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Abstract
In this paper, an upwindGFDMis developed for coupled heat andmass transfer problems in porousmedia.GFDMis ameshless
method that can obtain the difference schemes of spatial derivatives by using Taylor expansion in local node influence domains
and the weighted least squares method. The first-order single-point upstream scheme in the FDM/FVM-based reservoir
simulator is introduced to GFDM to form the upwind GFDM, based on which a sequential coupled discrete scheme of the
pressure diffusion equation and the heat convection-conduction equation is solved to obtain pressure and temperature profiles.
This paper demonstrates that this method can be used to obtain the meshless solution of the convection–diffusion equation
with a stable upwind effect. For porous flow problems, the upwind GFDM is more practical and stable than the method of
manually adjusting the influence domain based on the prior information of the flow field to achieve the upwind effect. Two
types of calculation errors are analyzed, and three numerical examples are implemented to illustrate the good calculation
accuracy and convergence of the upwind GFDM for heat andmass transfer problems in porous media and indicate the increase
in the radius of the node influence domain will increase the calculation error of temperature profiles. Overall, the upwind
GFDM discretizes the computational domain using only a point cloud that is generated with much less topological constraints
than the generated mesh, but achieves good computational performance as the mesh-based approaches, and therefore has
great potential to be developed as a general-purpose numerical simulator for various porous flow problems in domains with
complex geometry.

Keywords Meshless methods · Generalized finite difference method · Heat and mass transfer · Upwind scheme ·
Convection-diffusion equation

List of symbols

Symbols Physical meanings
α The unit conversion factor, equal to 0.0864
β The unit conversion factor, equal to 86,400
⇀
v The seepage velocity, m/day
k Permeability, mD
μ Viscosity, cp
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p Pressure, MPa
T Temperature, °C
q Source or sink term in mass transfer, 1/day
φ Formation porositywhich is a function of pressure

and temperature φ(p, T ), fraction
t Time, day
λc Integrated heat conduction coefficient, a function

of pressure and temperature λc(p, T ), J/s/m/°C
λl Heat conduction coefficient of liquid, J/s/m/°C
λr Heat conduction coefficient of rock, J/s/m/°C
ρl Liquid density, kg/m3

ρr Rock density, kg/m3

Cl Liquid heat capacity, J/kg/°C
Cr Rock heat capacity, J/kg/°C
qh The energy source or sink term which is the total

heat energy carried by the mass source or sink
term q, J/m3/day

Ct Compressibility coefficient, 1/MPa

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-022-00501-w&domain=pdf


534 Computational Particle Mechanics (2023) 10:533–554

CTemp The thermal expansion coefficient, 1/°C
p0 The initial formation pressure, MP
T0 The initial formation temperature, °C
φ0 The porosity when p � p0 and T � T0
αT The fluid viscosity-temperature coefficient, which

measures the physical law that the fluid viscosity
decreases with the increase in the temperature

1 Introduction

The study on heat and mass transfer in porous media widely
exists in the development and utilization of environment-
friendly geothermal resources, thermal recovery of oil and
gas resources, thermal performance of insulation materi-
als, etc. Underground formations are typical porous media,
among which the study on coupled heat and mass trans-
fer focuses on the coupling calculation of fluid seepage and
heat conduction–convection in porous formation. This cou-
pling effect is mainly reflected in the aspects [1], including
the influence of temperature change on fluid viscosity, the
influence of temperature on formation porosity, the influ-
ence of fluid flow velocity on the strength of heat convection,
etc. At present, the numerical simulation methods of cou-
pled mass and heat transfer mainly include finite difference
method (FDM) [2], finite element method (FEM) [3], and
finite volume method (FVM) [4, 5]. However, these methods
are limited by the requirements of geometric regularity of the
computational domain and high-quality mesh generation.

The generalized finite difference method (GFDM) is a
domain-type meshless method with twenty years. Based on
Taylor series expansion of unknown function and weighted
least square approximation in a subdomain, the spatial deriva-
tives of unknown function in the governing equation are
expressed as the difference scheme of the values of unknown
function at nodes in the subdomain, which overcomes the
grid dependence of traditional FDM [6, 7]. Up to now,
GFDM has been widely used to solve various scientific and
engineering problems, including coupled thermoelasticity
problem [8–10], third- and fourth-order partial differential
equations [11], shallow water equations [12], transient heat
conduction analysis [13], seismic wave propagation problem
[14], stress analysis [15], unsteady Burgers’ equations [16,
17], water wave interactions [18], inverse heat source prob-
lems [19], nonlinear convection–diffusion equations [20],
time-fractional diffusion equation [21], various flow prob-
lems [22–24]. Gavete et al. [25] reviewed the advantages
and disadvantages of GFDM and its applications, analyzed
the influence of various factors on the numerical perfor-
mances of GFDM, and found that the weight function might
have little influence on the numerical results. GFDM just
uses point clouds for the discretization of the computational
domain to realize the effective numerical solution of par-

tial equations, which saves the possible time-consuming and
laborious meshing and numerical integration in FEM, FVM,
and boundary element method (BEM) [26, 27] for the calcu-
lation domains with complex geometry.

This paper focuses on applying GFDM to the model-
ing of coupled heat and mass transfer problems, which
involves not only the diffusion equation about pressure, but
also the convection–diffusion equation about temperature.
For the convection–diffusion equation, it is often necessary
to add upwind weight treatment to the discrete scheme of
the convection term. Otherwise, the calculation solution is
prone to the situation of inaccurate oscillation. For exam-
ple, the upstream FEM [28], the upstream FDM [29], and
the upstream FVM [30] have been widely used. In mesh-
less methods, currently, modifying the influence domain is
generally adopted to realize the upwind effect, including the
upwind influence domain [31] of moving the central node
position in the upstream direction and the partial influence
domain [12, 32, 33] of including the upstream nodes more
in the central-node influence domain. For GFDM, Cheng
and Liu [32] roughly discussed the upwind effect by con-
structing a six-point scheme containingmore upstreamnodes
in the influence domain (i.e., the partial influence domain)
in GFDM. Li and Fan [12] adopted the partial influence
domain to handle the convection-dominated hyperbolic shal-
low water equations and then used the flux limiter technique
to avoid the non-physical wiggles of solutions near discon-
tinuities [33]. However, for porous flow problems, including
the coupled calculation of mass and heat transfer in porous
media studied in this paper, because the underground velocity
field is generally unknown, and the velocity field of reservoir
flow may be very complex due to the influence of vari-
ous geological conditions or source-sink terms caused by
drillingwells, it is difficult to obtain a stable upwind effect by
modifying the influence domain to ensure good calculation
performance. Rao et al. [34] developed an upwind GFDM
for two-phase porous flow problems.

Therefore, this paper aims to study the computational per-
formance of the upwind GFDM to heat and mass transfer
problem, including the convection-dominated convection–d-
iffusion equation, so as to provide an important reference for
constructing a general-purpose numerical simulator for mul-
tiphysics coupling porousflowproblemsbasedon the upwind
GFDM.

The paper is structured as follows. In Sect. 2, the upwind
GFDM-based modeling of the single-phase heat and mass
transfer problem is given, including the basic physical model
in Sect. 2.1, a brief review of GFDM in Sect. 2.2, the upwind
GFDM discrete schemes of heat and mass transfer equations
in Sect. 2.3, the treatment of boundary conditions in Sect. 2.4,
and the application of the upwind GFDM to the meshless
solution of the convection–diffusion equation and analysis
of the dissipation error in Sect. 2.5. Section 3 gives three
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numerical examples and a rough error analysis to illustrate
the computational performances of the upwind GFDM. The
conclusion and future work come in Sect. 4.

