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Abstract
In the present work, we investigate the accuracy and robustness of our in-house OpenMP parallelized direct-forcing immersed
boundary–latticeBoltzmann (DF-IB-LB) solver by undertaking studies on accuracy, discrete conservation,Galilean invariance
and quantification of spurious force oscillations (SFO). Our study reveals that DF-IB-LB exhibits first and second-order spatial
accuracy for velocity and pressure errors, respectively, for generic moving boundary problems. The method is found to be
Galilean invariant, while errors in discrete conservation and SFO decay linearly and superlinearly, respectively, with grid
refinement. The numerical simulations with the proposed solver on a vast number of complex moving boundary problems
involving imposed and induced motion highlight its efficacy as a fast, robust and accurate framework for single-phase flows
with and without fluid–particle interactions.

Keywords Immersed boundary–lattice Boltzmann · Spurious force oscillations · Moving boundary

1 Introduction

Numerical simulations of fluid–particle interaction applica-
tions, particularly moving body applications, have gained
attention over the last two decades owing to their ability
to deliver valuable insights in engineering, bio-medical and
environmental technologies, among other fields. Some of
the notable examples include fluidization of particles [1,2],
microfluidic and biomedical applications [3,4], multiphase
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flows [5], pollution control [6], food processing [7], additive
manufacturing [8], granular suspension [9] and sedimen-
tation [10–12]. The traditional use of body-fitted methods
for such moving boundary applications, while higher-order
accurate, is computationally expensive and sometimes even
requires re-meshing. Immersed boundary methods (IBM)
[13] (also known as non-body-conformal grid methods) have
established themselves as a promising alternative for such
scenarios and can be coupled with frameworks such as
finite-difference, finite-volume, finite-element and lattice-
Boltzmann method. In the present work, we consider the
lattice-Boltzmann method (LBM) due to its locality of
operation owing to the mesoscopic treatment, inherent par-
allelizable nature and simplicity of the algorithm.

Coupled Immersed boundary–lattice Boltzmann (IB-LB)
[14] formulations employ a non-body conformal grid with
the complex boundary represented by a set of Lagrangian
points while immersed into an Eulerian fluid domain. Upon
solving the governing equation on Eulerian nodes, vari-
ous flow field parameters such as velocity, pressure, and
temperature are spread to Lagrangian boundary nodes. The
resulting force that evolves out of particle motion and
fluid–particle interactions at Lagrangian nodes can now be
distributed into Eulerian fluid nodes while simultaneously
advecting the Lagrangian nodes to account for the motion
of the body. Among several immersed boundary–lattice
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Boltzmann methodologies (IB-LB) in open literature, we
briefly review some of the prominent variants. These include
the penalty-force method [15], direct forcing IB-LB method
[16], momentum-exchange-based method [17], velocity cor-
rection method [18] and partially saturated computational
cells method [19] and is definitely not an exhaustive list.
Feng and Michaelides [15] formulated the penalty-force
method in a Lagrangian–Eulerian framework which con-
siders deformable particles with a high stiffness coefficient
and adds to the evolution equation an external force den-
sity term that accounts for fluid and particle velocity field.
This approach was used to study a couple of fluid–particle
interaction problems—DKTmotion of two particles and sed-
imentation of multiple particles, from which the authors
concluded that coupled IB-LB method is capable of accu-
rately resolving fluid–particle boundary condition. They also
found that the method is more accurate than bounce-back
schemes and reduces initial fluctuations in particle forces and
torques, which are common in general LBMapproaches. The
penalty-force approach, however, suffers the limitation that
it requires a careful choice of user-defined free parameters.
Leveraging the advantages of both LBM and IBM, which
includes Eulerian mesh for fluid domain and Lagrangian
nodes for solid moving boundaries, Niu et al. [17] intro-
duced a direct-forcing term based on momentum-exchange
where particle distribution functions on the boundary are
evaluated using interpolation of Lagrangian polynomial from
Eulerian mesh. Since conventional IB-LB only approxi-
mately satisfies the no-slip on surfaces, Wu and Shu [18]
introduced the velocity-correction-based IB-LB formulation
where the velocity correction atEulerian nodes is spread from
the corrected velocity term at Lagrangian boundary nodes
and simultaneously imposes a no-slip boundary condition
on the solid bodies. Zhang et al. [20] formulated an itera-
tive force correction method to obtain external force term
involved in the LB equation that can accurately implement
no-slip boundary conditions on solid boundaries considering
the effects of present and next time steps. They employed
Lagrangian polynomial interpolations instead of the Dirac
delta function to determine velocities on boundaries from
neighboring fluid nodes. Of specific interest to the present
study is the DF-IB-LB introduced by Feng and Michaelides
[16] where a forcing term in the LB governing equation is
included, which can enforce no-slip boundary condition on
the immersed surface and eliminate the necessity of using
free-parameters unlike those in their earlier approach [15].
Their work highlighted the capability of the approach to offer
a smooth computational boundary as compared to the con-
ventional ”bounce-back” schemes used in LBM. While they
remarked that the DF-IB-LB method possesses the same
order of accuracy as the LB method, no quantitative data
were provided to support this claim. Subsequently, Dupuis
et al. [21] introduced the interpolating forcing approach that

exhibited an order of accuracy of 1.9 in drag coefficients
of an impulsively started cylinder as compared to a 1.5
convergence rate using direct-forcing method. Although the
interpolating forcing approach is a nearly second-order accu-
rate method, it involves tedious interpolations, which in turn
increases the computational cost and time for moving bound-
ary problems.

Our present study focuses on the DF-IB-LB method,
which is attractive owing to its simple algorithm but can
achieve comparable accuracy as other aforementioned vari-
ants of IB-LBmethods.While thismethod has been proposed
as an efficient framework to solve incompressible hydrody-
namic problems, a thorough analysis of the approach with
regard to pivotal aspects like discrete mass conservation,
Galilean invariance, and spurious force oscillations in mov-
ing boundary problems has been lacking to the best of the
authors’ knowledge. Therefore, the current investigations are
targeted toward a comprehensive evaluation of theDF-IB-LB
approach with a specific focus on the following objectives.

