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Abstract
This work presents an enhanced version of the semi-explicit particle finite element method for incompressible flow problems.
This goal is achieved by improving the methodology that results from applying the Strang splitting operator by adding an
acceleration term. The advective step is evaluated on the mesh considering the new term leading to a more efficient algorithm.
Two test cases are solved for validating the methodology and estimating its accuracy. The numerical results demonstrate that
the proposed scheme improves the accuracy and the computational efficiency of the semi-explicit PFEM scheme.
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1 Introduction

Traditionally the numerical simulations of fluid flows have
been carried outwith theFiniteElementMethod (FEM)using
Eulerian formulations of the Navier–Stokes equations [1].
However, the continuous growth of computing power has led
to more research into Lagrangian finite element models due
to their intrinsic ability for tracking the domain deformations
in fluid problems [2–6].

A particular class of Lagrangian methods developed by
the authors is the so-called particle finite element method
(PFEM) [6,7]. It has been successfully applied to the simu-
lation of free-surface hydrodynamics [6,8], fluid–structure
interaction [7,9–16], immiscible two-fluid flows [17–19],
thermo-mechanical forming processes [20], among others.
There also exist Lagrangian models similar to PFEM that
have been applied to modeling material forming problems
[4,21,22].

Although the traditional PFEM approach has been
improved in recent years, one of its main drawbacks is that an
element can be inverted during the iterative solution process
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leading to solver failure. For this reason, all PFEM versions
are equipped with a critical time estimator to avoid this
situation. Although this alleviates considerably the restric-
tions due to the possibility of element inversion, the method
remains computationally expensive, limiting its applicability
for solving large practical 3D problems.

To overcome the mentioned shortcoming, in [23–25]
the authors have developed semi-explicit PFEM approaches
using the Lie–Trotter splitting operator [26–28]. In this kind
of approaches, the Navier–Stokes equations are split in two
parts, the advective one ( dvdt = 0) and the diffusive one
(Stokes equation). The advective part is solved together with
the additional equation v = dx

dt , considering that the compu-
tational mesh has a virtual (massless) particle associated to it,
motion of which is obtained explicitly using a sub-stepping-
based streamline integration. Once the particle advection is
performed, the Stokes equations are solved implicitly on a
newmesh. This approach has many advantages such as mak-
ing it possible to use large time steps without incurring into
stability restrictions. The main reason for this is that mesh
nodes move during the explicit step only and elements do
not deform during the implicit solution. This ensures conver-
gent solutionswithout severe time step restrictions.However,
the poor accuracy of the temporal approximations of the
first-order splitting [26] limits the quality of the results. To
mitigate this problem, in [29] Marti and Ryzhakov applied
the second-order Strang operator [30,31] in such a way that
the advective part of the equations is solved first. Then the
diffusive part is solved, followed by a new solution of the
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advective equation. The two advective steps are solved using
a Runge–Kutta-based streamline integration. Although the
Strang-splitting-based PFEM approach [29] improves the
accuracy and robustness of the method, the solution of the
advective steps requires a constant particle velocity, while the
particles are convected following the streamlines. Recently,
the authors [32] have improved this approach allowing the
update of the velocity of the particles as they are convected for
cases when the inertial forces are high, as it occurs for a fluid
contained in a spinning cylinder. The authors also have solved
the advective steps using a SPH cubic spline kernel-based
approach. The numerical results have confirmed that the
enhanced PFEM scheme improves the accuracy of previous
semi-explicit versions, but the necessity to check for the par-
ticle neighbors several times leads to amore expensive solver
from the computational point of view. In addition, the kernel
used is not able to correctly represent a linear velocity field.

This work aims to improving the PFEM Strang-based
strategy developed in [32] by removing the drawbacks men-
tioned in the above lines. The key feature of the new method
consist in evaluating the inertial (acceleration) term which
appears in both the convective and diffusive steps, using a
mesh-based procedure.

The organization of the paper is as follows. Section2
presents the governing Navier–Stokes equations. Also, the
new Strang splitting methodology is introduced. Section3
briefly explains the discrete form of the split equations. Sec-
tion4 presents the test cases that have been used to confirm
the desired convergence. Finally, Sect. 5 presents the conclu-
sions of this work.