2 Methodology

2.1 Governing equations

This paper focuses on the study of single-phase heat andmass
transfer in porous media, including diffusion equation about
pressure, convection-diffusion equation about temperature,
and auxiliary equations of physical quantities affected by
pressure and temperature, which are:

(1) Mass conservative equation (assuming that the fluid is
incompressible)

−∇ · ⇀
v +q � ∂φ(p, T )

∂t
(1)

(2) Energy conservative equation

(2)

β∇ (λc (p, T )∇T ) − ∇ ·
(
ρlClT

⇀
v
)
+ qh

� ∂

∂t
([1 − φ (p, T )] ρrCr T + φ (p, T ) ρlClT )

(3) Auxiliary equations.

In porous flow, the seepage velocity
⇀
v in Eq. (1) and

Eq. (2) satisfies Darcy’s law:

⇀
v � −α

k

μ
∇ p (3)

Thus, Eq. (1) is rewritten as a form of an approximate
pressure diffusion equation:

α∇
(
k

μ
∇ p

)
+ q � ∂φ(p, T )

∂t
(4)

Equation (2) can be rewritten as:

(5)

β∇ (λc (p, T )∇T ) + α∇
(

ρlClT
k

μ
∇ p

)
+ qh

� ∂

∂t
([1 − φ (p, T )] ρrCr T + φ (p, T ) ρlClT )

Due to the elastic and thermoelastic properties of reser-
voir porous media, porosity is affected by both fluid pressure

and temperature. The porosity φ(p, T ), integrated heat con-
duction coefficient λc(p, T ), and liquid viscosity μ(T ) are
calculated as

φ(p, T ) � [φ0 + Ct (p − p0)]

[
1 +

1 − φ0

φ0
CTemp(T − T0)

]
,

λc(p, T ) � φ(p, T )λl + (1 − φ(p, T ))λr ,

μ(T ) � μ(T0)e
−αT (T−T0)

(6)

Equations (4) and (5) are differential equations about tem-
perature and pressure, in which the coefficients are jointly
affected by pressure and temperature to form a nonlinear
equation system.

2.2 A brief review of GFDM

GFDM is a relatively new meshless method based on local
Taylor expansion and weighted least squares approximation.
In this method, the spatial derivatives are approximated as a
difference scheme of the nodal function values within each
local node influence domain.

Suppose there are n other nodes in the influence domain
of the node M0 � (x0, y0), which are denoted as
{M1, M2, M3, · · · , MN } where Mi � (xi , yi ). The Taylor
expansion of the unknown function u(x, y) at M0 can be
used to approximate {u(Mi ), i � 1, · · · n} as:

u (Mi ) � u (M0) + 	xi
∂u

∂x

∣∣∣∣
M0

+ 	yi
∂u

∂y

∣∣∣∣
M0

+
1

2

(
(	xi )

2 ∂2u

∂x2

∣∣∣∣
M0

+ 2	xi	yi
∂2u

∂x∂y

∣∣∣∣
M0

+ (	yi )
2 ∂2u

∂y2

∣∣∣∣
M0

)

+ O
(
r3

)

(7)

where � xi � x0 − xi , 	yi � y0 − yi .

Denote u0 � u(M0), ux0 � ∂u
∂x

∣∣
M0

, uy0 � ∂u
∂y

∣∣∣
M0

,

uxx0 � ∂2u
∂x2

∣∣∣
M0

, uxy � ∂2u
∂x∂y

∣∣∣
M0

, uyy � ∂2u
∂y2

∣∣∣
M0

.

Define weighted error function B(Du):

B (Du) �
n∑
j�1

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

u0 − u j + 	x j ux0 + 	y j uy0

+
1

2

(
	x j

)2
uxx0

+
1

2

(
	y j

)2
uyy0 + 	x j	y j uxy0

⎞
⎟⎟⎟⎟⎠

ω j

⎤
⎥⎥⎥⎥⎦

2

(8)

where Du � (
ux0, uy0, uxx0, uyy0, uxy0

)T , ω j � ω(
	x j ,	y j

)
is the value of the weight function ω(x, y) at

Mj . Benito et al. [6] and Gavete et al. [25] demonstrated that
different types of weight function have little influence on the
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GFDM calculation results, while the quartic spline function
is generally selected as the weight function in Eq. (9).

ω j �
{
1 − 6

(
r j
rm

)2
+ 8

(
r j
rm

)3 − 3
(
r j
rm

)4
r j ≤ rm

0 r j > rm
(9)

where r j is the Euclidean distance from the Mj to M0 and
rm is the radius of the influence domain of M0.

The weighted error function B(Du) is minimized; at this
time, the partial derivatives of B(Du) to each component of
B(Du) are required equal to zero, and they are

(10)

∂B (Du)

∂ux0
� 0,

∂B (Du)

∂uy0
� 0,

∂B (Du)

∂uxx0

� 0,
∂B (Du)

∂uyy0
� 0,

∂B (Du)

∂uxy0
� 0

Eq. (10) are sorted into linear equations as follows:

ADu � b (11)

where A � LT !L, b � LT !U, L � (
LT
1 ,LT

2 , · · · ,LT
n

)T
,

Li �
(

	xi ,	yi ,
	x2i
2 ,

	y2i
2 ,	xi	yi

)
, ω � diag

(
ω2
1, ω

2
2, · · · , ω2

n

)
,U � (u1 − u0, u2 − u0, · · · , un − u0)T .

Then, Du can be solved as:

Du � (
ux0, uy0, uxx0, uyy0, uxy0

)T � A−1b � A−1LT !U � MU
(12)

where M � A−1LTω

For the convenience of notation, the elements of thematrix
M are denoted asmi j , and the generalized difference approx-
imation schemes of the spatial derivatives at M0 are obtained
as:

∂u

∂x
�

n∑
j�1

m1 j
(
u j − u0

)
,

∂u

∂y
�

n∑
j�1

m2 j
(
u j − u0

)
,

∂2u

∂x2

�
n∑
j�1

m3 j
(
u j − u0

)
,

∂2u

∂y2

�
n∑
j�1

m4 j
(
u j − u0

)
,

∂2u

∂x∂y
�

n∑
j�1

m5 j
(
u j − u0

)

(13)

As seen in Eq. (13), GFDM is flexible to obtain the dif-
ference expressions of spatial derivatives at the considered
node only according to the coordinates of the nodes within
the influence domain of the considered node. In fact, there
can be no concept of the node influence domain, because it
is only necessary to determine which nodes participate in the
construction of the generalized finite difference expressions

of spatial derivatives at the considered node, and the intro-
duction of the node influence domain is just to determine the
selection of these nodes more conveniently.

Therefore, the numerical discretization of partial differ-
ential equations can be realized when only using a point
cloud to discretize the computational domain. This is the
most significant advantage of meshless GFDM compared
with mesh-based FEM and FVM.

Milewski [35] and Rao et al. [34] point out that the point
cloud discretization in the computational domain has much
less topological information than the mesh discretization in
the computational domain, for example, on the basis of the
point cloud, the mesh also needs to determine which two
points are connected to an edge, which points form a mesh
and the order of the vertices of the mesh, and so on. When
generating a mesh, the lengths of the edges of a mesh do not
vary somuch that the vertex angles of themesh do not vary so
much to ensure the quality of themesh generation. Therefore,
when discretizing a computational domain, the topological
constraints on the mesh generation are much greater than
those on the generation of the point cloud, which makes the
generation of the point cloud theoretically much less difficult
than the mesh division.

