil churning in the crankcase of a reciprocat-
ing pump. They enhanced the lubrication performance of the
pumps by improving the crankcase shape. Those studies are
applications of the particle methods to macroscopic free sur-
face flows in mechanical elements with complex geometry
and are good examples that make full use of the advantages
of the particle methods.
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Microscopic free-surface flow simulations focused on
lubricated contacts, the key physics of fluid film lubrication,
have also been carried out in recent years. Kyle and Ter-
rell [14] applied the SPH method to transient hydrodynamic
lubrication in a pad bearing. Theydiscussed the validity of the
SPH method compared to the numerical solutions based on
the classic Reynolds equation and the mesh-based Eulerian
method. Tanaka et al. [15] simulated fluid film lubrication in
line contact by using the SPH method with the Continuum
Surface Force (CSF) model [16] to take the surface tension
into account and an optimized particle shifting scheme [17]
to enhance the robustness, and almost predicted the exit oil
meniscus and pressure distribution around the contact. Paggi
et al. [18] developed a fluid-rigid body coupling method
based on the SPHmethod. They applied it to uniform and lin-
ear slider bearings, showing good agreements of the pressure
distribution along the bearings with the numerical analysis
based on the classic Reynolds equation. And also, a three-
dimensional linear slider bearing simulation with surface
roughness was demonstrated, which showed the capability
of the proposed method for actual applications. Negishi et al.
[19] applied the MPS method to the fluid film lubrication in
line contact. They showed a good agreement of the pressure
distribution around the contact with the analytical solution
by the classic Reynolds equation. Yamada et al. [20] also
simulated the fluid film lubrication in line contact using the
MPSmethod with one of the multiresolution techniques, i.e.,
the overlapping particle technique [21]. By using larger par-
ticle spacing except for the near-contact region, the number
of particles was reduced by about 60% and the computa-
tional cost by about 70% at the maximum compared to a
calculation with a single resolution, predicting the analytical
pressure distribution well. Those studies demonstrated that
the particle methods could quantitatively predict the pressure
distribution around the contact. However, in most studies,
discussion was limited to positive pressure, and the negative
pressure, i.e., the pressure less than the atmospheric pressure,
has not been discussed sufficiently although it is crucial in
the fluid film lubrication problems.

Concerning themicroscopic fluid film lubrication, the sur-
face tension and wettability play an essential role in forming
the meniscus or liquid bridge around the contact. The neg-
ative pressure is induced in those meniscus or liquid bridge
due to the tension when lubricated surfaces are moving apart
[22]. The negative pressure significantly influences the fluid
film lubrication, which can cause fluid film rapture or cavi-
tation and determine the load and loss. Therefore, the robust
and accurate prediction of the negative pressure is essential
to discuss fluid film lubrication.

Predicting the negative pressure by particle methods is
challenging because particles tend to be disordered or cluster
due to attractive inter-particle force, and numerical simula-
tions become unstable. That issue is classified as so-called

“tensile instability,” which is a common problem in both
the SPH and MPS methods and can affect the convergence
and accuracy of numerical simulations. Tensile instability
was first discussed for the SPH method by Swegle et al.
[23] and has been extensively studied by many researchers
for both the SPH [17, 24–29] and MPS methods [30–33].
Up to now, a variety of techniques has been proposed to
avoid tensile instability, such as the introduction of stress
point [25], Lagrangian kernels [26], conservative smoothing
[27], artificial repulsive forces [24, 30, 31, 33], zero-pressure
limiter [30], collision model [34], particle shifting [17, 29],
higher-order and consistent discretization scheme [32, 35].
Those techniques are successful in suppressing tensile insta-
bility as a means of avoiding unphysical particle behavior.
Only the higher-order and consistent discretization scheme
coupledwith the particle shifting [17, 35] can predict the neg-
ative pressure quantitatively. However, such methods have
several drawbacks: Exact linear and angular momentum con-
servation is not guaranteed, and empirical relaxations or
parameters are involved.