2 Governing equations at a continuum level

LetΩ t denote a domain containing a viscous incompressible
fluid with a fixed boundary ΓD and a free surface ΓN . The
evolution of the velocity vector v = v(x, t) and the pressure
p = p(x, t) is governed by the Navier–Stokes equations
given by

– Momentum

ρ
∂v
∂t

+ ρv · ∇v = −∇ p + ∇ · (
2μ∇sv

) + ρb (1)

– Incompressibility

∇ · v = 0 (2)

where μ is the dynamic viscosity, ρ is the density, b is the
body force vector,∇ is the gradient operator, and∇s its sym-
metric part. Note that the term ∂v

∂t +v ·∇v corresponds to the
material derivative of the velocity Dv

Dt . Equations1 and 2 are

completed with the standard Neumann and Dirichlet bound-
ary conditions at the boundaries ΓN and ΓD , respectively,

− pn + 2μ∇sv · n = t̄ on ΓN (3)

v = v̄ on ΓD (4)

3 Strang operator splitting for the PFEM

Adding and subtracting to the momentum equation a new
variable acceleration a, which approximation is defined
below, and applying the Strang splitting operator [29,33],
the unknown solution v at tn + δt of Eq. 1 is obtained in
three steps as follows:

– Step 1 (advection 1)

ρ
∂v∗

∂t
+ ρv∗ · ∇v∗ = ρa with

v∗(tn, x) = v(tn, x) tε[tn, tn + δt/2] (5)

– Step 2 (diffusion)

ρ
∂v
∂t

= −∇ p + ∇ · (2μ∇sv) + ρb − ρa with

v(tn, x) = v∗(tn + δt/2, x) tε[tn, tn + δt] (6)

– Step 3 (advection 2)

ρ
∂ v̂
∂t

+ ρv̂ · ∇v̂ = ρa with

v̂(tn + δt/2, x) = v(tn + δt, x) tε[tn + δt/2, tn + δt] (7)

Equation 5 is solved for the fractional velocity v∗ for half
of the time increment δt/2. The solution of Eq. 5 is used as
the initial condition for solving Eq. 6 for the velocities v and
the pressure p for a full time increment δt , as explained in
Sect. 4.2. The velocity field obtained from Eq. 6 is the initial
condition for solving Eq. 7 for the final velocity field for a
half time increment, δt/2.

Note that the original form of the Strang operator splitting
for the PFEM developed in [29] is recovered by making a =
0.

4 Numerical solution

In the semi-explicit versions of the PFEM [23–25,29,34], the
mesh remains fixed and the advective step is solved consider-
ing virtual particles. The particle positions xp only coincide
with the nodes of the mesh xm at the beginning of the advec-
tive step and are moved following the streamlines of the flow
using the last known velocity. Thus, there is no possibility
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that an element inverts due the fact that the mesh movement
does not depend on the unknown velocity. Once the particles
are moved to the new position, a new mesh is generated and
is used for solving the implicit step (Sect. 4.2). In the follow-
ing, the solution of the convective and diffusive parts of the
algorithm is described.

4.1 Solution of the advective parts

As mentioned above, the convective part is solved in two
steps. The first one goes from tn to tn+1/2, and the second
one goes from tn+1/2 to tn+1. Themethodology used to solve
the first of them is presented below.

The velocity and the position at time tn+1/2 for a parti-
cle p located at xp is obtained by integrating Eq. 5 and the
additional equation Dx

Dt = v∗ from tn to tn+1/2 as

v∗n+1/2(xn+1/2
p ) = vnp +

∫ n+1/2

n
at (xtp)dt (8)

along with

xn+1/2
p = xnp +

∫ n+1/2

n
v∗t (xtp)dt (9)

where xtp is the function describing the movement of the par-
ticle from its position at tn to that at tn+1/2 (t : n < t <

n + 1/2). Note that Eqs. 8 and 9 are not only strongly cou-
pled, but also highly nonlinear, as the computation of the
position depends on the current velocity. In previous ver-
sions of the PFEM, this system is solved iterative limiting
the stability of the scheme, due to the possibility of element
inversion.