Rao et al. [34] take a circular domain as an example and
point out that when the point cloud is used to discretize the
computing domain, themethod of equally dividing the radius
and argument can be quickly used to form a concentric point
cloud, and the workload of meshing the computing domain is
obviously larger than that of generating the concentric point
cloud. Even if the mesh is constructed on the basis of this
point cloud, it is difficult to give a criterion for which nodes
in the point cloud form themesh to determine the high-quality
mesh generation. This shows that the discretization of point
cloud to calculation domain can be more arbitrary and sim-
pler than gridding the calculation domain, which is precisely
because the generation of the point cloud is limited by little
topology.

In terms of point cloud generationmethods for calculation
domains, Milewski [35] showed that Liszka-type node gen-
erators, which were proposed by Liszka [31], can be used
to generate point clouds that can be adequately adapted to
irregular computational domains. Michel et al. [23] applied
a meshfree advancing front technique [32] to generate the
initial point cloud. Löhner andOnate [37] developed an algo-
rithm to construct boundary-conforming, isotropic clouds of
points with variable density in space, which is more effi-
cient than mesh-generation methods to adaptively discretize
the computational domain. Rao et al. [38] gave an algorithm
for point cloud generation for computational domains with
complex geometrical entities in lower one dimension, such as
complex fracture networks in fractured reservoirs, showing
that point cloud discretization of computational domains can
effectively solve the gridding challenge of matching grids
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for fracture intersections and narrow computational domains
between fractures, avoiding the problem of generating very
fine grids in these locally narrow areas due to the length
of each side of the grid being required to differ significantly.
Moreover, the algorithm for generating grid nodes in the grid
division method can also be used directly to generate point
clouds of the computational domain; for example, Cartesian
collocation points or mesh vertices of the triangulation can
be used as point clouds of the computational domain. Over-
all, the generation of point clouds is less difficult than mesh
division, and the generation methods are more diverse and
easier to carry out an adaptive analysis. The above analysis
demonstrates the advantages of meshless methods such as
GFDMovermesh-based numericalmethods in terms of com-
putational domain discretization, and this was an important
original motivation for the rapid development of meshless
methods in the 1990s.

2.3 Upwind GFDM based discrete schemes

After the calculation domain has been discretized by a point
cloud, the nodes in the point cloud are denoted as node i,
i � 1, 2, 3, · · · , nt , in which nt is the total number of nodes.
Define the set composed of the sequence numbers of the
nodes in the influence domain of node i except the node i
itself (i.e., the nodes participating in the construction of the
generalized difference operator of node i except the node i
itself) as the index set of node i, which is denoted as �i . If
the influence domain of node i contains ni nodes except node
i, then �i has ni elements. The nodes in �i and the node i
itself together form the local point cloud of node i.

For node i, according to Eq. (13) in GFDM, it is obtained
that:

∂2 p

∂x2
�

∑
j∈�i

mi
3 j

(
p j − pi

)
,

∂2 p

∂y2
�

∑
j∈�i

mi
4 j

(
p j − pi

)

(14)

where the superscript i of mi
3 j indicates that node i is the

considered node.
Then, the pressure diffusion term is approximated as fol-

lows:

∇ · (∇ p) � ∂2 p

∂x2
+

∂2 p

∂y2
≈

∑
j∈�i

[(
mi

3 j + mi
4 j

)(
p j − pi

)]

(15)

For the actual underground formation, permeability k is
often difficult to express as an explicit function about coordi-
nates, but only knows the permeability values at some nodes;
therefore, it is difficult for us to take k as a function and extract
it from the diffusion term. Therefore, this paper uses the har-

monic average scheme of the nodal permeability values to
calculate the permeability between node i and node j, and
the arithmetic average scheme of the nodal viscosity values
is used to characterize the fluid viscosity between node i and
node j, which are commonly used in FDM/FVM-based reser-
voir simulator (i.e., the numerical simulator about porous
flow problems) [38–41]. The treatments of the heterogeneity
of physical parameters are beneficial to the easier application
of GFDM in practical porous flow problems, because it is
generally difficult to obtain the function expression of phys-
ical parameters with good smoothness in practical problems,
especially the related physical parameters of underground
reservoirs. The numerical examples in Sect. 3.2 will prove
that such treatment can achieve sufficient calculation accu-
racy. Therefore, it is obtained that:

∇ ·
(

k

μ(T )
∇ p

)
�

∑
j∈�i

[
ki j
μi j

(
mi

3 j + mi
4 j

)(
p j − pi

)]

(16)

where ki j � 2ki k j
ki+k j

, μi j � μ(Ti )+μ(Tj)
2 .

For the heat convection–diffusion equation, the heat con-
duction term in Eq. (2) can adopt a discrete scheme similar
to Eq. (15) and obtain:

∇(λc(p, T )∇T ) �
∑
j∈�i

[
λc,i j

(
mi

3 j + mi
4 j

)(
Tj − Ti

)]

(17)

where λc,i j � 2λc,iλc, j
λc,i+λc, j

, λc,i � λc(pi , Ti ), λc, j � λc(
p j , Tj

)
.

For the heat convection term in Eq. (2), because the con-
vection term has asymmetry, its discretization needs to take
the upwind scheme. In a meshless method, the upstream
effect is generally constructed by modifying the influence
domain; however, this method is not conducive to taking a
stable upwind effect with a complex flow field and the con-
struction of a general framework; therefore, this paper aims
to construct the upstream scheme in GFDM for porous flow
problems without modifying the influence domain.

In the porous flow problem, the velocity in porous media
satisfies Darcy’s law in Eq. (3), then in the porous flow prob-

lem, the heat convection term −ρlCl∇ ·
(

⇀
v T

)
(it should

be −∇ ·
(
ρlCl

⇀
v T

)
, but considering that ρl and Cl can be

regarded as constant, so for the convenience of discussion and
analysis, we move them to the outside of the Hamiltonian)
in Eq. (2) can be rewritten as Eq. (18) in Eq. (5).

−ρlCl∇ ·
(
T

⇀
v
)

� αρlCl∇
(
T
k

μ
∇ p

)
(18)

123



538 Computational Particle Mechanics (2023) 10:533–554

Thus obtain a second-order derivative form similar to
the diffusion term. The FDM/FVM-based reservoir simula-
tor generally uses the first-order single-point upwind (SPU)
scheme to discretize the convection term. Taking the FDM
as an example, if the difference scheme of pressure diffusion

term ∇
(
k
μ
∇ p

)
is:

∇
(
k

μ
∇ p

)
�

∑
j

Di j
(
p j − pi

)
(19)

where Di j is the coefficient in the FDM-based difference
expression.

Then Di j
(
p j − pi

)
nearly denote (not rigorously) the

seepage velocity (information) of the fluid between grid i and
grid j, and the difference scheme of convection term αρlCl∇(
T k

μ
∇ p

)
is discretized as:

αρlCl∇
(
T
k

μ
∇ p

)
� αρlCl

∑
j

Ti j Di j
(
p j − pi

)
(20)

where if node i is the upstream of node j, that is, if pi > p j ,
the SPU scheme obtains Ti j � Ti , otherwise, Ti j � Tj , then,

αρlClTi j Di j
(
p j − pi

) � αρlClTi Di j
(
p j − pi

)
(21)

roughly represents the heat loss in grid i caused by the
flow of upstream grid i to downstream grid j. It can be seen
that for the convection term in the porous flow problem con-
trolled by the pressure gradient, the difference expression of
the pressure diffusion term in Eq. (19) can be obtained first,
which contains the seepage velocity information between the
central grid and the adjacent grid, and then the SPU scheme
is adopted for the physical quantities related to convection
transfer (such as the temperature T in the thermal convection
term) to realize the discretization of the convection term.