1. Studies on spatial order of accuracy for moving boundary
problems.

2. Discrete conservation study and the role of relaxation fac-
tor τ .

3. Galilean invariance study of the algorithm
4. Dependence of lattice resolution on spurious force fluc-

tuations of force signals.

We also carry out numerical simulations over a broad
spectrum of moving boundary problems involving single
and multiple bodies with imposed and induced motion to
benchmark the approach and we believe that this extensive
assessment and analysis of the DF-IB-LB method is a novel
contribution that can be beneficial to the computational LB
community.

The remainder of the manuscript is organized as follows.
The mathematical formulation involving LB methodology,
direct forcing IB-LB method, and incorporation of par-
ticle motion dynamics is presented in Sect. 2. The next
Sect. 3 presents studies on the accuracy, discrete conserva-
tion, Galilean invariance, and dependence of grid resolution
on spurious force fluctuation in moving boundary problems
using the DF-IB-LB method. The efficacy and robustness
of the DF-IB-LB method for accurate prediction of fluid–
particle hydrodynamic interaction problems are illustrated by
carefully examining its viability for a wide spectrum of mov-
ing boundary problems in Sect. 4. The salient conclusions
from our investigations are finally summarized in Sect. 5.
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Fig. 1 Schematic showing velocity direction �ci and corresponding
weights (wi ) for a D2Q9 lattice arrangement

2 Mathematical formulation

2.1 Basic LBM formulation

The lattice Boltzmann method uses sets of particle distri-
bution function ( f ), which signifies the probability to find
particles at a location at a particular instant. The discrete
incompressible D2Q9 LBGK equation along a specified
direction (Fig. 1) can be written as:

fi (�x + �ci�t, t + �t) = fi (�x, t) + �BGK
i (1)

where �BGK
i and τ are the BGK collision operator and the

relaxation parameter, respectively, related as:

�BGK
i = �t

τ
( f eqi (�x, t) − fi (�x, t)) (2)

f eqi is the local equilibrium distribution function.

f eqi (�x, t) = wi

[
ρ(�x, t) + �ci .�u

cs2
+ 1

2

(�ci .�u)2

cs4
− 1

2

(�u.�u)

cs2

]

(3)

where cs is the sonic velocity in the lattice dimension given as
cs = c/

√
3, c is the lattice velocity (= �x/�t) corresponding

to the adopted grid spacing (�x) and time step (�t) andwi is
theweight function in the respective direction. The kinematic
viscosity of the fluid (ν f ) is related to the relaxation factor τ

as in Eq. (4), which is a manifestation of recovered Navier–
Stokes equation via multi-scale Chapman Enskog expansion
[22].

ν f =
(

τ − �t

2

)
c2

3
(4)

Here, the left-hand side term of Eq. (1) represents advection
(streaming), and right-hand side term represents collision.
Macroscopic quantities like density and velocity can be
obtained by taking velocity moments of particle distribution
function as:

ρ (�x, t) =
∑
i

fi (5)

�u (�x, t) =
∑
i

fi �ci (6)

2.2 Direct forcing IB-LB formulation

The fully explicit nature of the discretized LB equation offers
advantages like locality of operations, ease of parallelization,
and algorithm simplicity. Despite such benefits, conventional
treatment of boundary conditions [22,23] in LBM instigates
spuriousness in hydrodynamic forces at the fluid–particle
interface, further necessitating to use specialized techniques
such as the refill-algorithm [24,25] to mitigate the same. The
limitations of the conventionalLBMcanbeovercomebycou-
pling Immersed Boundary (IB)–Lattice Boltzmann method
(LB) [15,16]. In this case, the discretized governing equa-
tion (Eq. 7) is solved at Eulerian lattice nodes, from where
information (in terms of pressure, velocity, temperature, etc.)
is interpolated to immersed Lagrangian nodes as shown in
Fig. 2.

Hydrodynamic forces experienced by the body due to
its motion and fluid–particle interactions are computed at
Lagrangian boundary nodes, which are then suitably re-
distributed onto the Eulerian nodes in the fluid regime. The
DF-IB-LB method modifies the LB governing Eq. (1) as:

f
′
i = fi (�x, t) + �BGK

i + Fi�t (7)

Fig. 2 Illustration of the Immersed Boundary method. The Lagrangian
points represent the boundary, and the intersection of the mesh lines
represent the Eulerian fluid points
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The direct forcing term ( �Fi ) in Eq. (7) can be expressed as:

Fi =
(
1 − 1

2τ

)
ωi

( �ci − �u
c2s

+ �ci .�u
c2s

�ci
)

. �Fb (8)

where �Fb(�x, t) is the fluid body force density. Once we
obtain the non-forced velocity at the Lagrangian nodes, we
can calculate the particle boundary force density at the mth

Lagrangian node at position �Xm using Eq. (9).

�F( �Xm, t) = 2

�t
[ �Ud( �Xm, t) − �U∗( �Xm, t)] (9)

where �Ud is the desired velocity at the Lagrangian point, and
�U∗ is the interpolated fluid velocity at the Lagrangian node
obtained from Eq. (10).

�U∗( �Xm, t) =
∑
i, j

�u∗(�x, t)δh(�x − �Xm)h2 (10)

The non-forced fluid velocity �u∗ at the Eulerian nodes is
obtained using Eq. (6), and the particle boundary force den-
sity �F( �Xm, t) is spread to neighboring Eulerian nodes as:

�Fb(�x, t) =
∑
m

�F( �Xm, t)δh(�x − �Xm)�s (11)

where �s is the arc length. δh(�xi j − �Xm) is a continuous
kernel function which approximates the Dirac Delta function
as:

δh(�x − �Xm) = 1

h2
φ

(
x − Xm

h

)
φ

(
y − Ym

h

)
(12)

where h is mesh spacing. �s should be adopted such that it
averts mass-leakage and ensures no-slip boundary condition.
Peskin [26] proposed �s ≤ h/2 and Cheng et al. [27] sug-
gested �s < h for obtaining accurate results. In the present
study, number of Lagrangian nodes over the particle’s surface
is adopted as 1.2 times (C/h), where C is the circumference
of the particle. It leads to �s ≈ 0.83h.