In order to avoid the iterative solutions of Eqs. 8 and 9, the
X-IVS technique was proposed by Idelsohn et al. [25]. It is
based on the idea of moving the particles (nodes) following
the streamlines of the flowusing the last known velocity field.
As the particles are moved explicitly, the problem becomes
a linear one. The new configuration is used to solve the
momentum equation. In this work, this idea is also used to
approximate the position and velocity field at tn+1/2. Apply-
ing the X-IVS technique to Eqs. 8 and 9, the terms at and v∗t
are replaced by an and vn . According to this, the final set of
equations read:

xn+1/2
p = xnp +

∫ n+1/2

n
vn(xtp)dt (10)

v∗,n+1/2
p = vnp +

∫ n+1/2

n
an(xtp)dt (11)

Equations 10 and 11 are explicit. Note that Eq. 11modifies
the particle velocity while it moves. Thus the time integration

of the velocities and the position are improved, as we will
show in Example 1.

Both the position (Eq. 10) and the velocities (Eq. 11) of the
particles are computed by applying the following 4th order
Runge–Kutta (RK4) scheme:

xn+1/2
p = xnp + (δt/2)

6
(v1 + 2v2 + 2v3 + v4) (12)

v∗,n+1/2
p = vnp + (δt/2)

6
(a1 + 2a2 + 2a3 + a4) (13)

where v1, v2, v3 and v4 are the intermediate velocities and
a1, a2, a3 and a4 are the intermediate accelerations. The
algorithm to evaluate xn+1/2

p and vn+1/2
p is presented inAlgo-

rithm 1.

Algorithm 1 Evaluation of the particle position xn+1/2
p and

velocity vn+1/2.
for each virtual particle
At the beginning xp1(= xnp) = xm and velocity v1;

Move nodes according to xp2 = xnp + δt
4 v1;

Evaluate the velocity as v2 = ∑3
j=1 N jvnj and the acceleration as a2 =

∑3
j=1 N janj ;

Save v2 and a2;
Set back to its original location xp = xm ;
Move nodes according to xp3 = xnp + δt

4 v2;

Evaluate the velocity as v3 = ∑3
j=1 N jvnj and the acceleration as a3 =

∑3
j=1 N janj ;

Save v3 and a3;
Set back to its original location xp = xm ;
Move nodes according to xp4 = xnp + δt

2 v3;

Evaluate the velocity as v4 = ∑3
j=1 N jvnj and the acceleration as a4 =

∑3
j=1 N janj ;

Save v4 and a4;
Set back to its original location xp = xm ;
Move the mesh nodes according to Eq. 12 and with a velocity defined
by Eq. 13;
whereN j are the shape functions of the element where the particle lays.

Once the particle advection is performed, the particles
are connected by a new mesh generated with the Delaunay
method [35] or the extended Delaunay tessellation procedure
[36], equipped with the alpha-shape technique [37] for iden-
tifying the external boundaries. The mesh regeneration step
is standard for all PFEM schemes and is not detailed here.
The reader is referred to [7] for the standard implementation.

Similarly to other semi-explicit PFEM procedures, the
proposed method is free of the advection stability issue.
Namely, by performing an explicit advective step and then
solving the Stokes equations on the fixed mesh, the stabil-
ity restrictions induced by the CFL-number (CFL<1) are
removed. Nevertheless, in comparison with the previous ver-
sion of the PFEM, the current strategy improves the accuracy
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by considering the acceleration in the advective motion, as it
will be shown in the examples.

Once the Stokes problem is solved, the explicit mesh
motion step is repeated following the procedure described
in Algorithm 1, but now applied from tn+1/2 to tn+1. Hence,
the upper indices n and n+1/2 are replaced by n+1/2 and n ,
respectively. Note that this second movement of the nodes
could cause that some element of the mesh is inverted. Ele-
ment inversion results in a negative Jacobian [38] of the
corresponding element [39]. This leads to the failure of the
simulation. In order to guarantee themesh quality and dimin-
ish the amount of highly distorted elements, the Jacobian of
the corresponding elements is evaluated, and if any of them
is negative, a second remeshing is performed (See Algo-
rithm 2). This considerably improves mesh quality, to the
expense in a increase in the computational cost. In any case,
the overall solver is still cheaper than the strategy presented
in [32]. For the simulated examples in this work, it was not
necessary to carry out a second remeshing.