The SPU scheme in FDM/FVM-based reservoir simulator
provides a great inspiration for the discretization of the con-
vection term when the meshless method is applied to the
porous flow problems, because it is simple to obtain the
difference scheme of the pressure diffusion term by using
the meshless method, and it seems that the SPU scheme in
Eq. (21) can also be directly applied to the meshless differ-
ence scheme by replacing the pressure of grid i and grid j
with the pressure of node i and node j. The work done in
this paper is to verify whether the SPG scheme in GFDM
can achieve good calculation performance for mass and heat
transfer in porous media, so as to form an upwind GFDM
used for porous flow problems which can achieve a stable
upwind effect.

Therefore, the SPU scheme is directly introduced to
GFDM to form an upwind GFDM. Inspired by this idea,
because the difference scheme of pressure diffusion term

∇
(
k
μ
∇ p

)
in GFDM is Eq. (16), the discrete scheme in

Eq. (22) of the heat convection term with the upwind scheme
of temperature in Eq. (23) is adopted. In Sect. 2.5, we will
demonstrate that when dealing with the one-dimensional
constant-coefficient heat convection–diffusion equation, the
discretization of the heat convection term by the upwind
GFDM can be reduced to the discretization of the convection
term by FDM with first-order upwind scheme. The compu-
tational performance of the upwind GFDM will be verified
and analyzed by numerical examples in Sect. 3.

∇
(

ρClT
k

μ
∇ p

)
�

∑
j∈�i

[
ρClTi j

ki j
μi j

(
mi

3 j + mi
4 j

)(
p j − pi

)]

(22)

Ti j �
{
Tj if p j ≥ pi
Ti if p j < pi

(23)

For the convection term expressed by the first-order spatial
derivative in the hyperbolic shallow water equation, if it can
be rewritten into the form expressed by the second-order spa-
tial derivative similar to the diffusion term in porous-media
seepage mechanics, it may also be solved by the upwind
GFDM given in this paper. If not, the developed upwind
GFDMmay not be applicable to the high-performance solu-
tion of the shallow water equation. However, this method
should be suitable for solving various flow problems in
porous media, which is also the original motivation of this
paper, and its goodperformance in hyperbolic two-phaseflow
in porous media has been confirmed [34].

Then, a simple sequential coupled scheme is adopted, that
is, based on the temperature values of n time steps, implicitly
calculate the pressure values of n + 1 time step, and then
calculate the temperature values of n + 1 time step.

Therefore, the discrete scheme of the right side of the
pressure equation is as follows:

∂φ (p, T )

∂t
� ∂φ (p, T n)

∂t

�
[
1 +

1 − φ0

φ0
CTemp

(
T n − T0

)]
Ct

∂p

∂t

�
[
1 +

1 − φ0

φ0
CTemp

(
T n − T0

)]
Ct

pn+1 − pn

	t
(24)

where	t is the time interval between the n time step and the
n + 1 time step.

Then the discrete scheme of Eq. (4) is obtained as follows:

(25)

α
∑
j ∈�i

ki j
μi j

[(
mi

3 j + mi
4 j

) (
pn+1j − pn+1i

)]
+ qn+1i

�
[
1+

1 − φ0

φ0
CTemp

(
T n
i − T0

)]
Ct

pn+1i − pni
	t
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When the source or sink term is zero, the linear equation
is sorted as follows:

α
∑
j∈�i

ki j
μn
i j

(
mi

3 j + mi
4 j

)
pn+1j

−
⎛
⎝α

∑
j∈�i

ki j
μn
i j

(
mi

3 j + mi
4 j

)
+

1

	t

[
1 +

1 − φ0

φ0
CTemp

(
T n
i − T0

)]
⎞
⎠Ct p

n+1
i

+ qn+1i � − 1

	t

[
1 +

1 − φ0

φ0
CTemp

(
T n
i − T0

)]
Ct p

n
i (26)

where μn
i j � μ(T n

i )+μ
(
T n
j

)

2 .
By synthesizing the discrete pressure diffusion equation at

each node, combined with the boundary condition (the treat-
ments of boundary condition will be illustrated in Sect. 2.4),
global linear equations can be obtained to solve nodal pres-
sure values at n + 1 time step. Then, the discrete equations
of Eq. (5) about temperature distribution are obtained:

β
∑
j∈�i

[
λc,i j

(
pn+1, T n

)(
mi

3 j + mi
4 j

)(
T n+1
j − T n+1

i

)]

+ α
∑
j∈�i

[
ρlClT

n+1
i j

ki j
μn
i j

(
mi

3 j + mi
4 j

)(
pn+1j − pn+1i

)]

+ qn+1H �
[(
1 − φn+1

i

)
ρrCr + φn+1

i ρlCl
]
T n+1
i − [(

1 − φn
i

)
ρrCr + φn

i ρlCl
]
T n
i

	t
(27)

where φn+1
i � φ

(
pn+1i , T n

i

)
, φn

i � φ
(
pni , T

n
i

)
, μn

i j �
μ(T n

i )+μ
(
T n
j

)

2 , Ti j�
{
Tj i f p j ≥ pi

Ti i f p j < pi
.

Due to the sequential coupling scheme, the time step will
be relatively small. Therefore, in the actual calculation, T n+1

i j
in the discretization of the convection term in Eq. (27) can
also be taken as T n

i j .

2.4 Treatment of boundary conditions

As can be seen in Sect. 2.2, GFDM employs node coordinate
information in the node influence domain in conjunctionwith
Taylor expansion to obtain the generalized difference oper-
ator that minimizes the weighted truncation errors of Taylor
expansion, i.e., the weighted least square method commonly
used to obtain the spatial derivatives of unknown functions
in various meshless methods. As a result, the quality of the
node distribution participating in the construction of the gen-
eralized finite difference expression of spatial derivatives at
the considered node significantly affects the accuracy of the
generalized finite difference approximation.

Because there are no other nodes outside the boundary,
if no virtual nodes are added, the node distribution quality
in the boundary-node influence domain will be low, i.e., the
center of gravity of the local point cloud of the boundary

node will deviate greatly from the location of the considered
boundary node. The accuracy of the generalized finite differ-
ence approximation in Eq. (13) will be reduced at this point.
As a result, in GFDM, some studies [34, 35] have identified
that a virtual node can be introduced outside the boundary
where the boundary node is located to increase the node-
distribution quality, and as a result, improve the accuracy of
generalized finite difference expressions.

As shown in Fig. 1a, for the boundary node (marked in
red solid points), the nodes (marked in black solid points) in
the influence domain (marked in gray area) of the boundary
node are all on one side of the tangent line (denoted by the red
dotted line) at this boundary node, so the GFDM approxima-
tion accuracy of spatial derivatives at this boundary node by
using these nodes is low, resulting in low overall calculation
accuracy. Therefore, the calculation accuracy of themeshless
method is sensitive to derivative boundary conditions (such

as Neuman boundary condition and Rudin boundary condi-
tion). As shown in Fig. 1b, the accuracy of generalized finite
difference operators at the non-corner boundary node meet-
ing derivative boundary conditions is improved by adding
the blue virtual node on the other side of the tangent to make
the center of gravity of the local point cloud near to the con-
sidered boundary node. That is to say, the index set of the
boundary node will be extended by the added virtual nodes.

