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Abstract
Particle–fluid and particle–particle interactions can be widely seen in lots of natural and industrial processes. In order to
understand these interactions, two-dimensional fluid flowing around and through nine porous particles was studied in this
paper based on the lattice Boltzmann method due to its simplicity. Uniform spatial distribution and random spatial distribution
were considered and the effects of Reynold number (Re), Darcy number (Da), and the distance between the particles (dx and
dy) on the flow characteristics were analyzed in detail. The investigated ranges of the parameters were 10 ≤ Re ≤ 40, 10–6 ≤
Da ≤ 10–2,D ≤ dx ≤ 4D andD ≤ dy ≤ 4D (D is the diameter of the particles). For uniform spatial distribution, it is observed
that whendx(dy) increases, the interactions between the particles become weak and the fluid can flow into the spacing between
the particles. Besides, the average drag coefficient (CDave) increases with dx(dy) increasing at Re � 20 and the increase rate
gradually slows down. Furthermore, the distance change in the direction vertical to inflow direction has more obvious impact
on the average drag coefficient. For example, for Re � 20 and Da � 10–4, when dx equals D and dy increases from 2D to 3D,
CDave increases by 5.79%; when dy equals D and dx increases from 2D to 3D, CDave increases by 2.61%.

Keywords Multiple porous particles · Uniform and random spatial distribution · Flow pattern · Lattice Boltzmann method ·
Drag coefficient

1 Introduction

Particle–fluid andparticle–particle interactions canbewidely
seen in natural and industrial process and one particle and two
particles models were usually investigated in experiments
[1, 2] or simulations [3–10]. Though two particle model can
be regarded as the simplest model for multi-particles flow
which can reflect the interactions between particles to some
extent, it also has great limitations. In order to understand the
interactions between the particles and particles/fluid deeply,
two-dimensional fluid flow around multiple particles should
be studied.

Some scholars have analyzed the mechanical behavior of
the particle clusters and the variation of drag coefficient. For
example, O’Brien and Syamlal [11] carried out the exper-
iments to consider the influences of particle clusters. The
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gas and particle drag law is modified by the experiments
results. Sandeep and Zuritz [12] also conducted experiments
to study the drag of single and multiple sphere assemblies in
non-Newtonian fluid. The results show that when the parti-
cle concentration increases, the drag exerted on each sphere
in assembly increases. And one equation was established to
calculate the drag correction factor for the drag on a sphere in
the assembly. Beetstra et al. [13] used the lattice Boltzmann
method (LBM) to investigate the drag and flow characteris-
tics of irregularly shaped (spherical, star-shaped, H-shaped,
etc.) clusters. It is found that the drag coefficient of the parti-
cle clusters increases as the inter-particle distance increases
for these shapes. And when a particle in the particle cluster
is shielded by other particles in the flow direction, the par-
ticle’s drag decreases. When the particles clusters become
dispersed, the drag greatly increases. Shah [14] also used
LBMmodel to investigate the influences of clusters on drag.
They found that compared with random distribution, the
particles in the cluster have a lower drag under the same
simulation condition. With the total voidage increasing, the
drag decreases and the decrease is evident for voidage higher
than 0.7.Wei et al. [15] numerically quantified the interaction
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between the gas and cluster and an empirical correlation was
established. They discovered the clusters can significantly
influence the flow field.

In above researches, the voidage/distance between the par-
ticles are considered, but the voids inside the spheres or
particles are neglected. However, porous particles are gen-
eral in industry such as gasification and there is little research
about multiple porous particles. Compared with solid parti-
cles, porous particles allow fluid penetrating into them and
the flow characteristics are very different. So it is necessary
to investigate the flow characteristics around and through
multiple porous particles. In addition, the lattice Boltzmann
method was applied in these numerical simulations which
indicates it is a goodmethod to study the interactions between
the particles and particles/fluid. And compared with tradi-
tional method, LBM is easy to handle complex geometries
and it iswidely used in porousmedia [16, 17]. Therefore, two-
dimensional fluid flow around and through multiple porous
particles was numerically investigated based on the LBM in
this paper. Uniform spatial distribution and random spatial
distribution were considered and the effects of Re, Da and
the distance between the particles on streamlines and drag
coefficient were analyzed in detail.