4.2 Solution of the diffusive part

The Stokes problem (Eq. 6) is solved on the domain Ωn+1/2

defined by the position of the particles xn+1/2
p obtained by

solving the first advective step (Eq. 12). The particles velocity
v∗,n+1/2
p from Eq. 13 is used as the initial condition vn =

v∗,n+1/2 for solving Eq. 6.
In order to obtain the velocities v and the pressure p for a

full time increment δt , the weak form of Eq. 6, following the
standard FEM, the Crank–Nicolson time integration scheme
and the fractional step method [40–42] can be written as

– Fractional velocity

∑

elem

[∫

Ωe

ρN · ṽn+1dΩ + δt
∫

Ωe

∇N : μ∇s ṽn+1dΩ

=
∫

Ωe

ρN · vndΩ + δt
∫

Ωe

∇N : pndΩ

+ δt
∫

Ωe

∇N : μ∇svndΩ + δt
∫

Ωe

ρN · bdΩ

−δt
∫

Ωe

ρN · andΩ +
∫

ΓNe

N · t̄dΓ

]

(14)

– Computation of the pressure

∑

elem

[
δt

2

∫

Ωe

∇N · ∇ pn+1dΩ

= δt

2

∫

Ωe

∇N · ∇ pndΩ +
∫

Ωe

ρN∇ · ṽdΩ

]
(15)

– Velocity update

∑

elem

[∫

Ωe

ρN · vn+1dΩ =
∫

Ωe

ρN · ṽdΩ

+δt

2

∫

Ωe

∇N : (pn+1 − pn)dΩ

]
(16)

where ṽ is the intermediate velocity vector.
The velocities, the accelerations and the pressure are

approximated over each element with n nodes using stan-
dard linear elements as

v (x) =
n∑

l=1

Nl (x, t) vl = NT (x)

⎛

⎜
⎜⎜⎜⎜⎜
⎝

v1x
v1y
v2x
v2y
v3x
v3y

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(17)

a (x) =
n∑

l=1

Nl (x) al = NT (x)

⎛

⎜
⎜⎜⎜⎜⎜
⎝

a1x
a1y
a2x
a2y
a3x
a3y

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(18)

p (x) =
n∑

l=1

Nl (x) pl = NT
p (x)

⎛

⎝
p1
p2
p3

⎞

⎠ (19)

where

N =
(
N1 0 N2 0 N3 0
0 N1 0 N2 0 N3

)
(20)

Np = (
N1 N2 N3

)
(21)

Nl are the standard linear FE shape functions and l stands for
the nodal index.

Substituting the finite element approximations into
Eqs. 14–16 leads to the following discrete form of Eqs. 14–
16.

(M + δtK) ṽ = (M + δtK) vn

+δtGpn + δtFb − δtMan (22)
δt

2
Lpn+1 = δt

2
Lpn − Dṽ (23)

vn+1 = ṽ + δt

2
M−1G(pn+1 − pn) (24)

Equation 23 is stabilized using the ASGS stabilization
technique for the pressure components [43]. For the sake of
simplicity, the stabilization terms are omitted here. They can
be consulted in [44]. Other stabilization techniques for the
pressure equation can be used [45,46].
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Evaluation of the acceleration term a.
In the semi-explicit PFEM versions, the advective part

( dvdt = ∂v
∂t + v · ∇v = 0) of the Navier–Stokes equations is

solved together with the additional equation v = dx
dt using

the streamlines. The convection of the particles depends on
the velocity at every moment, while their velocities remain
unchanged. This assumption is valid only when the inertial
forces are negligible.

In order to generalize the formulation to problems where
the inertial forces are not negligible, i.e ∂v

∂t + v · ∇v �= 0 an
acceleration term is added consistently in the advective terms
(see Eqs. 5 and 7) and the Stokes equation (Eq. 6). With this
new term in the advective part, the particles change their posi-
tions following the streamlines Eq. 12, while the acceleration
streamlines are used to modify the velocity Eq. 13. Next it is
explained how the acceleration term is evaluated.