For the corner boundary node with derivative boundary
conditions where there is no tangent, the adding of the virtual
nodes needs to be divided into two cases:

Case 1: This case is that the corner node is the intersection
of two boundaries, that is, the corner node has two bound-
ary conditions. In this case, the two boundary conditions are
generally: (I) a first-type boundary condition and a derivative
boundary condition; (II) two derivative boundary conditions;
for the corner node at this case, the number of added virtual
nodes will be equal to the number of derivative boundary
conditions of the corner node, and the direction of adding
virtual nodes is the normal direction of the boundary on the
side where the corner has derivative boundary conditions. As
shown in Fig. 1c, the left boundary of the red corner node is a
derivative boundary condition, and the right boundary is the
first-type boundary condition, so you only need to add a blue
virtual point along the normal direction of the left boundary.
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Fig. 1 Sketch of adding virtual nodes for boundary nodes with derivative boundary conditions

This type of boundary node exists in the numerical examples
in Sect. 3, and the method of adding virtual nodes shown in
the point cloud discrete diagrams of the corresponding calcu-
lation domains is the processing method described here. As
shown in Fig. 1d, the left and right boundaries of the red cor-
ner node are two different derivative boundary conditions,
so two blue virtual nodes shall be added along the normal
direction of the left and right boundaries, respectively. The
discrete schemes of the two derivative boundary conditions at
the boundary node are the equations of the two virtual nodes,
respectively, ensuring that the global equations are closed.

Case 2: This case is that the boundaries on both sides of
the corner node are the same boundary and share the same
derivative boundary condition. In this case, the virtual node is
added to the angular bisector of the included angle at the cor-
ner. As shown in Fig. 1e, the red corner node is on a boundary,
and then the blue virtual node is added to the angular bisector
represented by the dotted line. However, this case should be
rare, because derivative boundary conditions generally con-
tain normal derivatives, but there is no normal vector at the
corner node.

Next, this section takes pressure calculation as an example
to illustrate the specific processing details of the derivative
boundary conditions.

Assume that there are n1 internal nodes in the computing
domain, n2 nodes meeting Dirichlet boundary conditions,
and n3 nodesmeeting derivative boundary conditions. For the
convenience of depiction, assume here that the expressions of
the Dirichlet boundary condition and the derivative boundary
condition are:

p|A � p1,

(
hp + l

∂p

∂x

)
|B � q (28)

where A and B are the nodes that meet the boundary condi-
tions of the first type and the derivative type respectively, h,
l, and q are coefficients.

For node A that meets the Dirichlet boundary condition,
if the sequence number of the node A in all nodes is a, the
equation corresponding to the boundary condition is:

pn+1a � p1 (29)

For node B that meets derivative boundary conditions, set
the serial number of node B in all nodes is b, and add the
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virtual node corresponding to node B, denoted as node C,
because each derivative boundary condition node needs to
add a corresponding virtual node (of course, if it is a virtual
point shown in Fig. 1d, two virtual nodes need to be added
accordingly. For the convenience of discussion, it is assumed
that there is no such virtual node here), the number of nodes
in the entire computing domain is n1 + n2 + n3 + n3, if the
serial number of the virtual node C in all nodes is c, the
equation at node B is no longer the equation corresponding
to the boundary condition, but Eq. (30) which is the same as
Eq. (25) of an inner node, and the equation corresponding to
the boundary condition is used as the equation corresponding
to virtual node C. They are:

The discrete equation at node B is

(30)

α
∑
j ∈�b

[
kbj
μbj

(
mb

3 j + mb
4 j

) (
pn+1j − pn+1b

)]
+ qn+1b

�
[
1 − 1 − φ0

φ0
CTemp

(
T n
b − T0

)]
Ct

pn+1b − pnb
	t

The discrete equation at node C is

(
hp + l

∂p

∂x

)
|B � hpb + l

∑
j∈�b

m1 j p j � q (31)

where nb is the number of nodes in the influence domain of
node B and j is the serial number of a node in the influence
domain of node B. Since virtual node C is in the influence
domain of node B, c ∈ �b holds.

Finally, the linear equations composed of n1 + n2 + n3
+ n3 equations can be obtained in the entire computational
domain, including n1 Eq. (25), n2 Eq. (29), n3 Eq. (30), and n3
Eq. (31), thus solving the linear equations in a closed manner
to obtain the pressure values of all nodes (including n1 inner
nodes, n2 + n3 boundary nodes, and n3 virtual nodes) at n + 1
time step. Combined with Eq. (27) and boundary conditions
about temperature (using the same treatment of boundary
conditions in this section), calculate the temperature values
of all nodes at the n + 1 time step. Then continue to solve the
pressure and temperature distributions at n + 2 time step.

2.5 Application in the convection-diffusion equation
and analysis of the dissipation error

Different from the diffusion equation, an asymmetric con-
vection term exists in the convection–diffusion equation.
When the convection effect is relatively strong, theoreti-
cally, it is necessary to use the upwind treatment to discretize
the convection term to eliminate the oscillation of the solu-
tion caused by the asymmetry of the convection term. As
described in the Introduction section, at present, the partial
influence domain or the upwind influence domain is mostly

used in meshless methods to handle convection-dominated
problems. However, due to the possible complexity and
changes of the underground flow field, it may be difficult
to obtain a stable upwind solution and a general-purpose
numerical framework by modifying the influence domain.
The upwind GFDM developed in this paper attempts to
give a new upwind processing method in the meshless
framework. This section will first introduce how to apply
the upwind GFDM to conduct a meshless solution of the
convection–diffusion equation in theory and then take the
one-dimensional constant-coefficient convection–diffusion
equation as an example to illustrate that the discretization
of the upwind GFDM for the thermal convection term can be
degenerated to the discretization of the convection term by
FDM with first-order upwind scheme.

The numerical examples in Sects. 3.1, 3.2, and 3.3 demon-
strate that the upwind GFDM can realize the effective
meshless calculation of single-phase heat and mass transfer
problems. Therefore, by constructing a heat and mass trans-
fer problem equivalent to the studied convection-diffusion
equation and solving it via the upwind GFDM, the stable
meshless solution of the convection-diffusion equation can
be obtained.

Assuming that the flow velocity field V � (
vx , vy

)
has

been calculated, if it is a steady velocity field, the temperature
distribution of the flow field is characterized by the following
convection-diffusion equation:

∂

∂x

(
λx

∂T

∂x

)
+

∂

∂y

(
λy

∂T

∂y

)
− vx

∂T

∂x
− vy

∂T

∂y
� 0 (32)

where λx and λy are heat conduction coefficients in x and y
directions and C is the heat capacity.

If it is an unsteady velocity field, the temperature profile
of the flow field meets Eq. (33), which is the general form of
the convection-diffusion equation.

∂

∂x

(
λx

∂T

∂x

)
+

∂

∂y

(
λy

∂T

∂y

)
− vx

∂T

∂x
− vy

∂T

∂y
� C

∂T

∂t
(33)

Extend the convection term in Eq. (33) to a second-order
derivative term with pressure, that is:

−vx
∂T

∂x
− vy

∂T

∂y
� −∂T vx

∂x
− ∂T vy

∂y
� ∇ ·

(
T
k

μ
∇ p

)

(34)

Thus, the convection–diffusion equation in Eq. (34) is
extended to the heat andmass transfer coupling problem gov-
erned by Eq. (35) and Eq. (36).

∂

∂x

(
λx

∂T

∂x

)
+

∂

∂y

(
λy

∂T

∂y

)
+ ∇ ·

(
T
k

μ
∇ p

)
� C

∂T

∂t
(35)
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Fig. 2 a brief sketch of a local point cloud in the influence domain of
node 0

− k

μ
∇ p � (

vx , vy
)

(36)

Therefore, when node i is the considered node, the discrete
scheme of the convection term can adopt the same discrete
scheme as Eq. (22), that is:

−vx
∂T

∂x
− vy

∂T

∂y
� ∇ ·

(
T
k

μ
∇ p

)

�
∑
j∈�i

[
Ti j

ki j
μi j

(
m3 j + m4 j

) (
p j − pi

)]

(37)

The nodal temperature values can be calculated by using
the sequential coupling or fully-implicit solution of Eqs. (35)

and (36), that is, the convection-diffusion equation inEq. (34)
is solved by the upwind GFDM, and the good accuracy and
convergence will be illustrated in the numerical example in
Sect. 3.1.