In recent years,Kondo et al. [36–40] proposed a physically
consistent particle method, the Moving Particle Hydrody-
namics (MPH) method, which ensures overall linear and
angular momentum conservation and stable calculations of
particle behaviors. In the MPH method, the discretized gov-
erning equation can be fitted into the extended Lagrangian
mechanics for systems with dissipation, so it satisfies the
fundamental law of physics, such as the second law of the
thermodynamics. This feature is called physical consistency,
which guarantees that the mechanical energy monotonically
decreases in a discrete system, and it does not suffer from
unphysical instability without empirical relaxations [36].
Furthermore, a new physically consistent surface tension
model using the combination of the two potentials, i.e., the
cohesive pressure potential (CPP) anddensity gradient poten-
tial (DGP), was developed [40]. The promising performance
of the surface tension model was demonstrated through cal-
culating the Laplace pressure, the droplet oscillation, the
wettability, the liquid bridge, and the Plateau-Rayleigh insta-
bilitywith using theweakly compressible version of theMPH
method (MPH-WC) [38], where the explicit Euler time inte-
gration algorithm was adopted. In particular, the validation
of the liquid bridge showed that the new physically consis-
tent surface tensionmodel could predict the negative pressure
qualitatively.However, quantitative validation of the negative
pressure calculation has not been carried out. Although the
two-potential (CPP andDGP) surface tensionmodel [40]was
demonstrated using theMPH-WCmethod [38], it is expected
that the model also works with the incompressible version
of the MPH method (MPH-I) [36, 39] because the differ-
ence of the two, MPH-WC [38] and MPH-I [39], is only the
time integration algorithm. Recently, to speed up the implicit
calculation in the MPH-I method, the pressure substitution
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algorithm [39] was proposed. When the explicit Euler time
integration is adopted, the time step width will be restricted
very small because of the small length scale and the high vis-
cosity in the lubrication problems. Therefore, it is better to
adopt the MPH-I method [39] for the lubrication calculation.

In this study, the physically consistent MPH method
[36–40] with the two-potential (CPP and DGP) surface ten-
sion model [40] is applied to the fundamental fluid film
lubrication problems. To cope with the small length scale
and the high viscosity in the lubrication problems, theMPH-I
methodwith the pressure substitution implicit algorithm [39]
is adopted, and the Crank–Nicolson time integration method
is further introduced. To validate the present numerical
method including negative pressure calculation, the prob-
lems with respect to the wedge film and squeeze film effects,
which are the fundamental pressure generation mechanisms
in the fluid film lubrication and occur in any kind of bearings
in industrial applications, are calculated in two-dimensional
space. First, the wedge film in a line contact is calculated,
and the computed pressure distribution is compared with
the experimental result [41, 42]. Then, the parallel-surface
squeeze film of infinite width is calculated, and the com-
puted pressure history and distributions are compared with
the analytical solutions using the classic Reynolds equation
[43–45].

2 Numerical method

2.1 Governing equation [36, 37, 39, 40]

In this study, governing equations are the incompressible
Navier–Stokes equation

ρ0
Du
Dt

� −∇� + μ∇2u + ρ0g + fs (1)

and the equation of pressure,

� � −λ∇ · u + κ
ρ − ρ0

ρ0
, (2)

where ρ0, ρ, u, t, �, μ, g, fs, λ and κ are reference density,
density, velocity, time, pressure, shear viscosity, gravity, bulk
force with respect to surface tension, bulk viscosity, and bulk
modulus, respectively. The first term on the right-hand side
of Eq. (1) is the pressure, the second term is the shear viscos-
ity, the third is gravity, and the fourth is the surface tension.
In Eq. (2), the first term is the bulk viscosity, and the second
is the bulk modulus. The MPH method ensures the incom-
pressible condition by using large values for bulk viscosity
λ and bulk modulus κ [36].

2.2 Discretization [37, 39, 40]

In the MPH method, the governing equations are discretized
by particle interaction models based on effective radius and
weight functions in the same way as in the SPH and MPS
methods. The weight function used for discretizing the pres-
sure and shear viscosity terms is as follows:

wi j � w(|ri j |)

w(r ) �
⎧
⎨

⎩

1
S

1
hd

(
1 − r

h

)2
(r ≤ h )

0 (r > h )
,

S � 1

�V

∫

r<h

1

hd

(

1 − r

h

)2

dv

(3)

where rij is the relative position vector from particle i to j, r
is the absolute value of rij, h is the effective radius, d is the
space dimension, and �V is the volume of a single particle
region, which is a constant given by using the initial particle
spacing l0 as

�V � ld0 . (4)

By using the particle interaction models in the MPH
method and the continuity equation [36, 37, 39], the gov-
erning equations (Eqs. 1 and 2) are discretized as

m
dui
dt

�
∑

j ��i

(� j + �i )ei jw
p′
i j �V

− 2μ(d + 2)
∑

j ��i

(
ui j
∣
∣ri j

∣
∣

· ei j
)

ei jwv′
i j�V +mg + Fs

i

(5)

and

�i � λ
∑

j ��i

(
ui j · ei j

)
w

p′
i j + κ(n p

i − n p
0 ), (6)

respectively, where m is the mass of a single particle (�
ρ0�V ); Fi

s is the surface tension force, which is explained
in detail in the next sub-section; the vector uij in Eqs. (5) and
(6) is the relative velocity from particle i to j; and the vector
eij is the unit vector from particle i to j, which is given as

ei j � ri j
|ri j | . (7)

The differential of the weight function wij’ is represented
by

w′
i j � w′(|ri j |)

w′(r ) � ∂w(r )

∂r
.