Finally, the velocity is updated according to Eq. (13) that
reads

�u(�x, t) = �u∗(�x, t) + 0.5 �Fb�t (13)

2.3 Incorporation of particle dynamics

Accurate estimation of hydrodynamic forces and moments
on the solid structure due to the fluid is crucial in any fluid–
structure interaction problem. Traditional use of momentum
exchange method [28,29] and stress integration method [23]
to evaluate surface forces in LBM require complicated and
hectic interpolations of the distribution function. A moving

Fig. 3 Time varying control surface (
p(t) and 
 f (t)) and its corre-
sponding control volumes (ζp(t) and ζ f (t))

boundary scenario further instills complications to tackle
birth and death of solid-fluid nodes using refill algorithms
[24,25] at every time step. In the DF-IB-LBmethod, the total
hydrodynamic force canbeobtainedby summingEq. (9) over
m-Lagrangian nodes.

To appreciate the procedure of force evaluation using DF-
IB-LBmethod, consider a solid particle of surface area
p(t)
and volume ζp(t) immersed into a control volume of surface
area 
 f (t) and volume ζ f (t), as depicted in Fig. 3. The arbi-
trary velocity vectors and outward normal surface vectors of
respective surfaces are also depicted. The total surface force
exerted by fluid onto the particle ( f → p) can be evaluated
by integrating the forces over the surface area of particle (
p)

as:

�Ff→p = −
∫


p

[
ρ �u (�u − �u p

) + σ
] · �ηp d
 (14)

where σ represents the viscous stress tensor. The fluid mass
is considered to be constrained by control surfaces
p and
 f

at this particular instant. FollowingCauchy’s stress principle,
the conservation of linear momentum can be expressed as:

∂

∂t

∫
ζ f

ρ �u dζ = −
∫


 f

[
ρ �u (�u − �u f

) + σ
] · �η f d


−
∫


p

[
ρ �u (�u − �u p

) + σ
] · (−�ηp

)
d


(15)

which can further be combined with Eq. (14) to yield

∂

∂t

∫
ζ f

ρ �u dζ = − �Ff →p −
∫


 f

[
ρ �u (�u − �u f

) + σ
] · �η f d


(16)

The resulting equation for the conservation of linear momen-
tum for the whole domain, including both solid (ζp) and fluid
volumes (ζ f ), can similarly be expressed as:
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∂

∂t

∫
ζ f ∪ζp

ρ �u dζ = −
∫


 f

[
ρ �u (�u − �u f

) + σ
] · �η f d


+
∫

ζ f ∪ζp

�F dζ (17)

with �F corresponding to the fluid–particle interaction force.
Therefore, the surface force acting on the particle due to
the momentum interaction with the neighboring fluid can be
obtained by subtracting Eq. (16) from Eq. (17), as follows:

�Ff →p = ∂

∂t

∫
ζp

ρ �u dζ

︸ ︷︷ ︸
addedmass

−
∫

ζ f ∪ζp

�F dζ (18)

Consideration of the virtual mass (added mass) effect,
appearing as the first term on the right-hand side of Eq. (18),
is of paramount importance in moving boundary problems.
It signifies the increase in inertia of the fluid adjacent to the
particle during its motion and therefore is relevant solely for
accelerating bodies and fluid nodes in proximity to the sur-
face. Thus, the added mass term can be substituted by the
acceleration experienced by a virtual fluid element having
an identical volume to the particle (ζp) and desired center-
of-mass velocity ( �Ud).

�Ff →p = ρζp
∂ �Ud

∂t
−

∫
ζ f ∪ζp

�F dζ (19)

For a non-accelerating particle, the first term on the right-
hand side of the Eq. (19) vanishes, resulting in a simple
numerical integration of boundary forces, regardless of the
position of the particle.

∫
ζ f ∪ζp

�F dζ ≈
∑ �F�xD (20)

where D stands for the dimension of the problem. Following
Newton’s linear and angular momentum conservation princi-
ples, the translational velocity of the particle can be obtained
for the added mass formulation as:

ρpζp
d �Ud

dt
= − �Ff→p + (

ρp − ρ f
)
ζp �g + �Fc (21)

where �Fc represents the particle–particle and particle–wall
collision, which is conceived following the work of Feng and
Michaelides [16]. The angular momentum conservation can
be expressed by taking a moment over Eq. (21), neglecting
�Fc in the present study, as:

Ip
d ��p

dt
= ∂

∂t

∫
ζ

(�xp − �xc
) × ρ f �uc dζ −

∫
ζ

(�xp − �xc
) × �F dζ

(22)

where Ip, ��p, �xp and �xc denote the mass moment of inertia,
angular velocity, position vectors of the interfacial point, and
the reference point, respectively. The position and surface
velocity can now be updated using

d �Xc

dt
= �Ud (23a)

�u p

( �X p

)
= �uc + ��p ×

( �X p − �Xc

)
(23b)

It must be noted that we have used the first-order Euler
explicit method for numerically evaluating the temporal
derivatives of Eqs. (21), (22) and (23a), and that the net inter-
facial force can be resolved considering momentum transfer
involving each of the Lagrangian nodes of the particle,

∫
ζ f ∪ζp

�Fdζ ≈
∑
m

�F( �Xm, t)�
p( �Xm, t)�x (24)

where �
p is the area (or arc length in 2D) of the surface at
a Lagrangian point �Xm on the particle.

3 Evaluation of DF-IB-LB algorithm

In this section, we present the analysis of the DF-IB-LB
method on four aspects—accuracy, discrete conservation,
Galilean invariance, and quantification of spurious force
oscillations. While several studies discuss the accuracy of
the DF-IB-LB method, there are no known studies that have
investigated the ability of the DF-IB-LB method to conserve
mass and momentum at the discrete level, assess its Galilean
invariance and determine spurious force oscillations associ-
atedwith aerodynamic force coefficients inmoving boundary
problems. These studies are expected to further shed light on
aspects of the DF-IB-LB methodology that have hitherto not
been explored in the literature, but are of paramount impor-
tance for the practical viability of the approach.