Next, assuming we are studying a 1D problem with a
constant flow velocity in the x-direction, the flow direc-
tion is positive along the x-axis, i.e.,vx > 0, vy � 0
and homogeneous physical parameters, like the numerical
example in Sect. 3.1. A Cartesian point cloud is used to
discretize the rectangular domain. Figure 2 shows the local
point cloud of node 0 in the Cartesian point cloud, i.e.,

�0 � {1, 2, 3, 4, 5, 6, 7, 8}. May as well suppose	x � 	y,
rm � 1.6	x , then

−vx
∂T

∂x
− vy

∂T

∂y
� −vx

∂T

∂x
(38)

T01 � T05 � T07 � T1 � T5 � T7, T02 � T06 � T08 �
T2 � T6 � T8, T0 � T3 � T4.

where vx is a constant.
p1 � p5 � p7, p2 � p6 � p8, p0 � p3 � p4,

(39)

− (p1 − p0) � − (p5 − p0) � − (p7 − p0)

� (p2 − p0) � (p6 − p0) � (p8 − p0)

And

(40)

vx � − k

μ

p1 − p0
	x

� − k

μ

p5 − p0
	x

� − k

μ

p7 − p0
	x

� k

μ

p2 − p0
	x

� k

μ

p6 − p0
	x

� k

μ

p8 − p0
	x

By introducing Eq. (38), Eq. (39), and Eq. (40) into
Eq. (37), we can obtain:

− vx
∂T

∂x
− vy

∂T

∂y
� ∇ ·

(
T
k

μ
∇ p

)

�
∑
j∈�i

[
Ti j

ki j
μi j

(
m3 j + m4 j

)(
p j − pi

)]

� k

μ
T1[(m31 + m41) + (m35 + m45) + (m37 + m47)](p1 − p0)

− k

μ
T2[(m32 + m42) + (m36 + m46) + (m38 + m48)](p0 − p2)

(41)

According to Eq. (12), it can be calculated that:

(m31,m32,m33,m34,m35,m36,m37,m38) �
⎛
⎜⎜⎝

9.6308 × 10−1

	x2
,
9.6308 × 10−1

	x2
,−3.6917 × 10−2

	x2
,−3.6917 × 10−2

	x2
,

1.8459 × 10−2

	x2
,
1.8459 × 10−2

	x2
,
1.8459 × 10−2

	x2
,
1.8459 × 10−2

	x2

⎞
⎟⎟⎠

(42)

Then,

[(m31 + m41) + (m35 + m45) + (m37 + m47)]

� [(m32 + m42) + (m36 + m46) + (m38 + m48)] � 1

	x2
(43)

Bring Eq. (43) into Eq. (41), it is obtained that:

(44)

−vx
∂T

∂x
− vy

∂T

∂y
� k

μ
T1

(p1 − p0)

	x2
− k

μ
T0
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	x2

� −vx
T0 − T1

	x
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It can be seen that the discrete scheme of the thermal con-
vection term in Eq. (44) derived from the upwind GFDM
is exactly the first-order upwind scheme of the convec-
tion term in the traditional FDM, which suggests that the
upwind GFDM developed in this paper can be regarded as
an extension of the traditional upwind FDM in the meshless
framework.

Next, we can also analyze the dissipation error of the
upwind GFDM and its property. When rm � 1.6�x the point
cloud is as described in Fig. 2(a). As mentioned earlier,
the discrete scheme of the convection term is the first-order
upwind scheme in Eq. (44) According to Taylor expansion,
it is obtained that:

T1 � T0 − 	x
∂T

∂x
|0+	x2

2

∂2T

∂x2
|0+O(	x3) (45)

Then, it is obtained that

−vx
∂T

∂x
|0� −vx

To − T1
	x

− vx
	x

2

∂2T

∂x2
|0+O(	x2) (46)

Thus, the dissipation error of Eq. (44) exists and is:

|err1 | � 	x

2

∣∣∣∣vx
∂2T

∂x2
|0

∣∣∣∣ (47)

As shown in Fig. 2(b), when rm increases to 2.9�x without
specific calculation, it is expected to obtain a generalized
difference expression similar to Eq. (44) that is,

(
−vx

∂T

∂x
− vy

∂T

∂x

)
|0� −vx

[
a
T0 − T1

	x
+ (1 − a)

T0 − T9
2	x

]

(48)

where 0 < a <1.
According to Taylor expansion, it is obtained that:

T9 � T0 − 2	x
∂T

∂x
| 0 + 2	x2

∂2T

∂x2
| 0 + O(	x3) (49)

Then it can be obtained that the dissipation error of Eq. (48)
becomes:

(50)

|err2| �
∣∣∣∣avx

	x

2

∂2T

∂x2
|0 + (1 − a)vx	x

∂2T

∂x2
|0

∣∣∣∣

�
∣∣∣∣vx

	x

2

∂2T

∂x2
|0 + (1 − a)vx

	x

2

∂2T

∂x2
|0

∣∣∣∣

� |err1| + (1 − a)

∣∣∣∣vx
	x

2

∂2T

∂x2
|0

∣∣∣∣ > |err1|

Similarly, as the radius of the influence domain continues to
increase, the dissipation error will continue to increase. The
numerical examples in Section 3 will also verify this result.

Table 1 Values of physical properties of the numerical case

Parameters Values

Permeability k 500 mD

Heat conduction coefficient of fluid λl 0.2 J/s/m/°C

Heat conduction coefficient of rock λr 3 J/s/m/°C

Heat capacity of fluid Cl 4.2×103 J/KG/°C

Heat capacity of rock Cr 200 J/KG/°C

Fluid density ρl 1000 kg/m3

Rock density ρr 2700 kg/m3

Initial porosity φ0 0.3

Compressibility coefficient Ct 0 MPa−1

Thermal expansion coefficient CTemp 0 MPa−1

Fluid viscosity at the initial temperature μ(T0) 5 mPa·s

Viscosity-temperature coefficient αT 0 °C−1

3 Numerical examples

In this section, three numerical examples are designed to
test the computational performance and roughly conduct the
analysis of error sources of the upwind GFDM, which ver-
ify that the method can realize effective calculation of the
coupling heat and mass transfer problems.

3.1 A case with a rectangular formation and basic
error analysis

In this example, a regular rectangular domain ([0, 300 m]×
[0, 100m]) in Fig. 3a is selected. The values of relevant phys-
ical parameters are shown in Table 1. The compressibility
coefficient, thermal expansion coefficient, and viscosity-
temperature coefficient are all 0. The upper and lower
boundaries are closed, and the left and right boundaries
have constant pressure and temperature. Equations (51) and
(52) show the specific equations of the physical problem
and boundary conditions, thus constructing a stable flow
field independent of temperature distribution, to analyze the
computational performance of the upwind GFDM to the
convection-dominated heat transfer.