(8)
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Here, it should be noted that the differential of the weight
function has a negative value. Also, the superscripts of v and
p for the weight function mean the variables for the viscous
and pressure terms use different effective radii hv and hp. The
parameter nip is a particle number density defined as

n p
i �

∑

j ��i

w
p
i j , (9)

and n0p is the reference value, calculated with a uniform
particle distribution at the initial condition. Although the
detailed explanation is skipped here, it is confirmed that the
discretized Eqs. (5) and (6) can properly calculate the pres-
sure and velocity [36, 37].

2.3 Surface tension force and wettability [40]

Based on the cohesive pressure potential (CPP) and density
gradient potential (DGP), the surface tension force Fi

s is
given as

Fs
i �a

∑

j ��i

(
(naj − na0) + (nai − na0)

)
ei jwa′

i j�A

− aK 2hs
∑

j ��i

(
χ j − χi

)
w

g
i j�A

− aK 2hs
∑

j ��i

((
χ j − χi

) · ri j
)
ei jw

g′
i j�A, (10)

where a is the coefficient that determines the magnitude of
the surface tension, K is the parameter to control the balance
of the two potentials, and hs is the effective radius for the
surface tension force, respectively. The constant �A is the
area of a single particle defined as

�A � �V /l0 � ld−1
0 . (11)

The first termon the right side of Eq. (10) is the component
of the surface tension force based on the CPP, which is turned
on only when nia − n0a < 0. Here, nia is the particle number
density for the CPP, which is different from nip, and given as

nai �
∑

j ��i

wa
i j , (12)

where wij
a is another weight function for the CPP defined as

wa
i j � wa(|ri j |)

wa(r ) �
⎧
⎨

⎩

1
Sa

1
hds

r
hs

(
1 − r

hs

)2
(r ≤ hs)

0 (r > hs)
,

Sa � 1

�V

∫

r<hs

1

hds

r

hs

(

1 − r

hs

)2

dv

(13)

andwij
a’ is the differential ofwij

a. Because of the lowparticle
number density in the vicinity of the fluid interface, the CPP
force is negative, and it gives long-range attractive and short-
range repulsive force based on wij

a when nia − n0a < 0 so
that the tensile force due to the negative pressure can be
calculated without tensile instability [24]. The second and
third terms on the right side of Eq. (10) are the components
of the surface tension force based on the DGP. Vector χ is an
eccentric vector defined as

χi � hs
∑

j ��i

ri jw
g
i j , (14)

where wij
g is another weight function for the DGP given as

w
g
i j � wg(|ri j |)

wg(r ) �
⎧
⎨

⎩

1
Sg

1
hds

(
1 − r

hs

)2
(r ≤ hs)

0 (r > hs)
,

Sg � 1

�V

1

d

∫

r<hs
r2

1

hds

(

1 − r

hs

)2

dv

(15)

and wij
g’ is the differential of wij

g.
In the proposed surface tension model, the DGP force

is designed to cancel the perpendicular force on the fluid
interface by the CPP. According to the previous study [40],
the coefficient K is numerically calculated as K ≈ 0.351 in
2D, and K ≈ 0.327 in 3D, respectively. In addition, it is
reported that the coefficient K is a dimensionless parameter
determined by the shape of the weight functions and is inde-
pendent from the effective radius hs and the particle spacing
l0 [40].

The coefficient a is related to the surface tension coeffi-
cient σ estimating the surface energy, which is the potential
energy per unit surface and is equivalent to σ as follows:

σ � ahs
l0

IN +
aK 2hs
l0

IX , (16)

where IN and IX are calculated numerically and are IN ≈
0.02468 and IX ≈ 0.2261 in 2D, and IN ≈ 0.02142 and
IX ≈ 0.2339 in 3D, respectively [40]. With these values and
Eq. (16), the coefficient a is calculated by a desired surface
tension coefficient σ .

In this study, the solidwall is represented bywall particles,
whose position and velocity are specified. The wettability is
modeled bymodifying theweight function for different types
of particle pairs. Specifically, theweight functions of theCPP
and DGP for the wall-fluid particle pairs are modified by
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multiplying the interaction ratio α as

wa
i j � αwa(ri j )

w
g
i j � αwg(ri j )

(Particles i and j are in different phases.).

(17)

Here, the interaction ratio α can be related to the contact
angle θ based on Young’s relation, the potential energy, and
the surface energy as follows [40]:

1 � cos θ + 2(1 − α)2. (18)

Given the desired contact angle θ , the interaction ratio α

can be calculated via Eq. (18).
In the two-potential (CPP andDGP) surface tensionmodel

employed in this study, the surface tension is modeled as the
tension tangential to the free surface. The validity of the two-
potential surface tensionmodelwas presented in our previous
study [40] via the Laplace pressure calculation, droplet oscil-
lation calculation, contact angle calculation, liquid bridge
calculation and Plateau-Rayleigh instability calculation. Fur-
thermore, it was revealed that the two-potential surface
tension model has an ability to calculate the negative pres-
sure, which is essential for meniscus forming, as well as the
surface tension [40].