3.1 Discrete conservation study

The appraisal of discrete conservation properties is an impor-
tant aspect pertaining to the IB-LB method. Yin et al. [30]
showed that the artificial treatment of local mass conserva-
tion at fluid–solid interface is extraneous in conventional LB
boundary condition schemes and could pollute the accuracy
of solution in fluid–structure interaction problems. We study
the global mass flux error in simulation using the DF-IB-
LB on curved boundary problems and show that it remains
at acceptable levels despite any ancillary treatment at the
solid–fluid interface. In this section, we consider the flow
through a curved channel which is immersed into the under-
lying regular Cartesian mesh in a computational domain of
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Fig. 4 a Schematic representation of the computational domain with a
flow through curved channel. b Time history of local maximum diver-
gence in flow through curved channel

size L × L . The boundaries of the curved channel are not
aligned with the mesh, and its inner and outer radii are 0.7L
and 0.9L , respectively, as depicted in Fig. 4a. Following a
similar study for immersed boundary methods in the finite
volume framework by Patel and Natarajan [31], we choose
L = 400, 500, 600 and 800 and impose a uniform velocity at
the inlet while a constant pressure and zero normal velocity
gradient is prescribed at the outlet. Studies are performed for
three different Reynolds numbers based on the annular gap
viz. Re = 10, 1 and 0.1.

Figure 4b reveals that the local maximum divergence over
the entire computational domain is confined to the order of
10−4, which is an acceptable mass conservation error in
most numerical setups. It is pertinent to mention here that
the underlying lattice-Boltzmann algorithm is susceptible to
compressibility errors emerging from density variation and
velocity divergence terms in the recovered Navier-Stokes’
equation due to adoption of pseudo-equation of state, p =
ρc2s , and thereby deviates from a true solenoidal divergence
[32]. These effects are, however, negligible if the density
variations are small and thermodynamic considerations are
not significant.

It must also be emphasized that although the lattice-
Boltzmann equation recovers Navier–Stokes’ equation in the
incompressible limit, density cannot be kept constant in LB
simulations as otherwise, the pressure changes cannot be
captured. Hence, it is necessary to analyze also the effect
of compressibility in present simulations, and we attempt to
quantify the compressibility effects through themean density
fluctuation given by

� = 1

ρ

√∑
(ρ − ρ)2 /N (25)

where ρ is the mean density variation defined as,

ρ =
∑

x,y ρ(x, y, t)

N
(26)

The compressibility and mass flux errors from the simula-
tions using theDF-IB-LBmethod for a fixed value of τ = 1.0
and different Re are summarized in Table 1. It is evident that
both these quantities decrease with grid refinement, although
the rate of decrease in compressibility error is approximately
linear for the lowest value of Re. The dependence of τ on
the compressibility and mass flux errors are best understood
from Fig. 5 which shows that both errors increase with Re
(for a given τ ) and also exhibit an increase with τ for a given
Reynolds number, keeping the grid size fixed. The errors in
mass conservation and compressibility are therefore depen-
dent on the grid size, choice of τ , and the flow Reynolds
number, and care must be taken to keep these errors within
acceptable limits for high Re flows. The fact that they decay
with grid refinement affirms that the DF-IB-LB approach is
discretely conservative in the limit of lattice size approaching
zero. Although not shown herein, negligible velocity mag-
nitudes of the order of 10−3 are observed outside the flow
domain, in the vicinity of the curved boundaries, indicative of
the fact that the no-slip boundary condition is approximately
enforced despite the channel boundaries being non-aligned
to the underlying Cartesian mesh.
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Table 1 Compressibility and mass flux error for a flow through curved
channel at different Re and grid resolution at a fixed τ = 1.0

Domain size Compressibility error Mass flux error

Re = 10

400 × 400 1.44E−3 7.37E−3

500 × 500 9.44E−4 4.89E−3

600 × 600 6.64E−4 3.48E−3

800 × 800 3.79E−4 2.03E−3

Re = 1

400 × 400 1.49E−4 7.71E−5

500 × 500 9.98E−5 5.25E−5

600 × 600 7.35E−5 3.76E−5

800 × 800 2.17E−5 1.34E−5

Re = 0.1

400 × 400 8.26E−6 5.31E−7

500 × 500 1.79E−5 9.92E−7

600 × 600 1.46E−5 8.88E−7

800 × 800 1.12E−5 7.67E−7
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Fig. 5 Variation of compressibility and mass flux error with respect to
τ for a flow inside curved channel at Re = 10, 1 and 0.1 for domain size
600 × 600

3.2 Accuracy study

Thewell-knownTaylor–Couette problem is a classical test
case often used to establish the accuracy of moving bound-
ary problems as it constitutes both stationary and moving
complex boundaries that are not aligned with the under-
lying Cartesian mesh. The fact that this flow field has an
exact analytical solution makes it an ideal validation case for
spatial accuracy studies. In our study, we choose two con-
centric cylinders of radii R1 = 0.2L and R2 = 0.4L that are

Fig. 6 Schematic for Taylor–Couette problem

immersed into a square computational domain of side L = 1
as represented in Fig. 6. The inner cylinder is subjected to
a constant angular velocity ��p = �U/R1, while the outer
cylinder is static. The computational domain boundaries are
prescribed as no-slip walls, and impermeable cylinder sur-
faces should restrict the flow only inside the annular region.
The exact steady-state solutions of the flow field in terms
of velocity, pressure, and driving torque associated with the
rotatory motion are known

�u (x, y) = −
��P R2

1

R2
2 − R1

1

(
R2
2

r2
− 1

)
y (27a)

�v (x, y) = −
��P R2

1

R2
2 − R1

1

(
R2
2

r2
− 1

)
x (27b)

p (x, y) =
[ ��P R2

1(
R2
2 − R2

1

)
]2 {

r2

2
− R4

2

2r2
− R2

2 log
(
r2

)}

(27c)

�T = −4πρν

[ ��P R2
1R

2
2

R2
2 − R2

1

]
(27d)

where �r = √
x2 + y2 represents the position vector. Four dif-

ferent grid resolutions are considered to facilitate the order
of accuracy analysis, viz. �x = L/40, L/80, L/160, and L/320,
while maintaining identical Re = U (2R1)/ν and conver-
gence criterion of 10−8 for steady-state computations.