(51)T1 � T0 − 	x
∂T

∂x
| 0 + 	x2

2

∂2T

∂x2
| 0 + O(	x3)

−vx
∂T

∂x
| 0 � −vx

T0 − T1

	x
− vx

	x

2

∂2T

∂2x
| 0 + O(	x2)

(52)

The analytical solution of Eq. (45) about pressure is: p �
25 − x

/
20.

|err1| � 	x

2

∣∣∣∣vx
∂2T

∂x2
|0
∣∣∣∣ (53)

123



544 Computational Particle Mechanics (2023) 10:533–554

Fig. 3 Sketches of the calculation domain and the point cloud

(
−vx

∂T

∂x
−vy

∂T

∂x

)
|0 � −vx

[
a
T0 − T1

	x
+(1−a)

T0 − T9
2	x

]

(54)

Since Eq. (54) is essentially a 1D heat convection–diffu-
sion problem, this section compares the calculation results of
the upwind GFDM, 1D upwind FDM, the reference solution
from fine-mesh upwind FDM to test the computational per-
formance of the upwind GFDM and conduct error analysis.

First, the Cartesian point clouds when 	x � 	y � 5m
and 	x � 	y � 2m shown in Fig. 3b and c is used to dis-
cretize the rectangular domain. Suppose the radius of the
node influence domain as 1.6	x , 2.6	x , 3.6	x , 4.6	x ,
5.6	x , 6.6	x . Taking the time step 	t � 0.5d, the com-
parisons of the upwind GFDM results, FDM results, and
reference results when	x � 5m and	x � 2m are shown in
Fig. 4. Figure 5 shows some calculated pressure and temper-
ature distributions when 	x � 5m, 	x � 2m, and different
multiples of the radius of the node influence domain to the
node spacing. Figure 6 shows the L2 relative error versus the
multiple of the radius of node influence domain to node spac-
ing when 	x � 2m and 	x � 5m. Figure 7 shows the L2
relative error of GFDM and traditional FDM versus the node
spacing when 	x � 5m, rm � 1.6	x , and rm � 3.6	x .

As seen in Fig. 5h and i, the temperature transfer leading
edge in the GFDM calculation results gradually becomes
curvedwith the increase in the radius of the influence domain.
As seen in Fig. 4, Fig. 5h, i and Fig. 7, when rm � 1.6	x , the
calculation results, calculation accuracy, and convergence of
GFDM are almost consistent with those of FDM. As seen
in Figs. 4 and 6, with the increase in the radius of the node
influence domain, the range of temperature transfer leading
edge in GFDM calculation results becomes larger, and the
corresponding calculation error becomes larger. However,

even when rm is large and equal to 3.6	x , Fig. 7 shows that
the upwind GFDM has good convergence. When the node
spacing is 1 m, the calculation error of the upwind GFDM
with rm � 3.6	x is almost the same as that of the upwind
GFDM with rm � 1.6	x . These comparisons show that the
upwind GFDM has good computational performance.

We analyze that the error sources of the upwind GFDM
calculation results are mainly reflected in the following two
points:

Type I error: In the study of two-phase flow in porous
media based on the upwind GFDM, Rao et al. [34] pointed
out that the quality of node distribution in the node influ-
ence domain (which can also be understood as the deviation
degree between the center of gravity of local point cloud in
the node influence domain and the node) has a great impact on
the approximation accuracy of generalized difference expres-
sions about spatial derivatives, and the larger the radius of the
influence domain, the more uneven the node distribution in
the influence domain of boundary nodes and nodes close to
the boundary, that is, themore the center of gravity of the node
in the influence domain of the boundary node deviates from
the boundary node, the lower the approximation accuracy of
generalized difference expressions of spatial derivatives at
boundary nodes and nodes close to the boundary. The result
of this type of error reflected in this example is to bend the
temperature leading edge that should be a straight line in
Fig. 5 h and i. For specific details, readers can refer to Rao
et al. [34].

this type of error is the dissipation error analyzed in Sect.
2.5.We know that the dissipation error will widen the leading
edge in theory. Taking Fig. 8a of Cartesian collocation as an
example, when the radius of the influence domain of node 1
is greater than twice the node spacing, the approximation of
heat convection between node 1 and node 3 in the discrete
scheme of heat convection term in. Eq. (55) is:
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Fig. 4 Comparison of calculation results at section y � 50 m from the upwind GFDM and the upwind FDM when 	x � 2m and 	x � 5m

T9 � T0 − 2	x
∂T

∂x
| 0 + 2	x

∂2T

∂x2
| 0 + O(	x3) (55)

Although node 1 is also upstream of node 3, node 2 is
closer upstream from node 3. Heat convection is transmitted
through fluid flow. The real fluid flow is from node 1 to node
2 and then from node 2 to node 3. Therefore, since the tem-
perature of node 1 is less than that of node 2, taking node 1
as the upstream temperature in the convection terms of node
1 and node 3 in Eq. (55) accelerates the decline of temper-
ature at node 3. When the most leading edge of the thermal
convection reaches node 1, due to the mass transfer between
node 1 and node 3, the temperature at node 3 will decrease
no matter how small the next time step is, resulting in the
range of the temperature leading edge being larger than the
actual range. As shown in Figs. 4 and 5, the range of the tem-
perature transfer front increases with the increase in the node
influence domain. Under the Cartesian point cloud shown in
Fig. 6 and the non-Cartesian point cloud shown in Sects. 3.2
and 3.3, the L2 relative error increases with the increase in
the radius of the node influence domain, which verifies our
analysis of the existence of type II error (i.e. the dissipation
error). Imagine a more extreme case. As shown in Fig. 8b,
if the influence domain of the left-boundary node 4 includes
node 5 near the right boundary, the temperature of node 5
will decrease even if the next time step is much small, which
is unphysical. The existence of type II error indicates that the
radius of the influence domain cannot be set too large when
applying the upwind GFDM.

3.2 A case with a polygonal heterogeneous
formation

To verify the computational performance of the upwind
GFDM when the formation physical parameter is hetero-
geneous and the domain boundary is irregular, as shown in

Table 2 Values of physical properties of the numerical case

Parameters Values

Heat conduction coefficient of fluid λl 0.2 J/s/m/°C

Heat conduction coefficient of rock λr 3 J/s/m/°C

Heat capacity of fluid Cl 4.2×103 J/KG/°C

Heat capacity of rock Cr 200 J/KG/°C

Fluid density ρl 1000 kg/m3

Rock density ρr 2700 kg/m3

Initial porosity φ0 0.3

Coefficient of compressibility Ct 1×10–5 MPa−1

Coefficient of thermal expansion CTemp 1×10–5 MPa−1

Fluid viscosity at the initial temperature μ(T0) 5 mPa·s

Viscosity-temperature coefficient αT 0.05 °C−1

Fig. 9a, the example in this section constructs a heteroge-
neous formation permeability distribution characterized by
Eq. (50) and a polygonal calculation domain. Equations (51)
and (52) show the boundary conditions and initial condi-
tions regarding pressure and temperature, respectively. The
left boundary and the right boundary are Dirichlet boundary
conditions, and the upper and lower boundaries are closed.
The values of relevant physical parameters are shown inTable
2.