2.4 Physical consistency [36, 37, 40]

In the MPH method, the discretized governing equations
(Eqs. 5, 6, and 10) are fitted into the analytical mechanical
framework for the system with dissipation [46], in which the
mechanical energy monotonically decreases following the
second law of the thermodynamics. This feature is termed
“physical consistency” and is useful to carry out particle
simulations free from instability like particle scattering along
with unphysicalmechanical energy increase. Specifically, the
extended Lagrangian equation for the system with dissipa-
tion

d

dt

(
∂L

∂ui

)

−
(

∂L

∂xi

)

+

(
∂D

∂ui

)

� 0 (19)

is applied, where L and D are Lagrangian and Rayleigh dis-
sipation functions, respectively. The Lagrangian is defined
as

L � T −U , (20)

where T and U are the kinetic energy and potential energy
of the system given as

T �
∑

i

1

2
m|ui |2 (21)

(22)

U � −
∑

i

mg · xi+
∑

i

κ

2

(
n p
i − n p

0

)2
�V

+ a

(
∑

i

1

2

(
nai − na0

)2 +
∑

i

K 2

2

∣
∣χi

∣
∣2

)

�A.

The Rayleigh dissipation function is given as

D�
∑

i

⎡

⎢
⎣

λ

2

⎛

⎝
∑

j

(
ui j · ei j

)
w

p′
i j

⎞

⎠

2

+
∑

j

μ(d+2)

2

(
ui j ·ei j

)2
wv′
i j

⎤

⎥
⎦�V .

(23)

As a result, substituting the kinetic energy T , potential
energy U, and Rayleigh dissipation function D into the
Lagrangian equation (Eq. 19) leads to the discretized gov-
erning equations (Eqs. 5 and 6).

In addition to the physical consistency, the discretized
governing equations (Eqs. 5 and 6) guarantee linear and
angular momentum conservation. The conservative pressure
gradient model is employed in the first term on the right-hand
side of Eq. (5), which ensures the law of action and reaction
between particles leading to linear momentum conservation
[7, 47]. The pairwise damping viscous term model is applied
to the second term on the right-hand side of Eq. (5), which
satisfies the angular momentum conservation [37, 48]. To
avoid tensile instability [24], the second term on the right
side of Eq. (6) is ignored by setting κ of zero when nip − n0p

< 0.
The physical consistency, which is the main feature of the

MPH method, is the key factor for successfully simulating
the fluid lubrication problems addressed in this study. If the
physical consistency is not satisfied, in general, unphysical
particle behavior and unphysical mechanical energy increase
may take place and result in numerical instability. In fact, tun-
ing the artificial relaxation parameters was often needed for
suppressing the instability in conventional particle methods
[36]. In particular, when the potential-based surface tension
model is adopted as in this study, such unphysical behaviors
can deteriorate the accuracy and stability of simulation [40].
The technical challenges for simulating the fluid lubrication
problems by using particle methods are (1) surface tension
and wettability calculation, (2) tensile instability, and (3) sta-
ble and accurate pressure calculation. In order to handle these
issues, the physical consistency is indispensable.

2.5 Time integration [39]

For the time integration of the discretized governing equa-
tions (Eqs. 5 and 6), the MPH-I method with the pressure
substituting implicit solver [39] was employed to avoid the

123



1722 Computational Particle Mechanics (2023) 10:1717–1731

restriction of the time step width due to the small length scale
and high viscosity that characterize the fluid film lubrication.

Canceling the pressure by substituting the discretized
equation of pressure (Eq. 6) into the discretized Navier–S-
tokes equation (Eq. 5), the velocity ui is implicitly calculated
as

m
uk+1i − uki

�t

� −2μ(d + 2)
∑

j ��i

(
uk+1j − uk+1i

∣
∣ri j

∣
∣

· ei j
)

ei jwv′
i j�V

+ λ
∑

j ��i

⎛

⎝
∑

n �� j

(
uk+1n −uk+1j

)
·e jnw p′

jn+
∑

m ��i

(
uk+1m −uk+1i

)
· eimw

p′
im

⎞

⎠ei jw
p′
i j �V

+ κ
∑

j ��i

((
n p
j − n p

0

)
+

(
n p
i − n p

0

))
ei jw

p′
i j �V

+ Fs
i + mg, (24)

where upper index k indicates the time steps, and �t is the
time step width. The particle number densities nip, njp, and
the surface tension force Fi

s are calculated explicitly. Equa-
tion (24) is a large linear system with a positive definite
symmetric coefficient matrix. In this study, the Crank–Ni-
colson method was applied to Eq. (24), and the following
system

m
uk+1i − uki

�t
� β

⎧
⎨

⎩
−2μ(d + 2)

∑

j ��i

(
uk+1j − uk+1i

∣
∣ri j

∣
∣

· ei j
)

ei jwv′
i j�V

+λ
∑

j ��i

⎛

⎝
∑

n �� j

(
uk+1n − uk+1j

)
· e jnw p′

jn +
∑

m ��i

(
uk+1m − uk+1i

)
· eimw

p′
im

⎞

⎠ei jw
p′
i j �V

⎫
⎬

⎭

+ (1 − β)