The acceleration a (a = ∂v
∂t

+ c · ∇v) is computed by the

following finite element discrete form

Ma = M
∂v
∂t

+ Cv (25)

where M is the mass matrix and C is given by Eq. 26.

C = ρ
∑

elem

∫

Ωe

N · c · ∇NT dΩ (26)

c is the convective velocity evaluated at the Gauss point as
NT (x) v.

According to Sect. 4.1, the acceleration term a (Eq. 25) is
evaluated at time tn and it is assumed to be constant during
the time step (see Algorithm 2). Therefore, Eq. 25 can be
written as

Man = Cvn (27)

The acceleration vector a is obtained by using a lumped
form of the mass matrixM. Thus, the solution of Eq. 27 has a
negligible computational cost. Equation 27 is also stabilized
using the ASGS stabilization technique [43].

The explicit mesh motion step is repeated following the
procedure described in Algorithm 1, but now applied from
tn+1/2 to tn+1. Hence, the upper indices n and n+1/2 are
replaced by n+1/2 and n , respectively.

5 Overall solution strategy

The solution procedure can be summarized as: Given the
nodal positions, the velocity and the pressure at time tn find
these variables at tn+1. The solution steps are outlined in
Algorithm 2.

Algorithm 2 Solution algorithm for the simulation of incom-
pressible flows.
for t = tn+1

Calculate the acceleration an by solving Eq. 27.
Evaluation of the particle position xn+1/2

p and velocity vn+1/2 following
Algorithm 1
Re-mesh the fluid domain
Solve the Stokes problem (Eq. 6) uncoupling the velocity and pressure
via the fractional step technique:

– Find the intermediate velocity ṽ by solving Eq. 22 ;
– Solve the Poisson’s equation for the pressure pn+1 (Eq. 23);
– Correct the velocity by solving Eq. 24 to obtain a divergence-free

solution with vn+1 = v̄ on ΓD ;

Evaluation of the particle position xn+1
p and velocity vn+1 following

Algorithm 1
if the mesh is too distorted Re-mesh the fluid domain

6 Numerical examples

The new PFEM scheme has been implemented in the Kratos
MultiPhysics code, an academic Open Source software [47].
In the following section, two numerical examples are pre-
sented that show the advantage of the new model. The first
one is a 2Dbenchmark of a flow in a spinning cylindrical con-
tainer. The second example is the well-known flow around a
circular cylinder.

6.1 Viscous flow in a spinning circular container

The test presented in [32] is chosen here to show how the
additional acceleration term improves the numerical solution,
and secondly to evaluate the convergence of the modified
approach. In the test, a cylinder of radius Re = 0.5 [m] is
filled up with a fluid rotates about it axis with a constant
angular velocity w in the absence of gravity forces. As a
result of the centrifugal forces, the fluid presents a circular
internal free surface of radius Ri = 0.21 [m]. The geometry,
dimensions and boundary conditions are shown in Fig. 1.

The analytical solution (polar coordinates) of this problem
is given by

vθ = wr (28)

p = ρw2

2
(r2 − Ri2) (29)

The fluid has a density of 1000 [kg/m3] and a viscosity of
0.001 [kg/ms].

To simulate numerically this test, the velocity is prescribed
to vθ = Re at Re = 0.5 [m] and the pressure is fixed to zero
at Ri = 0.21 [m].

In this work the non-homogeneous boundary condition is
imposed by employing a mixed Lagrangian–Eulerian (LE)
technique presented in [48]. This technique is characterized
by treating only the solid nodes as Eulerian (i.e., fixed). In
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Fig. 1 Geometry

otherwords, solid nodes are not changing their position along
time although its velocity can be different from zero with-
out altering the geometric definition of the boundary due to
a Lagrangian motion. As a consequence of this, a convec-
tive velocity appears in the element containing these nodes
and its discrete form is given by c (x) = NT (x) (v − vL)

where v and vL are the Eulerian and Lagrangian veloci-
ties. For the fluid particles v = vL , while for the solid ones
vL=0. Its effect is introduced by adding an additional matrix
CLE = ρ

∑
elem

∫
Ωe

N · c · ∇NT dΩ to the left-hand side of
Eq. 22. Note that while the matrix C given by Eq. 26 is eval-
uated in the entire domain in order to obtain the acceleration
a and appear on the right-hand side of Eq. 22, the matrix
resulting from the LE technique appears only on elements
with Eulerian nodes [48], representing a small portion of the
overall domain. In the case that the solid nodes have zero
velocity, this matrix does not intervene in the formulation.