Figure 9 shows the fine triangular mesh for FEM, rough
triangular mesh for FEM, and the point cloud for GFDM
calculation. In this example, the FEM solution based on the
fine triangular mesh shown in Fig. 9b is used as the reference
solution, and the FEM solution based on the rough triangu-
lar mesh in Fig. 9c and the upwind GFDM solution based
on the point cloud in Fig. 9d are calculated, respectively. In
addition, in the calculation process of the upwind GFDM,
since boundaries �3 and �4 are the second type of boundary
conditions, as described in Sect. 2.4, Fig. 9(d) adds a blue
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Fig. 5 Comparisons of calculated pressure and temperature profiles by the upwind GFDM and the upwind FDM

virtual node 6 m perpendicular to the boundary direction at
each blue boundary node to handle the derivative boundary
conditions.

|err2 � |
∣∣∣∣avx
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∂2T

∂x2
|0

∣∣∣∣

�
∣∣∣∣vx

	x

2

∂2T

∂x2
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	x

2

∂2T

∂x2
|0

∣∣∣∣

� |err‘ | + (1 − a)

∣∣∣∣vx
	x

2

∂2T

∂x2
|0

∣∣∣∣ > |err1 | (56)

p
∣∣
�1 � 15MPa, p

∣∣
�2 � 10MPa, p0 � 10MPa,

∂p

∂y

∣∣
�3

� 0MPa/m,
∂p

∂y
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�4 � 0MPa/m (57)

(58)

T
∣∣
�1 � 40 ◦C, T

∣∣
�2 � 60 ◦C, T0 � 60 ◦C,

∂T

∂y

∣∣
�3

� 0 ◦C/m,
∂T

∂y

∣∣
�4 � 0 ◦C/m

Figure 10 shows the FEM results and the calculated pres-
sure and oil saturation distribution at different influence
domain radii (including 15, 40, and 65 m). Figure 11 com-
pares the L2 relative errors under different influence domain
radii. As seen in Figa. 10 and 11, (i) for calculated pres-
sure profiles, when rm ≤ 30m, the L2 error of the upwind
GFDM is lower than that of FEM. (ii) for calculated tem-
perature profiles, the larger the influence domain radius is,
the larger the type II error is, and the lower the calcula-

123



Computational Particle Mechanics (2023) 10:533–554 547

Fig. 6 L2 relative error vs. the
multiple of the radius of node
influence domain to node
spacing when 	x � 2m and
	x � 5m

Fig. 7 L2 relative error vs. node
spacing when 	x � 5m,
rm � 1.6	x , and rm � 3.6	x

Fig. 8 sketches of some cases for the analysis of type II error
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Fig. 9 Sketches of geometric characterizations of the calculation domain

tion accuracy of temperature is. But when rm � 15m, the
calculation result of the upwind GFDM for temperature
distribution is very close to that of FEM, and the relative
error of the upwind GFDM for temperature calculation is
0.612%, which is just slightly larger than 0.460% of FEM.
It is demonstrated that the upwind GFDM can realize the
coupling calculation of mass and heat transfer in the het-
erogeneous formation, and the calculation error is mainly
reflected in the convection-dominated temperature profiles
which verifies the error analysis in Sect. 3.1. It also explains
that the treatment of the heterogeneity of physical parame-
ters in Eq. (15) is reasonable, which facilitates the practical
application of the upwindGFDM in real complex problems.

3.3 A case with a complex-boundary formation

As shown in Fig. 12a, the example in this section constructs
a more complex calculation domain boundary, in which the
blue line segments represent the upper boundary and the
lower boundary, respectively. Except that the reservoir per-
meability becomes 1000 mD, other physical parameters and
boundary conditions are the same as those in Sect. 3.2. Fig-
ure 12b shows the extremely high-density triangular mesh
used to obtain the FEM reference solution. Figure 12 c, d, e
and f show two different-density triangular meshes for FEM
calculation and two different-density point clouds for GFDM
calculation, respectively. Since the numerical examples and
error analysis in Sects. 3.1 and 3.2 have demonstrated that
the increase in the radius of the influence domain will reduce
the calculation accuracy of temperature profiles, when the
upwind GFDM calculation is based on the two point clouds

in Fig. 12e and f, because the average node spacings in the
two point clouds are 12 and 6m, respectively, the radius of the
node influence domain is taken as 18 and 9 m, respectively.
Figures 13 and 14 compare the pressure and temperature dis-
tributions at the 40th and 100th days calculated by FEM and
upwind GFDM under different-density meshes/point clouds,
as well as the reference solutions based on a high-density tri-
angular mesh. Table 3 lists the L2 relative errors of FEM
results and upwind GFDM results. It can be seen that when
using relatively rough triangulation #1 and point cloud #1,
the calculation error of upwind GFDM results for pressure
distribution is slightly greater than that of FEM results. The
calculation error of the upwind GFDM for temperature dis-
tribution at 100 days is nearly twice that of FEM. When
using relatively fine triangulation #2 and point cloud #2, the
calculation error of upwind GFDM for pressure distribution
has rapidly decreased to only half of that of FEM, and the
calculation error of temperature has become very close to
that of FEM. The comparisons of the calculation errors for
pressure profiles in this section and Sect. 3.2 jointly indicate
that the upwind GFDM can handle the pressure diffusion
equation more effectively than FEM in a certain radius of
the node influence domain and realize higher-accuracy pres-
sure calculation. Overall, the results in this section show that
the upwind GFDM can realize the effective calculation of
mass and heat transfer in the calculation domain with com-
plex geometry and implies the good convergence analyzed
in Sect. 3.1.
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Fig. 10 Comparisons of calculated pressure and temperature profiles by different methods
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Fig. 11 L2 relative error versus
node spacing in example 3

Fig. 12 sketches of the calculation domain, triangulations, and point clouds
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Fig. 13 Comparisons of calculated pressure and temperature profiles at the 40th day by reference solution, FEM, and the upwind GFDM

123



552 Computational Particle Mechanics (2023) 10:533–554

Fig. 14 Comparisons of calculated pressure and temperature profiles at the 100th day by reference solution, FEM, and the upwind GFDM
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Table 3 L2 relative errors of
FEM results and upwind GFDM
results

Pressure, 40th day Temperature,
40th day

Pressure, 100th day Temperature,
100th day

FEM
(triangulation#1)

0.183% 1.805% 0.174% 1.487%

GFDM (point
cloud#1)

0.214% 2.434% 0.231% 2.871%

FEM
(triangulation#2)

0.309% 1.514% 0.322% 1.393%

GFDM (point
cloud#2)

0.138% 1.366% 0.164% 1.893%

4 Conclusions and future work

This paper presents an upwind GFDM for heat and mass
transfer coupled problems in porous formation. Throughout
the whole paper, several key conclusions can be obtained as
follows:

(i) This method discretizes the calculation domain by a
point cloud rather than the mesh division, due to the topolog-
ical constraints on the mesh generation being much greater
than those on the generation of the point cloud, compared
withmesh-basedmethods, this method can discretize the cal-
culation domain with complex geometry more easily.

(ii) The single-point upstream (SPU) scheme commonly
used in FDM/FVM-based reservoir simulators is directly
introduced to GFDM to form an upwind GFDM. This
method is shown able to conduct a meshless solution of
the convection-diffusion equation. In addition, taking the
1D constant-coefficient convection–diffusion equation as an
example, it is proved that the discretization of the upwind
GFDM for the heat convection term can be degenerated to
the discretization of the convection term by FDM with the
first-order upwind scheme, which might indicate the upwind
GFDM can be regarded as a meshless extension of the first-
order upwind FDM.

(iii) Numerical examples illustrate that the upwindGFDM
can realize effective meshless calculation for heat and mass
transfer problems in porousmedia and obtain a solution of the
convection–diffusion equation with a stable upwind effect.

(iv) The upwind GFDM can achieve similar calculation
accuracy of temperature profiles but a higher accuracy of
pressure profiles compared with the mesh-based methods
when the radius of the node influence domain is small and
has good convergence.

(v) This paper analyzes two error sources of the upwind
GFDM, and the results of the error analysis and numerical
examples both show that the increase in the radius of the node
influence domain will increase the calculation error.

The point cloud generation technique for complex 3D
computational domains and the computational performance
of the upwind GFDM in 3D cases, which we think is possible
with significant work in the future. On the other hand, due to

the parallel nature of the calculation of the generalized differ-
ence operator at each node in the GFDM, the use of parallel
computing to form an efficient upwind GFDM-based simu-
lator is an important future work to promote the theoretical
research to practice.
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