⎧
⎨

⎩
−2μ(d + 2)

∑

j ��i

(
ukj − uki

∣
∣ri j

∣
∣

· ei j
)

ei jwv′
i j�V

+λ
∑

j ��i

⎛

⎝
∑

n �� j

(
ukn − ukj

)
· e jnw p′

jn +
∑

m ��i

(
ukm − uki

)
· eimw

p′
im

⎞

⎠ei jw
p′
i j �V

⎫
⎬

⎭

+ κ
∑

j ��i

((
n p
j − n p

0

)
+

(
n p
i − n p

0

))
ei jw

p′
i j �V

+ Fs
i + mg, (25)

is calculated with β of 0.5 by using the conjugate gradient
(CG) method. The library of iterative solvers for the linear
systems (Lis) library [49, 50] is used as the matrix solver.

After getting the velocity uik+1, the position is updated as

rk+1i � rki + uk+1i �t . (26)

2.6 Virial pressure evaluation [36, 37, 40]

The pressure in a physically consistent system, which satis-
fies the momentum conservation law, can be calculated via
the interaction forces based on the virial theorem [51]. The
calculated pressure based on the virial theorem is termed
“virial pressure” for the single particle region, which is given
as

pi � 1

�V

1

d

∑

j ��i

(
F�
i→ j + Fv

i→ j + FCPP
i→ j + FDGP

i→ j

)
· ri j .

(27)

Here, the interaction force fromparticle i is expressedwith
regard to the pressure � term (Eq. 5) as

F�
i→ j � −�iei jw

p′
i j �V , (28)

the shear viscosity term (Eq. 5) as

Fv
i→ j � −μ(d + 2)

(
ui j
∣
∣ri j

∣
∣

· ei j
)

ei jwv′
i j�V , (29)

the CPP term (Eq. 10) as

FCPP
i→ j � −a

(
nai − na0

)
ei jwa′

i j�A, (30)

the DGP term (Eq. (10)) as

FDGP
i→ j � −aK 2hsχiw

g
i j�A − aK 2hs

(
χi · ri j

)
ei jw

g′
i j�A,

(31)

respectively.
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Fig. 1 Schematic of wedge film calculation

3 Results and discussion

3.1 Wedge film calculation

Thewedge film in a line contactwas calculated to validate the
capability of the employed method for predicting a steady-
state pressure distribution in the film. The calculation with
and without the surface tension model was carried out for
comparison. The computed results were compared with the
result of the corresponding experiment by Floberg [41]. The
wedge film is the fluid film in a converging flow passage
between two geometries with a relative motion, resulting in
pressure in the film, which is called the “wedge film effect”;
the wedge film effect is one of the most important pressure
generation mechanisms in the fluid film lubrication [43, 44].

The schematic of the wedge film calculation is illustrated
in Fig. 1. The wedge film is formed between a stationary
cylinder and a sliding plate with a velocity U in the horizon-
tal direction. The flow passage has a convergent-divergent
geometry around the contact, in which the positive and nega-
tive pressures are supposed to be generated. The calculation
condition is shown in Table 1, where the mesh-based numer-
ical study conducted by Bruyere et al. [42] was referred. In
the calculation, the two different particle spacings of l0 �
5.0 × 10–5 m and 1.0 × 10–4 m were applied to evaluate
the influence of the particle resolution. The effective radii hv
and hp for the viscous and pressure terms were both set to
3.1l0, whereas the one for the surface tension model hs was
set to 3.5l0. The coefficient a in the surface tension model
and the interaction ratio α in the wettability model were set
as in Eqs. (16) and (18). The Reynolds number Re based on
the minimum film thickness at the contact H0 and sliding
velocity U is 0.391.

The computational model of the wedge film calculation at
the initial state is shown in Fig. 2. The cylinder and sliding
plate were modeled by wall particles, and four layers of the
wall particlewere given for eachobject. Theno-slip condition
was specified for the wall particles by setting a zero velocity
for the cylinder and the sliding velocity U of 0.131 m/s for

Table 1 Calculation conditions for wedge film calculation

Parameters Base case Coarse case

Radius of cylinder R (m) 0.05

Minimum film thickness H0 (m) 4.0 × 10–4

Initial film thickness H init (m) 8.0 × 10–4

Sliding velocity U (m/s) 0.131

Fluid density ρ (kg/m3) 850

Viscosity μ (Pa s) 0.114

Bulk viscosity λ (Pa s) 1.0 2.0

Bulk modulus κ (Pa) 1.0 × 105 1.0 × 105

Surface tension σ (N/m) 0.032

Coefficient a (N/m) 0.174

Coefficient K (–) 0.351

Contact angle θ (deg) 60

Interaction ratio α (–) 0.5

Gravity g (m/s2) 9.8

Particle spacing l0 (m) 5.0 × 10–5 1.0 × 10–4

Effective radius (viscosity) hv (m) 1.55 × 10–4 3.1 × 10–4

Effective radius (pressure) hp (m) 1.55 × 10–4 3.1 × 10–4

Effective radius (surface tension)
hs (m)