2 Numerical method

2.1 Governing equations

Darcy-Brinkman-Forchheimer model [18] can fully reflect
the linear and nonlinear resistance term in the porous media
and therefore was employed in this paper. And the following
macroscopic governing equations [19] were used to describe
fluid flow in the porous particles.

Continuity equation:

∇ · 〈
u f

〉 f � 0 (1)

Momentum equation:

∂
〈
u f

〉 f

∂t
+

〈
u f

〉 f · ∇〈
u f

〉 f � − 1

ρ f
∇〈

p f
〉 f + υ∇2〈u f

〉 f + Fn

(2)

where
〈
u f

〉 f is the intrinsic phase average velocity and can

be defined as
〈
u f

〉 f � 1
V f

∫
V f

u f dV , and u f is the velocity
of the fluid, V is the representative volume and V f is fluid

volume within V . Similarly,
〈
p f

〉 f is intrinsic phase average

pressure which can be defined as the same way of
〈
u f

〉 f .
Fn is the total force, υ and ρ f are the kinematic viscosity
and density of the fluid, respectively. In order to simplify the

Fig. 1 D2Q9 model

writing and read easily, following we will use u to represent〈
u f

〉 f .

2.2 Lattice Boltzmannmethod

2.2.1 Lattice Boltzmann (LB) governing equations

(3)

mα (x + eαδt , t + δt ) − mα (x, t)

� −1

τ

[
mα (x, t) − meq

α (x, t)
]
+ δt Fα

wheremα(x, t) is the density distribution function at position
x and time t along α direction. D2Q9 lattice model [20] was
employed as shown in Fig. 1 and eα can bewritten as follows:

eα �

⎧
⎪⎨

⎪⎩

(0, 0) α � 0
c
(
cos

[
(α − 1) π

2

]
, sin

[
(α − 1) π

2

])
α � 1, 2, 3, 4√

2c
(
cos

[
(2α − 1) π

4

]
, sin

[
(2α − 1) π

4

])
α � 5, 6, 7, 8

(4)

here c is the lattice speed and is defined by c � δx/δt , δx and
δt are lattice step and time step, respectively.

On the right side of Eq. (3), the equilibrium density dis-
tribution function meq

α (x, t) and forcing term Fα are defined
by

meq
α (x, t) � ρ f wα

[

1 +
eα · u
c2s

+
(eα · u)2

2c4s
− u2

2c2s

]

(5)

Fα � ρ f wα

(
1 − 1

2τ

)[
eα · Fn

c2s
+
eα · u
c4s

(eα · Fn) − u · Fn

c2s

]

(6)

where wα is the weighting factor and in D2Q9 model, w0 �
4/9, w1−4 � 1/9, w5−8 � 1/36. cs � c/

√
3 is sound speed.

The total force Fn in Eqs. (2) and (6) is expressed as

Fn � −εν

K
u − ε2Fε√

K
u|u| (7)
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where ε and K are porosity and permeability, respectively.
Geometry function Fε and kinematic viscosity ν can be cal-
culated as follows:

Fε � 1.75√
150ε3

(8)

ν � c2s (τ − 0.5)δt (9)

here τ is relaxation time.
Furthermore, the density and velocity can be calculated

from the density distribution function mα(x, t):

ρ f �
∑

α

mα(x, t) (10)

ρ f u �
∑

α

eαmα(x, t) +
1

2
δtρ f Fn (11)

Combined Eqs. (7) and (11), u can be calculated by

u� v

q0 +
√
q20 + q1|v|

(12)

where temporary velocity ν is defined as

ρ f v �
∑

α

eαmα(x, t) (13)

The parameters q0 and q1 in Eq. (12) are defined by

q0 � 1

2

(
1 +

δt

2

εν

K

)
, q1 � δt

2

ε2Fε√
K

(14)

2.2.2 Dimensionless parameters

(1) Reynolds number
The Reynolds number (Re) used in this study is defined
by:

Re � u∞D

ν
(15)

where u∞ is the velocity of the fluid at the inlet and D
is the diameter of the porous particles.

(2) Darcy number
The Darcy number (Da) can be evaluated from the
Carman-Kozeny relation [21],

Da � K

D2 � 1

180

ε3d2p
D2(1 − ε)2

(16)

here dp is the diameter of a particle in the porous aggre-
gate.