The rates of error decay with respect to grid refinement at
τ = 0.6 and 1.0 are expressed in terms of experimental order
of convergence (EOC) in Table 2. Both L∞ and L2 error
norms for velocity errors decay approximately linearly with
grid refinement with the average EOC being 0.892 and 1.056
for τ = 0.6 and 0.918 and 0.978 for τ = 1.0 respectively.
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Table 2 Experimental order of convergence (EOC)obtained by L∞ and
L2 error norms of velocity and pressure for Taylor Couette problem at
Re = 10

Velocity error Pressure error

L∞ L2 L∞ L2

τ = 0.6

EOC40,80 0.820 0.972 1.727 1.678

EOC80,160 0.890 0.968 1.749 1.736

EOC160,320 0.967 1.229 1.801 1.777

EOC 0.892 1.056 1.759 1.730

τ = 1.0

EOC40,80 0.854 0.971 1.722 1.678

EOC80,160 0.932 0.976 1.767 1.737

EOC160,320 0.970 0.987 1.798 1.777

EOC 0.918 0.978 1.763 1.731

The first order decline in velocity errors can be attributed
to the presence of discontinuity in velocity gradients on the
fluid–solid interface of IB-LBmethods [20,33,34]. However,
the pressure error exhibits nearly quadratic decay with grid
refinement having an average EOC around 1.7, independent
of the value of τ . From Table 3, one can also infer that
the compressibility and mass flux errors decrease with grid
refinement. Thedecayof compressibility errorwith respect to
the computational Mach number is observed to be quadratic
for both the cases of τ considered, while the relative torque
error reduces with grid refinement at a rate of approximately
first order.

In order to establish the dependence of relaxation fac-
tor (τ ) on error norms of the DF-IB-LB method, we fixed
the grid resolution at �x = L/80 and varied τ from 0.6 to
2.0. Figure 7 reveals that velocity error norms decrease with
increase in τ until τ = 1.5 beyond which they exhibit an

Table 3 Relative % torque error, compressibility error and mass flux
error for Taylor Couette problem at Re = 10

�x Relative %
torque error

Compressibility
error

Mass flux error

τ = 0.6
1/40 13.169 2.50E−4 4.26E−7
1/80 6.624 5.75E−5 3.88E−8
1/160 3.091 1.38E−5 4.18E−9
1/320 1.982 3.37E−6 4.98E−10

τ = 1.0
1/40 9.276 5.96E−3 2.77E−5
1/80 4.013 1.40E−3 4.72E−6
1/160 2.029 3.40E−4 5.44E−7
1/320 1.044 8.38E−5 6.56E−8

τ
(a)

τ
(b)

Fig. 7 Velocity and pressure error norms with respect to varying τ for
Taylor Couette problem at Re = 10. a L∞ error norm, b L2 error norm

increasing trend. The pressure error norms, however, exhibit
amonotonic increase inmagnitudewith the increasing τ . The
mass flux error is reasonably low for smaller values of τ but
increases quite rapidly, as can be seen from Fig. 8a, as does
the compressibility error. Interestingly, the relative torque
error in Fig. 8b shows a local minimum at τ = 1.6. While
these results do not provide any clear guidelines on choos-
ing an optimal value for τ , a choice of τ ≤ 1.6 is expected
to keep the conservation errors to a minimum while com-
puting the flow field accurately. Indeed, the solutions from
the DF-IB-LB method exhibit an excellent degree of confor-
mity with the exact velocity profiles, as shown in Fig. 9. The
DF-IB-LB method in this work can be therefore considered
as spatially first-order accurate with acceptable mass errors
that is capable of accurately dealing with moving complex
geometries.
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τ
(a)

τ
(b)

Fig. 8 a Compressibility and mass flux error, b relative % torque error
with respect to varying τ for Taylor Couette problem at Re = 10

3.3 Galilean invariance study

We study Galilean invariance in the context of the DF-IB-
LB approach, which is important given that conventional
approaches with momentum-exchange method [29] in LBM
at the fluid–solid interface are known to exhibit non-Galilean
invariance behavior. While there have been algorithmic
improvements for the momentum-exchange method [35,36],
there have been no such studies forthcoming in the DF-IB-
LB framework. The Galilean invariance study ensures that
the method will yield an identical flow field irrespective of
using a stationary or moving reference frame. Or in other
words, the underlying computational framework is indepen-
dent of the choice of reference frame for a moving body
problem. Toward this objective, we consider the test case of
the transient Couette flow past a moving cylinder inspired

(a)

(b)

Fig. 9 Comparison of numerical and analytical solutions of velocity
profiles of Taylor Couette problem at Re = 10: a u-velocity profile at
x = 0 and b v-velocity profile at y = 0. The respective location of
abscissa are represented in the inset

by the work of Lallemand and Luo [24]. A circular cylin-
der with diameter d is eccentrically placed in a channel of
domain size 8d × 4d as shown in Fig. 10. We consider two
inertial frames in the study, with the first being a stationary
(rest frame) where the initial flow field (U0) and the mov-
ing cylinder (Uc) velocities in x-direction are prescribed as
0.02 m/s. The upper and bottom walls (Uw) of the chan-
nel are moving with a constant velocity of 0.1 m/s opposite
to each other in x-direction. At LB-level, no-slip bound-
ary conditions on channel walls are implemented using the
non-equilibrium bounce back method proposed by Zou and
He [37] while in x-direction periodic boundary conditions
are applied. The second scenario is the moving reference
frame with a constant reference velocity (Uref = − 0.02
m/s in x-direction. The cylinder thus becomes static with
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Fig. 10 Cylinder in a Couette flow