1.75 × 10–4 3.5 × 10–4

Time step width Δt (s) 1.0 × 10–5 2.0 × 10–5

Reynolds number Re (–) 0.391

0
x

y

L=45 mmL=45 mm

Periodic boundary Periodic boundary

Fluid particles

Wall particles at rest

Moving wall particles
U

1G

Hinit= 800 µm

H0= 400 µm

Fig. 2 Computational model of wedge film calculation

the sliding plate. The fluid film was modeled by the fluid
particle, and the initial film thickness was given as H init �
8.0× 10–4 m. The periodic boundary condition was imposed
on both sides of the boundary horizontally. The gravity was
given in the vertical direction.

The shape of the wedge film for the base case (l0 � 5.0
× 10–5 m) is shown in Fig. 3. The difference in shape can
be seen between the cases with and without the surface ten-
sion model. In the case with the surface tension model, the
meniscus is formed in both the inlet and outlet regions of
the contact. In particular, the flow passage downstream of
the contact is filled with the fluid film at a certain distance
from the contact. In contrast, in the case without the surface
tension model, the flow passage is not filled with the fluid
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(a) Without surface tension

(b) With surface tension

Fig. 3 Shape of wedge film calculated with l0 � 5.0 × 10–5 m. a Without surface tension and bWith surface tension

film, and the thickness of the film is less than the minimum
gap at the contact.

The pressure distribution in the wedge film for the base
case (l0 � 5.0 × 10–5 m) is shown in Fig. 4. In both cases,
with andwithout the surface tensionmodel, the positive pres-
sure is generated in the upstream region of the contact due to
the wedge film effect. In contrast, the negative pressure can
be observed downstream of the contact only in the case with
the surface tension model, in which the tensile is imposed
by the divergent flow passage, the sliding velocity, and the
wettability in the exit meniscus. It should be noted that the
simulation with respect to meniscus formation requires the
negative pressure prediction. The computed result demon-
strates that the two-potential surface tension model could
capture the negative pressure as well as the surface tension
effect. Besides, in Fig. 4b, the negative pressure is shown
not only in the downstream region but also on the surface of
the fluid. This is because the virial pressure (Eq. 27) on the
surface turns negative with reflecting the tangential tension
force coming from the two-potential surface tension model
[40].

The comparison of pressure distribution in the wedge film
against the experimental result [41] is shown in Fig. 5. The
computed pressure in Fig. 5 was evaluated by space aver-
aging the virial pressure (Eq. 27) in control volumes with
the length of 3.1l0 between the cylinder and sliding plate
along with 0.1 s time averaging. For comparison, the result
of the coarse case with the larger particle spacing l0 � 1.0
× 10–4 m is also plotted. The results show that the case with
the surface tension model predicts well the entire pressure

profile, including the negative pressure regardless of the par-
ticle spacing. In contrast, the case without the surface tension
model slightly overpredicts the peak of the positive pressure
and fails to predict the negative pressure. As a result, it is
confirmed that the wedge film effect can be predicted quan-
titatively by the MPH-I method with the two-potential (CPP
and DGP) surface tension model.

3.2 Squeeze film calculation

The parallel-surface squeeze film of infinite width [43] was
calculated to validate the employed method’s capability for
predicting unsteady pressure development in the film. The
calculation with and without the surface tension model was
carried out for comparison. The computed results were com-
pared with an analytical solution obtained by the classic
Reynolds equation. The squeeze film is the fluid filmbetween
two objects with a relative motion in a direction normal to
their surfaces [43–45], resulting in pressure in the film,which
is called the “squeeze film effect”; the squeeze film is the
other of the most important pressure generation mechanisms
in the fluid film lubrication. For example, as for rolling ele-
ment bearings under varying external load, the squeeze film
is formed between inner or outer races and balls, and the film
thickness fluctuates in time because of the fluid-rigid body
and fluid–structure interactions between them via the film
itself.

The schematic of the squeeze film calculation is illustrated
in Fig. 6. The squeeze film is formed between a stationary
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(a) Without surface tension

(b) With surface tension

Fig. 4 Pressure distribution in wedge film calculated with l0 � 5.0 × 10–5 m. a Without surface tension and bWith surface tension
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Fig. 5 Comparison of pressure distribution in wedge film against exper-
imental result [41]

plate and a moving plate with a sinusoidal motion in the
vertical direction, which is defined as

H(t) � H0 + A[cos(2π f t) − 1]

V (t) � −2π f A sin(2π f t),
(32)

where H0 is the initial film thickness, and A and f are the
amplitude and frequency of the sinusoidal motion, respec-
tively. The sinusoidal oscillation motion represents a typical
behavior of the squeeze film in actual bearings. Figure 7