(3) Drag coefficient and lift coefficient
The momentum exchange method [22] is applied to
obtain the total fluid force FT acting on one porous
particle:

(17)

FT �
∑

allxb

∑

α ��0

eα [mα(xb, t) + mα(xb + eαδt , t)]

× [1 − w (xb + eαδt)]

where xb is the boundary node of the porous particle and
mα is the density distribution function with eα � −eα .
There are two values of w(i,j): zero at fluid nodes and
one at porous particle nodes.
The drag coefficient (CD) and lift coefficient (CL) are
obtained from the total fluid force.

CD � Fx
0.5ρ f U 2

refL ref
(18)

CL � Fy

0.5ρ f U 2
refL ref

(19)

here Fx is x-component and Fy is y-component of the
forceFT .Uref andLref are the characteristic velocity and
characteristics length, respectively. The characteristic
velocity we used here is the inlet velocity of the fluid
and the characteristic length is the diameter of the porous
particle.

(4) Average drag coefficient and average lift coefficient
In addition, the average drag coefficient (CDave) and
average lift coefficient (CLave) can also be calculated
by:

CDave � 1

N

N∑

i�1

CDi (20)

CLave � 1

N

N∑

i�1

CLi (21)

where N is the quantity of all porous particles. CDi and
CLi are the drag coefficient and lift coefficient of the i-th
porous particle.

2.3 Computational domain

Steady flow around and through multiple porous particles
was studied numerically. Uniform and random spatial dis-
tributions were considered in the paper and here we took
uniform spatial distribution as an example to illustrate the
computational domain as depicted in Fig. 2. The diameters
of the particles were D. The quantity of the porous particles
(N) was nine and the column (p) and row (q) of the particles
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Fig. 2 Computational domain and particles’ serial numbers

Table 1 Test of the mesh independence at Re� 20,Da� 10–3 and dx �
dy � 2D

Mesh Grids numbers CDave Relative error (%)

1 1200 × 900 1.398 /

2 1600 × 1200 1.395 0.22

3 2000 × 1500 1.393 0.14

are both three. The distance between the first column and the
inlet and outlet were LF and LR and the distance between
the particles in x direction and y direction were dx and dy.
The particles were symmetrically distributed in y direction.
Fluid flowed into the computational domain with a uniform
velocity U∞ and was fully developed at the outlet bound-
ary. Besides, non-slip boundary condition was imposed on
the top and bottom wall. For the convenience of analysis, the
particles’ serial numbers were also shown in Fig. 2.

2.4 Validation

Because the grids numbers can greatly affect the accuracy of
the simulation results, several meshes were chosen to test the
independence of themesh. Fluid flowaround nine (p� q� 3)
particles with the same diameter and permeability as shown
in Fig. 2was simulated and the distance between the particles
was 2D (dx� dy� 2D). The test Reynolds number andDarcy
number were 20 and 10–3, respectively. The average drag
coefficients and relative errors of the meshes are shown in
Table 1. From the table, we can see the relative error between
Mesh 1 andMesh 2was 0.22% and the relative error between
Mesh 2 and Mesh 3 was 0.14%. Therefore, considering the
computation resources and accuracy, Mesh 2 was chosen to
carry out all simulations in this paper. Under this grid size,

the particles’ diameter D expressed by the number of grids
is 40.

Because there is little research about multiple porous par-
ticles, the method was applied to simulate fluid flow around
one particle to test the accuracy. Let p � q � 1 and there is
only one particle in the computational domain. The porous
particle was at the center of y-axis with distances of LF and
LR to the inlet and outlet boundary. The comparison of drag
coefficient at different values of Re and Da is depicted in
Fig. 3. We can see that the simulated results were in good
agreement with the results in the previously published lit-
eratures [2, 3, 6, 9, 10]. Therefore, it is concluded that the
method can be used to simulate fluid flow around and through
porous particles accurately.

3 Results and discussions

In the present study, fluid flow around and through nine
porous particles was investigated numerically within the fol-
lowing parameter ranges: 10 ≤ Re ≤ 40, 10–6 ≤ Da ≤ 10–2,
D ≤ dx ≤ 4D, D ≤ dy ≤ 4D.

Several situations were considered and the effects of
above parameters on the flow characteristics were analyzed
in detail.