Uc + Uref = 0.0 m/s and the initial condition of flow field
becomes quiescent U0 + Uref = 0.0 m/s as well. The upper
wall gains a velocity of Uw + Uref = 0.08 m/s, while the
velocity of the bottom wall becomes Uw + Uref = − 0.12
m/s. The simulation parameters for either scenarios are set
as Re = d2κ/ν = 11.36, τ = 0.714 and physical diameter of
the cylinder as d = 0.05m. We choose the shear rate of the
flow κ = 2Uw/4d where ν represents the kinematic viscosity
of the fluid. The L2 error norm for any quantity χ (like aero-
dynamic forces and torque), used to evaluate grid errors and
Galilean invariance errors, is defined as:

L2(χ) =
√√√√∑N

n=0

[
χ ref(tn) − χ(tn)

]2
∑N

n=0

[
χ ref(tn)

]2 (28)

where N and χ ref represent, respectively, the number of time
steps and the reference solution considered for the analysis.

We evaluate the grid errors only for the moving reference
frame case, whereas the Galilean invariance errors are evalu-
ated for the rest reference frame. The resulting solution from
the finest grid resolution of the moving reference frame case
is selected as the reference solution (χ ref(tn)) for grid errors.
For Galilean invariance errors, the corresponding solution at
the same grid resolution in the moving reference frame is
set as the reference solution (χ ref(tn)). The error analyses
are facilitated by varying the number of lattice nodes on the
diameter of the cylinder viz. 20, 40, 80, and 160. Figure 11
shows the grid errors and Galilean invariance errors for aero-
dynamic forces and torque with respect to grid resolution
(�x). The global error (gerr(L2)) is evaluated as average of
L2 error norms of aerodynamic forces in x and y-direction.
The grid errors are found to decay super linearly with grid
refinement, while the Galilean invariance errors decay lin-
early with grid refinement. The time history of aerodynamic
force coefficients, as shown inFig. 12, reveals that themoving
boundary case (i.e., the rest reference frame) exhibits fluc-
tuations, which are, however, not very significant and decay
with grid refinement. In a nutshell, it clearly demonstrates
that the present DF-IB-LB method is a Galilean invariant
method indeed for a sufficiently fine mesh.

(a)

(b)

Fig. 11 Error norms of aerodynamic forces and torque for a cylinder in
a Couette flow at Re = 11.36 and τ = 0.714. a Grid error in a moving
reference frame and bGalilean invariance error in static reference frame

3.4 Studies on spurious force oscillations

Spurious force oscillations (SFOs) in temporal histories of
force coefficients are a major issue pertaining to moving
boundary problems. While a body is in motion, the underly-
ing lattice nodes experience a change in identity due to the
birth and death of solid-fluid nodes. This identity transfor-
mation is often neither continuous nor smooth and can be
attributed as the primary cause of SFOs. Kang [14] reported
the presence of SFO in force signals for sharp-interface
IB-LB schemes and mitigated the same by using standard
smoothing or FFT filtering techniques. Although there were
no specific comments on SFOs in the direct forcing approach
in their studies, it was reported that the approach led to over-
prediction of the surface force coefficients. Several other
studies [20,38] have reported the presence of SFOs in the
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Fig. 12 Time variation of aerodynamic force coefficients of a cylinder
in a Couette flow in moving and static reference frames at Re = 11.36
and τ = 0.714

IB-LB methods, and we quantitatively probe these oscilla-
tions as a function of grid resolution in this work.

To facilitate this study, a circular cylinder of diameter d is
subjected to an oscillatory motion within an initially quies-
cent computational domain of size 4d × 4d. The cylinder’s
motion about the geometrical center of the domain and its
corresponding velocity in x-direction are given as:

Xc(t) = Xc0 + A [1 − cos (2π f t)] ,

uc(t) = U0 sin (2π f t) (29)

where A, f , Xc0 and U0 represent the amplitude and fre-
quency of oscillations, initial position of the cylinder and
maximum cylinder velocity, respectively.

The simulation parameters are set identical to those in Seo
and Mittal [39], whilst prescribing A = 0.05d, correspond-
ing Reynolds number (Re = U0d/ν) and Strouhal number
(st = f d/U )) as 31 and 3.2, respectively. Neumann bound-
ary conditions with zero velocity gradient are prescribed on
all boundaries of the domain using non-equilibrium bounce-
back scheme [37]. Two sources of spurious fluctuations [40]
pertaining to diffuse interface IB methods are attributed to
spatial discontinuity in pressure across the immersed surface
in newly born fluid nodes and the temporal discontinuity in
velocity of dead fluid nodes. The spurious oscillations are
comparatively more significant in pressure transients than
the viscous forces and hence may be quantified using the
2δ-discontinuity in the temporal history of the pressure drag
coefficients as [39]:

C2δ
PD = |Cn+1

PD − 2Cn
PD + Cn−1

PD | (30)

(a)

(b)

Fig. 13 a C2δ
PD discontinuity as a function of grid resolution. b Compar-

ison of spurious fluctuation in pressure drag coefficient CPD of present
method with Seo and Mittal [39]

with n being time-step index. In our study, the grid resolu-
tions are varied as �x/d = 1/16, 1/32, 1/64 and 1/128 while
maintaining constant relaxation factor τ = 0.65.