To show the effect of the acceleration term in the eval-
uation of the particle position and its velocity in the new
method, the domain was discretized with a non-structured
mesh (h = 0.01 [m]). The example was solved over a time
span of 0.5 [s], and the time increment was set to 0.01 [s].
The results are compared with the ones obtained using the
numerical formulation presented in [29], which from now
on will be distinguished in the paper, as well as in the fig-
ures, as “without acceleration”. Figure2 shows the trajectory
of two particles. The first particle is located near the wall
(x = 0.0 [m] and y = −0.355863 [m]), while the sec-
ond one in the middle of the domain (x = 0. [m] and
y = −0.485586 [m]). The reference solution is obtained
by integrating the velocity (Eq. 28) with the Runge–Kutta
scheme (Fig. 2).

Figure 2b and d shows the trajectory of the two particles
selected. It can be observed how the particle position with-
out considering the acceleration term [29] deviate from the
reference solution. However, as will be seen later, this error
decreases over time.

The modulus of the velocity field at time t = 0.5 [s] is
shown in Fig. 3. Note that flattened elements appear close to
the wall in the approach without including the acceleration
term (Fig. 3). This effect is noticeable by inspecting the right
part of Fig. 3. We note that in this example no particles were
seed or removed during the simulation to improve the mesh
quality.

The time accuracy of the new approach was obtained by
running the example for the following time steps: 0.01, 0.005,
0.0025, 0.0008 and 0.0005 [s]. The error measure was esti-
mated by the area enclosed between the obtained and the
reference radial velocity distribution along the horizontal cut
plane at y = 0 [m] from x = Ri to x = Re at t = 0.5 [s] for
the given time step. The influence of the spatial discretization
error was excluded by considering as a reference solution the
one obtained using dt = 0.0005 [s]. The convergence data
(error versus time step size in logarithmic scale) is shown
in Fig. 4a. One can observe that the approach without the
acceleration term presents the same slope but a larger error
than the version considering the acceleration. Also the strat-
egy presented here shows the same spatial convergence than
the strategy presented in [32], where the convective steps are
solved using a SPH kernel.

To check the spatial accuracy of the new PFEM tech-
nique, the example was solved with a small time step (dt =
0.0005 [s]) and different mesh sizes of h = 0.05 [m],
h = 0.015 [m] and h = 0.008 [m]. The analytical solu-
tion was taken as the reference solution. Figure4b shows the
error versus themesh size. Themethod exhibits second-order
convergence with respect to the mesh size. Also the error
with the SPH kernel methodology presented in [32] is dis-
played. Marti and Oñate [32] presented an enhanced version
of the semi-explicit PFEM which was obtained by applying
the Strang operator splitting to the Navier–Stokes equations
and solving the advetive steps using a SPH kernel.

Table 1 shows the average computational times of the
element-based and kernel-based [32] solutions correspond-
ing to the two advective steps on a given mesh. The time
required to generate the mesh was 0.06139655 [s], which is
the step that cannot be easily parallelized.One can see that the
element-based implementation is approximately five times
“cheaper” than the SPH kernel one. Parallel implementation
leads to a reduction in the computational times, which is,
however, lower than the ideal are. On the other hand, the new
PFEM strategy presented has second-order accuracy in time
and in space, with a slighly larger error than the one of [32]
even though this uses a kernel that not correctly represent
a linear field, however the new PFEM strategy is compu-
tationally more efficient and, thus, best suited for practical
applications.

The same example was run for 2.5 [s] to show the impor-
tance of the acceleration term.