3.1 Particles with uniform spatial distribution

3.1.1 The streamlines analysis with dx � dy

Fluid flowing around nine (p � q � 3) identical (same diam-
eter and permeability) porous particles was simulated to
analyze the influences of Re, Da and the distances between
the particles (dx and dy). Firstly, the particles were uniformly
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Fig. 3 The comparison of drag
coefficient of one particle
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Fig. 4 The streamlines for the
flow around and through nine
identical porous particles at Re �
20 for a dx � dy � D and b dx �
dy � 3D

distributed and the distance between the particles in the x and
y direction were the same (dx � dy).

Figure 4 shows the streamlines for the flow around and
through nine identical porous particles at Re � 20 for dx �
dy � D and dx � dy � 3D. It is observed that when Da �
10–6, there is little fluid penetrating through the particles and
almost all fluid flow around the particles. In other words, the

flow patterns of the porous particles atDa � 10–6 are similar
to those of impermeable solid particles and the porous parti-
cles can be regarded as solid particles. When Da increases,
the resistance of the particles to the fluid decreases and the
fluid can flow through the permeable particles. Besides, the
larger the Darcy number, the smaller the degree of fluid devi-
ation in the particles.
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Fig. 5 The streamlines for the flow around and through nine identical
porous particles at Re � 40 and dx � dy � D

For dx � dy � D, the distance between the particles are
small and the fluid is difficult to enter the gap between the
particles. Besides, the particles form a cluster which has a
great interference to the fluid and two recirculating symmet-
rical wakes are formed behind the cluster at different values
of Da. When the distance increases, the particles are dis-
persed and can’t be regarded as a cluster. As depicted in
Fig. 4b, when dx and dy increases to 3D, most fluid flows
through the space between the particles with low resistance
due to the larger inter-particle distance, especially when the
Darcy number is low. This is because at high Darcy number,
the resistance of porous particles to the fluid is small. And
the distribution of the particles is dispersed which no longer
exerts an overall influence on the fluid like the particle clus-
ter. The flow characteristics of the fluid around each particle

are different. At Da � 10–6, two wakes are formed behind
the particles at p � 1. For #4, because it is situated at the
center of y-axis, two symmetrical wakes are formed. But for
#1 and #7, two asymmetrical wakes are formed behind them.
Furthermore, the particles at p � 1 have significant effects
on the particles at p� 2 and p� 3. Similarly, #4 is situated at
the symmetric axis in y direction and when fluid flow around
it, the fluid keep symmetrical. As a result, two symmetrical
wakes are also formed behind #5 and #6. Compared with
#4, #1 and #7 cause a larger fluid deflection when fluid flow
around them and therefore, no wake is formed behind #2, #3,
#8 and #9. When Da increases, the fluid can penetrate into
the particles and the interference to the fluid is reduced. At
Da � 10–2, the wakes behind all particles vanish totally.

In order to better understand the influences of Reynolds
number, the streamlines atRe� 40 and dx � dy�D are plot-
ted as shown in Fig. 5. Compared with Fig. 4a, it is observed
as Re increases, the symmetrical wakes behind the cluster
increase obviously due to the increase in inertial force and
the phenomenon can also been seen in the situation where
fluid flow around one porous particle.

3.1.2 The average drag coefficient analysis with dx � dy

Figure 6 shows the average drag coefficient of the nine iden-
tical porous particles at Re � 20 and 40 for different values
of dx(dy). It is observed that the average drag coefficient
increases with dx(dy) increases at Re � 20. Because as the
distance between the particles increases, the shading effect
of the front particles on the rear particles reduces. Besides,
we can also see that when dx(dy) increases, the growth rate

Fig. 6 The average drag
coefficient for the flow around
and through nine identical porous
particles at Re � 20 and 40 for
different values of dx (dy)
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Fig. 7 The drag coefficient of the nine identical porous particles at Re � 20 for a dx � dy � D and b dx � dy � 3D
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Fig. 8 The lift coefficient of the nine identical porous particles at Re � 20 for a dx � dy � D and b dx � dy � 3D