Figure 13a depicts the root-mean-square values of 2δ-
discontinuity in pressure drag coefficient, where �x0 rep-
resents the coarsest grid resolution (d/16). The best-fit
power-law curve through the discrete values reveals thatC2δ

PD
decays approximately at a rate of 2.48 which is higher than
near-quadratic decay reported by Seo and Mittal [39] for
sharp-interface immersed boundary-finite volume (IB-FV)
method and approximately a linear decay (C2δ

PD ∼ (�x)1.31)
using a volume-of-body IB-FV solver [41]. The comparison
of temporal history of pressure drag coefficient (CPD) with
sharp-interface IB-FV [39] (as shown in Fig. 13b) and dif-
ferent grid resolutions (as shown in Fig. 14) further confirms
the efficacy of DF-IB-LB towards smooth estimation of aero-
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(a)

(b)

(c)

(d)

Fig. 14 Temporal history of pressure drag coefficient (CPD)

dynamic forces in moving boundary problems. This analysis
shows that the SFOs diminish very rapidly on finer meshes,
and no separate treatment is necessary to ensure that the time
histories of lift and drag coefficients are smooth. This is par-
ticularly important when fluid forces influence the motion
of the structure, such as in the problems of vortex-induced
vibrations and sedimentation, with the latter being investi-
gated in detail later in this work. Importantly, compared to
sharp interface IB approaches such as those of Seo andMittal
[39], the DF-IB-LB approach has much fewer oscillations on
a given mesh owing to the smoothening of the interface, but
this does not compromise the accuracy of solutions in prac-
tical flow problems as demonstrated by our investigations in
the following section.

4 Simulations of incompressible flow
problems using DF-IB-LB solver

The preceding section has established the DF-IB-LBmethod
as a nominally first-order accurate approach which is

Galilean invariant and has acceptably low conservation errors
and tolerable SFOs. The ease of implementation of the
approach, along with these desirable features, motivates a
thorough investigation of the method for a broad spectrum
of test cases encompassing imposed and induced motion
of structures in moving boundary scenarios. We must also
remark that grid independence studies have been conducted
for all test cases discussed below, and all computations are
necessarily grid-independent.

4.1 Flow induced by inline oscillating cylinder

The first test case we consider is the inline oscillation of a
circular cylinder of diameter d in a quiescent computational
domain of dimensions 30d × 20d as shown in Fig. 15a. A
harmonic oscillation in x-direction is imposed on the cylinder
as:

Xc(t) = Xc,0 − A sin(2π f t) (31)

(a)

(b)

Fig. 15 a Schematic of an inline oscillating cylinder and bComparison
of coefficient of drag of present solver with literature [42,43] for inline
oscillating cylinder at Re = 100 and KC = 5
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(a) (b)

Fig. 16 Comparison of velocity profile between the present work and experimental data obtained by Dütsch et al. [43] at phase angle 180◦ for Re
= 100 and KC = 5. x* and u* represents the non-dimensionalized position and velocity respectively

Fig. 17 Schematic of a transversely oscillating cylinder

where the notations have similar meaning to those used in
Eq. (29).

On thedomainboundaries,Neumannboundary conditions
are prescribed while the cylinder surface is impermeable.We
study the test case for Reynolds number (Re = U0d/ν) = 100
and Keulegan–Carpenter number (KC = U0/ f d) = 5. The
LB simulation parameters are set as τ = 0.65 and 50 lat-
tice nodes over cylinder diameter. A vital aspect pertinent to
moving boundary problems, as detailed previously, involves
estimating the temporal history of aerodynamic force signals.
Figure 15b reveals an excellent agreement of time history of
drag coefficient of present solver with those of Suzuki and
Inamuro [42] and Dütsch et al. [43]. Furthermore, Fig. 15b
also suggests that the inclusion of added mass term in parti-
cle dynamics formulation is imperative for high Re flows as
presented in Sect. 2.3. It is evident that neglecting the added
mass term leads to inaccurate prediction in the force coeffi-
cients. The capability of the present solver to capture accurate
local hydrodynamic signals is also clear from the compari-

Fig. 18 Time history of
aerodynamic coefficients of a
transversely oscillating cylinder
at frequency ratio 1.2 and its
comparison with Guilmineau
and Queutey [44]
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Table 4 Comparison of aerodynamic force coefficients of present work
with literature [44–46] at different frequency ratio and Re = 185

Present Guilmineau and
Queutey [44]

Wang
et al. [45]

Chen
et al. [46]

fe/ fo = 0.8

Cd,rms 0.0447 0.0414 0.0384 0.0357

Cl,rms 0.0744 0.0800 0.0795 0.0714

< Cd > 1.2770 1.1986 1.2301 1.3036

fe/ fo = 1.0

Cd,rms 0.1474 0.1357 0.1370 0.1310

Cl,rms 0.4155 0.4186 0.3836 0.3393

< Cd > 1.5885 1.4986 1.5590 1.6250

fe/ fo = 1.2

Cd,rms 0.1364 0.1271 0.1370 0.1369

Cl,rms 0.9493 0.9329 0.9589 0.9643

< Cd > 1.4098 1.3486 1.3986 1.4940

Fig. 19 Schematic of an elliptical particle sedimentation

son of velocity profiles with experimental data obtained by
Dütsch et al. [43] as illustrated in Fig. 16.

4.2 Flow past a transverse oscillating cylinder

We consider another imposed motion test case in this section
where we study the transverse oscillation of a cylinder in a
flow field. A circular cylinder of diameter d is subjected to a
sinusoidal motion (Eq. 32) in y-direction in a computational
domain of size 40d × 40d as shown in Fig. 17.

Yc(t) = Yc,0 − A sin(2π fet) (32)

Here, the quantities Yc,Yc,0, A and fe represent the instan-
taneous position of the cylinder, initial position at t = 0,
amplitude of oscillation (= 0.02d) and excitation frequency
of oscillations respectively. A uniform velocity at the inlet
corresponding to Re = 185 is prescribed while the outlet is

(a)

(b)

Fig. 20 Comparison of particle trajectory and its orientation of the
present work with Xia et al. [47] and Karimnejad et al. [48]

maintained at constant pressure. Neumann boundary condi-
tions with zero velocity gradient are prescribed on the upper
and lower boundaries of the computational domain. Studies
are performed for several values of frequency ratio ( fe/ f0)
viz. 0.8, 1.0 and 1.2, where f0 refers to the natural vor-
tex shedding frequency corresponding to Strouhal number
(St = 0.192) obtained beforehand by simulating flow past a
stationary circular cylinder at Re = 185.