H(t)xL

Fluid

Stationary
plate

x

y

0

V(t)

Moving plate

p
W

Fig. 6 Schematic of squeeze film calculation
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Fig. 7 Considered time history of film thickness and squeeze velocity

depicts the time history of the film thicknessH(t) and squeeze
velocity V (t) (Eq. 32) as functions of time. In the positive
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Table 2 Calculation conditions for squeeze film calculation

Parameters Base case Coarse case

Width of moving plateW (m) 0.01

Height of moving plate T (m) 0.002

Initial film thickness H0 (m) 0.001

Initial oil height H init (m) 0.002

Amplitude of plate motion A (m) 3.0 × 10–4

Frequency of plate motion f (Hz) 1.0

Fluid density ρ (kg/m3) 850

Viscosity μ (Pa s) 0.114

Bulk viscosity λ (Pa s) 2.0 3.0

Bulk modulus κ (Pa) 1.0 × 106 1.0 × 106

Surface tension σ (N/m) 0.032

Coefficient a (N/m) 0.174

Coefficient K (–) 0.351

Contact angle θ (deg) 60

Interaction ratio α (–) 0.5

Gravity g (m/s2) 9.8

Particle spacing l0 (m) 5.0 × 10–5 1.0 × 10–4

Effective radius (viscosity) hv (m) 1.55 × 10–4 3.1 × 10–4

Effective radius (pressure) hp (m) 1.55 × 10–4 3.1 × 10–4

Effective radius (surface tension)
hs (m)

1.75 × 10–4 3.5 × 10–4

Time step width Δt (s) 1.0 × 10–6 2.0 × 10–6

Maximum Squeeze Reynolds
number Re (–)

1.1 × 10–2

squeeze motion, in which the two plates approach, the pos-
itive pressure is induced, whereas the negative pressure is
induced in the negative squeeze motion, in which the two
plates separate. The calculation conditions are shown inTable
2, where the experimental study by Kuroda et al. [44, 45] is
referred. It should be noted that according to the experiment
by Kuroda et al., the frequency of the sinusoidal oscillation
is small enough to avoid cavitation onset in the squeeze film,
which is left as a future work. In the calculation, the two
different particle spacings of l0 � 5.0 × 10–5 m and 1.0 ×
10–4 m were applied to evaluate the influence of the particle
resolution. The effective radii hv and hp for the viscous and
pressure terms were set to be the same as 3.1l0, whereas the
one for the surface tension model hs was set to 3.5l0. The
coefficient a in the surface tension model and the interaction
ratio α in the wettability model were set as in Eqs. (16) and
(18). The maximum squeeze Reynolds number Re based on
the film thickness H and squeeze velocity V is 1.1 × 10–2.

The computational model of the squeeze film calculation
at the initial state is shown inFig. 8. The oil vessel andmoving
plate were modeled by wall particles, and four layers of the
wall particlewere given for eachobject. Theno-slip condition

x

y

0

L=20 mm

T=2 mm
Hinit=2 mm H0=1 mm

W=10 mm

1G

Fig. 8 Computational model of squeeze film calculation

was specified for the wall particles by setting a velocity of
zero for the vesselwall particles and the squeeze velocityV (t)
(Eq. 32) for the moving plate. The fluid film was modeled
by the fluid particle, and the initial film thickness was given
as H0 � 1.0 × 10–3 m. The gravity was given in the vertical
direction.

The development of the squeeze film shape for the base
case (l0 � 5.0 × 10–5 m) is shown in Fig. 9. In the positive
squeeze phase at t � 0.2, 0.4, 0.5 s, in which themoving plate
goes down, the result of the case with the surface tension
model shows meniscus in the vicinity of the walls due to
the wettability model, whereas that of the case without the
surface tension model does not. A clear difference between
the two cases can be observed in the negative squeeze phase
at t � 0.6, 0.8, 1.0 s, in which the moving plate goes up. In
the case with the surface tension model, the squeeze film is
attached to the moving wall and keeps growing by sucking
the neighbor fluid near the edge of the squeeze film region.
In contrast, in the case without the surface tension model, the
squeeze film is detached from the moving plate, and the film
thickness does not grow.

The development of pressure in the squeeze film for the
base case (l0 � 5.0 × 10–5 m) is shown in Fig. 10. In the
positive squeeze phase at t � 0.2, 0.4, 0.5 s, the positive pres-
sure is generated around the center of the film in both cases
with and without the surface tension model. A clear differ-
ence between the two cases can be observed in the negative
squeeze phase at t � 0.6, 0.8, 1.0 s. In the case with the sur-
face tension model, the negative pressure can be observed in
the squeeze film, whereas the one without the surface tension
model cannot be seen. In the case with the surface tension
model, the tension is imposed in the squeeze film due to the
negative squeeze motion and wettability between the fluid
and the moving wall. The tension induces the negative pres-
sure, which plays a role of sucking the neighboring fluid into
the squeeze film and keeping the squeeze film attached to the
moving plate, i.e., forming the meniscus. Here, it should be
noted again that the negative pressure prediction is essential
to the meniscus formation. This result demonstrates that the
two-potential surface tension model could capture the neg-
ative pressure as well as surface tension effect. Besides, in
Fig. 10b, the virial pressure (Eq. 27) close to the free surface
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Fig. 9 Development of squeeze
film shape calculated with l0 �
5.0 × 10–5 m. a Without surface
tension and b With surface
tension

is always displayed negative because of the tangential ten-
sion coming from the two-potential surface tension model
[40].