(a) dx/dy=0.5                            (b) dx/dy=2 

Fig. 9 The streamlines of nine identical porous particles at Re � 20 and Da � 10–3 for a dx(dy) � 0.5 and b dx(dy) � 2.0
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Fig. 10 The average drag
coefficient of nine identical
porous particles at Re � 20 for
different values of Da and dx(dy)
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Fig. 11 The streamlines of nine identical porous particles with random distribution at Re � 20 and Da � 10–3

ofCDave slows downwhich indicates the influences of dx(dy)
gradually decrease. It is expectedwhen the distance increases
to a certain value, the average drag coefficient will reach a
maximum value and then remains unchanged. At Re � 40,
CDave increases for D ≤ dx(dy) ≤ 2D and almost keeps con-
stant for 2D ≤ dx(dy) ≤ 4D. That indicates the effects of
dx(dy) decrease as the inertial force increases. Furthermore,
under the same Da and dx (dy), CDave is in a reduction with
Re increasing.

When Darcy number increases, the resistance of the par-
ticles on the fluid reduces, and therefore, the average drag
coefficient decreases for 2D≤ dx(dy)≤ 4D. At dx � dy�D,
like the analysis in Sect. 3.1, the particles form a cluster and
the influences of multiple particles on the fluid are presented
as the overall effect of the cluster on the fluid. Therefore,
for 10–6 ≤ Da ≤ 10–3, the average drag coefficient of the
particles almost remains unchanged with Da increasing and

only at Da � 10–2, CDave increases a little. However, com-
pared with the increase resulted from Darcy number at other
dx(dy), this increase can be ignored.

At Re � 20, the average drag coefficient shows different
tendency to Da when dx � dy � D and dx � dy � 3D. To
better understand the phenomenon, Fig. 7 shows the drag
coefficient of each particle at dx � dy � D and dx � dy �
3D. i is the serial number of the particles as shown in Fig. 2.

For dx � dy�D, it can be seen that the drag coefficient of
each particle atDa� 10–2 is basically the same asDa� 10–4

and for dx � dy � 3D, the drag coefficient of all particles
at Da � 10–4 are evidently larger than those at Da � 10–2.
As a result, at dx � dy � 3D, the average drag coefficient at
Da � 10–2 is significantly smaller than that at Da � 10–4.
In addition, CD of the particles decreases as p increases.
Comparing Fig. 7a with b, when dx (dy) increases to 3D, CD

of particles at p� 1 decreases andCD at p� 2 increases. It is
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Fig. 12 The a average drag coefficient and b average lift coefficient of nine identical porous particles for a specific random distribution and uniform
distribution at Re � 20
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Fig. 13 The a average drag coefficient and b average lift coefficient of nine identical porous particles for four times random distributions at Re �
20

noticed that positive or negative of the drag coefficient means
that the direction of the force is different. Therefore, for p �
3, the force exerted on the particles changes in direction and
the magnitude decrease.

Because the particles are uniformly distributed and sym-
metric about the y axis, the average lift coefficient of the
particles equals zero. But for the lift coefficient of every par-
ticle, not all equals zero. Figure 8 indicates the lift coefficient
of the nine identical porous particles at Re � 20 for dx � dy

� D and dx � dy � 3D. The particles at q � 2 is at the
symmetric axis in y direction, the lift coefficients equal zero.
At dx � dy � D, the lift coefficients of #1 and #7 for Da �
10–2 is a little larger than those for Da � 10–4. CL of #2, #3,
#8 and #9 at Da � 10–2 is the same as that at Da � 10–4.
In addition, the lift forces exerted on particles at the q � 1
and q � 3 are opposite. At q � 1, the direction of the lift
force is downward. Therefore, the cluster has the tendency
to gather together more. When dx (dy) increases to 3D, CL
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(c) different Da and different D

(a) same Da (Da=10-3) and same D (D=40) 

(b) same Da (Da=10-3) and different D   

Fig. 14 Fluid flow around and through nine porous particles for a spe-
cific random distribution under different particles conditions

of the particles at q � 1 and q � 3 for Da � 10–2 is smaller
than those forDa� 10–2. Furthermore, the lift forces exerted
on particles at the q � 1 and q � 3 are also opposite, but the
direction of the lift force is upward at q � 1, which indicates
the particles tend to disperse.