The time history of aerodynamic force coefficients at
fe/ f0 = 1.2 (shown in Fig. 18) reveals a good agreement
with results obtained by Guilmineau and Queutey [44], and
no significant spurious pressure fluctuations are observed
either using the DF-IB-LBmethod. The comparison of time-
averaged coefficient of drag (≤ Cd ≥), RMSCd andCl listed
in Table 4 at different frequency ratios further highlights the
efficacy of the present solver to accurately predict complex
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Fig. 21 Sedimentation of particles of different weight: instantaneous vorticity contours and trajectory of particles

hydrodynamics involving moving boundary problems with
no issues of SFOs.

4.3 Sedimentation of an elliptical particle

Having explored the capability of the present solver for
imposed motion problems, we now extend the solver to sim-
ulate fluid–particle interaction problems involving induced
motion. As a first benchmark problem of this category, we
select an elliptical body subjected to sediment freely under
the influence of gravity. As compared to circular bodies
considered so far, an ellipse can be considered a relatively
complex structure, and the present problem will also put to
the test the solver’s capability and robustness in handling such
geometries. The simulation parameters are chosen identical
to those of Xia et al. [47], and as shown in Fig. 19 the physical
dimensions of major and minor axes of the elliptical particle
are chosen to be 0.1cm and 0.05 cm, respectively. We set the
particle initially at rest in the middle of a narrow channel of
width L = 0.4 cm, and to break the symmetry of the flow,
the initial orientation of the particle is fixed as θ = π/4. The
solid-fluid density ratio (ρp/ρ f ) is taken as 1.1 and kine-
matic viscosity of the fluid (ν f ) is taken to be 0.01 cm2/s.
We choose 50 and 400 lattice nodes over themajor axis of the
particle and channel width, respectively, and using a relax-

ation factor of (τ ) = 0.6364 leads to a physical time step size
(�t) = 1.82 × 10−5 s for the simulation.

The particle trajectory and its orientation during the course
of its travel are depicted in the Fig. 20. As the particle pro-
gresses on its journey towards the wall, it obtains sufficient
repulsive force due to the wall effects and simultaneously
changes its course of the journey toward the center of the
domain. After several fluctuations, it finally settles to a sta-
ble position. The particle trajectories commensurate with the
flow physics from the present numerical solver are in good
agreement with the studies of Xia et al. [47] and Karimnejad
et al. [48], indicative of the ability of the DF-IB-LB approach
to compute unsteady flows past complex moving bodies.

4.4 Sedimentation of two particles of different
weights

To examine the efficacy of the DF-IB-LB algorithm for
fluid–particle interactions, we now consider the sedimenta-
tion of two circular particles of different weights. The two
particles fall freely under the influence of gravity in a qui-
escent medium, but their trajectories are influenced by the
flow dynamics, particle–particle, and particle–wall interac-
tions. The problem statement for the test case is in coherence
with that proposed by Uhlmann [49] comprising of identi-
cal circular particles of diameter d = 0.2, initially located
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(a) (b)

(c)

(e)

(d)

Fig. 22 Sedimentation of particles of different weight : time evolution of particles’ a, b center location, c, d linear velocities and e angular velocity.
Solid and dashed lines represent light and heavy particles, respectively, of the present work, whereas the circle symbol indicates the data of Uhlmann
[49]

at X (1)
c |t=0 = (0.8,−0.13) and X (2)

c |t=0 = (1.2, 0.13) in
a computational domain of dimension [0, 10] × [−1, 1].
The particle-to-fluid density ratio of the particles are set as
ρ

(1)
p /ρ f = 1.5 and ρ

(2)
p /ρ f = 1.25, respectively. The fluid

kinematic viscosity is taken as 8 × 10−4m2/s and a dis-
crete domain of 4000 × 800 lattice-units corresponding to
�x = �y = 0.0025 m units is chosen for the simulations.
We consider τ = 0.59 corresponding to a physical time step
of 2.344×10−4 s and the lattice level gravity is 2.156×10−4

lattice-units. The simulations are carried out till the heavier
particle reaches within 2d distance from the base of the com-
putational domain. The maximum particle Reynolds number
predicted using the present DF-IB-LB method for the par-

ticles are 276.61 and 231.41, which are very close to those
computed by Uhlmann [49] (280 and 230, respectively).

Instantaneous vorticity contours shown in Fig. 21 depict
that the heavier particle overtakes the lighter particle, and
the trailing lighter particle moves into the wake region of
the heavier one. Unlike the trajectory of the heavier particle,
which is largely vertical, the lighter particle deviates from
its vertical trajectory due to the strong interactions with the
wake vortices, as observed in Fig. 21. In addition to the accu-
rate prediction of the particle trajectories, the present results
in Fig. 22 show an excellent agreement for the temporal his-
tory of translational and angular velocities as well. It can
be inferred from these studies that the direct forcing IB-LB
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method possesses the promising potential to simulate one or
moving boundary problems and accurately capture the com-
plex interplay between fluid and solids.

5 Conclusions

In this paper, we have investigated the efficacy of the direct-
forcing immersed boundary–lattice Boltzmann (DF-IB-LB)
for solving complex moving boundary problems with a par-
ticular focus on its accuracy, discrete conservation, Galilean
invariance, and spurious force oscillations. The investiga-
tions on these aspects, which have not previously been
carried out in the literature, show that the method is nom-
inally first-order accurate with the diffusion of the interface
significantly reducing the spurious oscillations for moving
boundary problems. The method is shown to be Galilean
invariant and mass-conservative in the limit of �x −→ 0
with the errors decaying with mesh refinement. This study
therefore provides some guidelines on themesh spacing to be
chosen to ensure acceptable mass and compressibility errors
in moving boundary problems. The versatility of the solver
is demonstrated using moving boundary problems involv-
ing complex hydrodynamics that include both imposed and
induced motion. Our studies conclusively highlight that the
DF-IB-LB approach is a promising alternative to simulate
incompressible hydrodynamics, which may be extended to
solve multi-component flows in the near future.
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