The pressure–time history at the center of the squeeze
film (x � 0) is shown in Fig. 11. The pressure was evaluated
by space averaging the virial pressure (Eq. 27) in the region
enclosed by the center circle with its radius of 3.1l0. For com-
parison, the result of the coarse case with the larger particle
spacing l0 � 1.0 × 10–4 m is also plotted. The computed
results are compared with the result by the classic Reynolds
eq. for the parallel-surface squeeze film of infinite width [43]

d

dx

(
H3

μ

dp

dx

)

� 12V (33)

and boundary conditions

dp

dx

∣
∣
∣
∣
x�0

� 0

p(xL) � pa ,

(34)

where H is the squeeze film thickness as a function of time,
and pa is the hydrostatic pressure at the position of xL , which
is the left end of the squeeze film and given as xL � − W /2,
as shown in Fig. 6. By integrating Eq. (33) with the boundary
condition Eq. (34), the pressure as a function of time t and
position x is given as

p(t , x) � 6μV (t)

H(t)3

(

x2 − W 2

4

)

+ pa . (35)

Here, pa can be negligible (pa � 0 Pa) because the oil height
is very low. As shown in Fig. 11, the computed result in the
base case with the surface tension model predicts the analyti-
cal solutionwell (Eq. 35). However, the one in the coarse case
slightly underpredicts the maximum and minimum pressure
due to insufficient particle resolution. The computed result
without the surface tension model predicts the positive pres-
sure history from t � 0 to 0.5 s. In contrast, it fails to predict
the negative pressure history because of the lack of tension
in the squeeze film from t � 0.5 to 1.0 s, as shown in Fig. 10.
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Fig. 10 Development of pressure
in squeeze film calculated with l0
� 5.0 × 10–5 m. a Without
surface tension and bWith
surface tension
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Fig. 11 Pressure–time history at center of squeeze film

The pressure profiles in the horizontal direction at t �
0.4 and 0.6 s are shown in Fig. 12. The pressure was also
evaluated by space averaging the virial pressure (Eq. 27) in
control volumes with the length of 3.1l0 between the bottom
and moving walls. As can be seen in Fig. 12, the computed
results in the base case (l0 � 5.0 × 10–5 m) almost agree
well with the analytical solutions (Eq. 35). However, some
fluctuation can be observed, possibly because of the non-
uniform particle distributions in the film. Overall, the result
in the coarse case (l0 � 5.0 × 10–5 m) underestimated the
pressure profiles due to insufficient particle resolution. As a
result, it is confirmed that the squeeze film effect can also
be predicted quantitatively by the MPH-I method with the
two-potential (CPP and DGP) surface tension model.

4 Conclusions

In this study, a physically consistent particle method, the
Moving Particle Hydrodynamics (MPH) method [36–40],
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Fig. 12 Pressure distribution in
squeeze film. a t � 0.4 s and
b t � 0.6 s

(a) t = 0.4 s                                 (b) t = 0.6 s
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was applied to the fundamental fluid film lubrication prob-
lems. To avoid the time step size restriction due to the small
length scale and the high viscosity in the lubrication prob-
lems, the incompressible MPH (MPH-I) method with the
pressure substituting implicit solver [39] was employed with
the two-potential (cohesive pressure and density gradient
potentials) surface tension model [40]. For the validation in
specific, the problems with respect to the wedge film and
squeeze film effects, which are the fundamental pressure
generation mechanisms in the fluid film lubrication, were
calculated.

In the wedge film calculation, the steady-state pressure
profile in the film agreed well with the experiment [41]. The
positive pressure due to the wedge film effect and the nega-
tive pressure in the exit meniscus owing to the divergent flow
passage, the sliding velocity, and the wettability were well
reproduced in the calculation. In the squeeze film calcula-
tion, the unsteady pressure–time history at the center of the
squeeze film, including the negative pressure, agreed well
with the analytical solution obtained by the classic Reynolds
equation for the parallel-surface squeezefilmof infinitewidth
[43]. The pressure profiles in the horizontal direction at the
time of the maximum and minimum pressure were also well
reproduced. In the two cases, the employedmethod exhibited
high accuracy and robustness for the fundamental fluid film
lubrication problems even with the negative pressure. Over-
all, it was confirmed that the employed method is promising
for predicting the fluid film lubrication problems.
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