3.1.3 The streamlines analysis with dx �� dy

In order to discuss the influences of the distance between the
particles in x and y direction, following we consider the case
of dx �� dy. The range of dx(dy) is from 0.25 to 4.0. When
dx � D, dx(dy) varies from 0.25 to 1.0; when dy � D, dx(dy)
varies from1.0 to 4.0. Figure 9 depicts the streamlines of nine
identical porous particles atRe� 20 andDa� 10–3 for dx(dy)
� 0.5 and dx(dy)� 2.0. Comparedwith Fig. 4a, it is observed
under the sameRe andDa, when dy increases to 2D (Fig. 9a),
the wakes behind the cluster vanish but wakes appear behind
theparticles ofp�3.Most fluidflow through thegapbetween

the particles in y direction.When dx increases to 2D (Fig. 9b),
the flow field resembles to Fig. 4a to some degree. And at
the gap between p � 2 and p � 3, there exist two vortices.
Besides, area covered by the wakes extends to the inside of
the particles.

3.1.4 The average drag coefficient analysis with dx �� dy

At the same time, the average drag coefficient for differ-
ent values of Da and dx(dy) is shown in Fig. 10. As dx(dy)
increases, the average drag coefficients increase for 0.25 ≤
dx(dy) ≤ 0.33; then it drop dramatically and reach a mini-
mum when dx(dy) increases to 1.0; for 1.0 ≤ dx(dy) ≤ 4.0,
increase slightly. That indicates the distance change in the
y direction has more significant impact on the average drag
coefficient. For instance, for Da � 10–4 and Re � 20, at dx
� D, when dy increases from 2D to 3D, CDave increases by
5.79%; at dy � D, when dx increases from 2D to 3D, CDave

increases by 2.61%. Whendx(dy) increases to 1.0, the flow
pattern changes dramatically and the average drag coefficient
drop greatly. Under the same dx(dy), with Da increasing,
CDave decrease for 0.25 ≤ dx(dy)≤ 0.5; and increase for 1.0
≤ dx(dy) ≤ 4.0.

3.2 Particles with random distribution
within a certain region

3.2.1 The particles with the same Darcy number
and diameter

In reality, particles are rarely uniformly distributed as dis-
cussed above, so following we will discuss the situation that
particles are randomly distributed. Firstly, fluid flow around
and through nine randomly distributed porous particles with
the same diameter and Darcy number was considered. In
order to compare with the results of the uniform distribution
(dx � dy � 4D), the distribution of particles is restricted
within a certain range. Figure 11 shows two kinds of stream-
lines under random spatial distributions. It can be seen that
despite under the same Darcy number and Reynolds num-
ber, the distribution of porous particles is quite different.
Therefore, the characteristics of the flow pattern are also
completely different: for Fig. 11a, there is a large vortex at a
certain distance behind the porous particles; but for Fig. 11b,
there are only two small vortices behind the two porous par-
ticles.

First of all, the particles have a specific random distribu-
tion (Fig. 11a) and we analyze the relationship between the
average drag/lift coefficient and Darcy number. The average
drag coefficient and average lift coefficient of nine identical
porous particles with random distribution and uniform dis-
tribution (dx � dy � 4D) at Re � 20 for different values of
Da are depicted in Fig. 12. It is observed that for a specific
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Fig. 15 The a average drag coefficient and b average lift coefficient of nine particles for a specific random distribution with different D

random distribution, when Da increases, the average drag
coefficient decreases which is the same as the uniform distri-
bution. CDave of the random distribution is larger than that of
the uniform distribution and with Da increasing, the differ-
ence between them becomes larger. Because the particles’
distribution is irregular, the average lift coefficients don’t
equal zero. As indicated in Fig. 12b, for the specific random
distribution, the direction of the total lift force exerted on
the nine particles is downward and CLave decreases with the
increase of the Da.

Figure 13 shows the average drag coefficient and aver-
age lift coefficient of the particles for random distributions.
Four random distribution simulations are performed for each
Darcy number (Da � 10–4, 10–3 and 10–2). It is observed
that the average drag and lift coefficient change irregularly
whenDa increases and although under the sameDa, the four
random simulations of CDave and CLave are very different.
Because the randomly distributed particles cause irregular
flow field characteristics shown in Fig. 11.