123



Computational Particle Mechanics (2023) 10:1463–1475 1469

(a) First particle: trajectory (b) First particle: zoom of the last posi-
tions

(c) Second particle: trajectory (d) Second particle: zoom of the last po-
sitions

Fig. 2 Particle trajectories
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Fig. 3 Velocity field at
t = 0.5 [s]

Figure 5 shows how the particle positionwithout consider-
ing the acceleration term deviate from the reference solution,
leading to failure of the solver. The former is presented in
more detail in Figs. 6 and 7.

6.2 Flow around a circular cylinder.

This test has been chosen to show the capability of the new
PFEM scheme for solving complex problems. According to
Fig. 8, a circle with a diameter of 1 [m] has been placed inside
a rectangular domain of 21 [m] width and 11 [m] height.
The velocity has been set to vx = 1.0 [m/s] in the inlet and
the bottom and upper walls are slip. The Dirichlet boundary
condition has been imposed by employing the LE technique
presented before. The pressure is fixed to zero in the oulet.
The density and viscosity are ρ = 1.0 [kg/m3] and μ =
0.001 [kg/(ms)], respectively. The geometry and the material
properties are taken from [25].

The domain is discretized with an unstructured mesh of 3-
nodes triangles where the minimum and the maximum mesh

sizes were: hmin = 0.0073 [m] and hmax = 0.2 [m], respec-
tively. In this, test particles were seed or removed during the
simulation to further improve the mesh quality.

The example was run using a time step of 0.0025 [s].
Figure 9 shows thevelocity and the pressurefields at 80 [s].

Figures10 and 11 compares the drag and the lift with the ones
using the first-order version of the PFEM-2 approach [25].
Note that in [25] the authors only reported the periodic part
of the solution without mentioning when it started. Also the
drag and the lift obtained by Mittal [49] are introduced.

We can observed that Figs. 10 and 11 show a good agree-
ment in the oscillation frequency and amplitude with the
results from the semi-explicit PFEM approach with fixed
mesh [25]. From the graph, the drag mean value is 8% above
the reference mean value and the lift force oscillates with an
amplitude is 13% above the reference value. These values
are slightly smaller than the ones presented in [25]. How-
ever, the approach presented here obtain practically the same
results (lift and drag) than [25] without the need to solve the
convective term with an excessive number of particles.
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(a) Error vs time step size.

(b) Error vs different mesh sizes (h).

Fig. 4 Flow in spinning circular container

Table 1 Computational cost of different solution steps of the proposed
PFEM strategy

Advection step Sequential (s) 4 Cores (s)

SPH kernel 0.217965 0.1130016

Mesh based 0.03907245 0.0265653

(a) First particle.

(b) Second particle.

Fig. 5 Particle trajectories
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Fig. 6 Zoom of the last positions for first particle

Fig. 7 Zoom of the last positions for second particle
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Fig. 8 Geometry

Fig. 9 Flow around a circular cylinder. Velocity and pressure fields at
80 [s]

7 Summary and conclusions

Amodified new semi-explicit Strang-based PFEM technique
has been proposed for modeling incompressible flows. The
improvement of the PFEM strategy has consisted in calculat-
ing the convective step using an auxiliary acceleration term.
The integration of both the position and the velocities, which

(a) New approach versus Mittal.

(b) PFEM2 versus Mittal.

Fig. 10 Flow around a circular cylinder. Drag coefficient

emanate from the convective step, have been performed using
a fourth Runge–Kutta scheme and interpolating from the
mesh the intermediate velocities and accelerations. As a con-
sequence, the new PFEM approach leads to a more efficient
computationally solver.

The enhanced PFEM scheme has been compared with
results for 2D test cases from the literature. The first test has
shown the importance of taking into account the acceleration
term proposed in [32] and reveals second-order convergence
versus mesh size and time. The second example has shown
the good features of the new PFEM scheme for solving a
more complicated setting. The numerical results have con-
firmed that the new PFEM scheme improves the accuracy
and speed of previous semi-explicit versions.
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(a) New approach versus Mittal.

(b) PFEM2 versus Mittal.

Fig. 11 Flow around a circular cylinder. Lift coefficient
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