3.2.2 The particles with different Darcy numbers
or diameters

In the section, fluid flow around nine randomly distributed
particles with random Da or D was investigated. The fluid
has the same inlet velocity as discussed above. The particles’
diameter varied from 30 to 50 and the Darcy number varies
from 10–6 to 10–2. Figure 14 shows the streamlines for a
specific random distribution. The porous particles have the
sameD andDa (D� 40,Da� 10–3) in Fig. 14a, the sameDa
(Da� 10–3) and different diameters in Fig. 14b and different

Da and different diameters in Fig. 14c. It is also noted that
the diameters of porous particles in Fig. 14c are the same
as those in Fig. 14b. Comparing Fig. 14a, b with c, when
the diameters or Darcy number of porous particles change,
the overall flow pattern is similar-one vortex is formed at a
certain distance behind the particles. However, the position
of the vortex has changed. Comparing Fig. 14a with b, when
the diameters change, the vortex moves to the upper left.
Comparing Fig. 14bwith c, when theDarcy numbers change,
the vortex moves to the upper left further.

The average drag and lift coefficient of nine particles for
a specific random distribution with different D is depicted
in Fig. 15. In order to compare with the results of particles
with the same Da and D, CDave and CLave of the particles
with the same Da and D are also shown in Fig. 15. It is
observed that despite the particles’ diameter are different,
for a specific random distribution, the CDave and CLave were
in a reduction whenDa varies from 10–4 to 10–2 which is the
same as the simulation results of the particles of the sameDa
and D. However, under the same Da, the CDave and CLave of
the particles with the same Da and different D is larger than
those of the particles with the same Da and D.

3.3 Particles with random distribution
within the whole computation region

In Sect. 3.2, in order to compare with the results of the
uniform distribution, the particles which are randomly dis-
tributed in a certain region were studied, and in Sect. 3.3,
we expand the distribution range to the whole computation
region except the wall boundary to avoid the wall effect.
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Fig. 16 The flow field of nine particles with different D and Da for a
larger random distribution

One simulatedflowfield is shownasFig. 16. The particles’
diameter and Darcy number are different. It is observed that
when the fluid flow through the porous particles, the velocity
of the fluid decreases. When particles are close, the behind
particle are severely influenced by the low velocity resulting
from the front particle. And when the distance between the
particles becomes larger, the velocity of the fluid passing
through the front particles gradually recovers as it flows to
the behind particles.

Figure 17 shows the average drag and lift coefficient for
several times random distributions. It can be seen for the
seven times randomdistribution, although every time the par-
ticles’ diameter and Darcy number are different, there is not

much difference between the average drag coefficient. But
the average lift coefficient. changes greatly. This is because
when the region where the particles are randomly distributed
is large enough, the porous particles can be completely dis-
persed in the computational domain. The random spatial
distribution of the particles and the random diameter and
Darcy number generated by the computer system may have
a little effect on the drag coefficient. However, since the dis-
tribution of particles is not symmetrical about the y-axis, it
will inevitably lead to a large difference in the lift coefficient.

4 Conclusions

Two-dimensional steady flow around and through nine
porous particles was investigated numerically. Uniform and
random spatial distribution were both considered and the
influences of Reynolds number, Darcy number and the dis-
tance between particles on the flow characteristics were
analyzed in detail. Some important conclusions are summa-
rized as follows:

(1) When dx � dy � D, the particles form a cluster which
exerts an overall influence on the fluid, and therefore,
two recirculating symmetrical wakes are formed behind
the cluster. When dx (dy) increases, most fluid flows
through the space between the particles with low resis-
tance and this phenomenon is more obvious at low Da.

(2) The average drag coefficient increases as dx(dy)
increases, but the growth rate gradually slows down
which indicates the influences of dx(dy) decrease.
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Fig. 17 The a average drag coefficient and b average lift coefficient of the particle with different D and Da for a larger random distribution
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(3) The distance change in y direction has more significant
impact on the average drag coefficient. For instance, for
Da � 10–4 and Re � 20, at dx � D, when dy increases
from 2D to 3D, CDave increases by 5.79%; at dy � D,
when dx increases from 2D to 3D, CDave increases by
2.61%.

(4) The flow field and drag coefficient are closely related
to the distribution of particles. For a specific random
distribution, the change of average drag coefficient with
Da is similar to the uniform spatial distribution. When
the region where the particles are randomly distributed
is large enough, the random distribution may have little
effect on the drag coefficient.
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