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Abstract
Mathematical modeling of the blood flow with a resolved description of biological cells mechanics such as red blood cell
(RBC) has been a challenge in the past decades as it involves physical complexities and demands high computational costs.
In the present study, we propose an approach for efficient simulation of blood flow with several suspended RBCs. In this
approach, we employ our previously proposed reduced-order model for deformable particles (Nair et al. in Comput Part Mech
7:593–601, 2020) to mimic the mechanical behavior of an individual RBC as a cluster of overlapping spheres interconnected
by flexible mathematical bonds. This discrete element method-based model is then coupled with a fluid flow solver using
the immersed boundary method with continuous forcing in the context of computational fluid dynamics-discrete element
method (CFD-DEM) coupling. The present computational method is tested with a couple of validation cases in which the
single RBC dynamics, as well as the blood flow with several RBCs, were tested in comparison with existing literature date.
First, the RBC deformation index in shear flow at different shear rates is studied with a good accuracy. Then, the blood flow
in micro-tubes of different diameters and hematocrits was simulated. The key characteristics of blood flow such as cell-free
layer (CFL) thickness, Fahraeus effect and the relative apparent viscosity are used as the validation metrics. The proposed
approach can predict the formation of the migration of RBC toward the tube center-line and the CFL thickness in good
agreement with previous measurement and simulations. Furthermore, the model is employed to study the CFL enhancement
for plasma separation based on channel constriction. The simulation results compute the CFL thickness downstream of the
channel constriction in good agreement with the experiments in a wide range of flow rates and constriction lengths. The
original contribution of this study lies in proposing an efficient resolved CFD-DEM simulation method for blood flows with
many RBCs which can be employed for numerical investigation of bio-microfluidic applications.

Keywords Red blood cell mechanics · Reduced-order model · Microfluidics · Immersed boundary method · Blood flow
simulation

1 Introduction

Blood is an important physiological fluid which is vital for
the transportation of oxygen and nutrients to various parts of
the body. It consists of red blood cells (erythrocytes), white
blood cells (leukocytes) and platelets (thrombocytes) that are
suspended in the blood plasma. Under ideal conditions, the
volume concentration of RBCs in the blood (hematocrit) is
around 45% [1]. A healthy human RBC has a biconcave disc
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shape with an approximate diameter of 8 µm and a thick-
ness of around 2 µm. They are highly deformable due to
which they can pass through channels having smaller diame-
ters [2]. Since RBCs are the largest component in blood, they
play a major role in determining the rheological behavior of
blood. From in vitro experiments conducted by [3], it was
observed that the flow behavior was influenced by the col-
lective dynamics ofRBCs. In fact, the cross-streammigration
of the RBCs towards the core of the flow forms a cell-free
depletion layer (CFL) near the surrounding walls. Since the
flow core is populated with RBCs, it has a higher viscos-
ity compared to the CFL near the tube walls, which in turn
produces a lubricating effect. This effect increases with the
CFL thickness and reduces the apparent viscosity, which is
known as the Fahraeus–Lindqvist effect [4,5]. Therefore, the
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blood flow characteristics are majorly governed by the RBC
dynamics. This justifies the significant amount of investiga-
tions from different perspectives on red blood cells ranging
from the mechanobiological behavior of an individual RBC
towards the features of RBC-populated flows (e.g., aggre-
gates and coagulation).

Numerical simulationof bloodflow is challengingbecause
of the strongly-coupled interactions between the biological
cells including the erythrocytes, leukocytes and thrombo-
cytes and the surrounding blood plasma. Several mathemat-
ical models have been developed in recent years, such as the
continuum-based membrane models [6–8] and the finite ele-
mentmodels [9–11], which simulate deformable vesicles and
RBCs in a coupledfluid environment. Besides, particle-based
springnetworkmodels [12–18] assumeanRBCmembrane as
a network of springs connectingmassless points.While some
of these methodologies treat both the RBCs and the fluid sys-
tem as a particle system, others couple the RBC membrane
model with a fluid flow solver to simulate the flow. All these
methods can result in accurate modeling of RBCs; however,
they prove to be computationally expensive when simulating
complex flow scenarios.

To overcome the computational costs, reduced-order
approaches are commonly employed to reduce the complex-
ity of the physical problem to a simpler description, which is
less expensive to model. In the context of RBC in blood flow,
such reduced-order models usually simplify the RBC shape
and deformation dynamics to a resembling discrete entity
which is then coupled with a computational fluid dynamics
(CFD) platform to enable modeling the RBCs in interac-
tion with surrounding blood plasma. [19] proposed a torus
of overlapping colloidal particles connected using worm-like
chain (WLC) springs to represent anRBC. Thismodel is then
coupled to a Dissipative Particle Dynamics (DPD) method
and revealed a good degree of accuracy with a reduction
in computational cost, but also lacked some of the critical
behaviors of RBC such as viscoelasticity and tank-treading
behavior. This model is recently used by [20] in combination
with the lattice Boltzmann method. From a mathemati-
cal modeling viewpoint, such a combination of different
sub-models is also common in the simulation of dispersed
multiphase systems, e.g., particle-laden flows. In this con-
text, the coupling between computational fluid dynamics and
discrete element method (CFD-DEM) is employed to model
the interaction between suspended particles and the carrier
fluids. Therefore, it can provide another proper modeling
framework for suspended RBCs in blood plasma. However,
the CFD-DEM techniques have been conventionally used for
rigid particles, and the state-of-the-art CFD-DEM still lacks
a robust model for deformable particles. Following the con-
cept of model order reduction, we have recently introduced
a reduced-order model for deformable particles in the frame
of DEM [21]. In this model, a single RBC consists of several

constituent spheres with their centroids interconnected by
mathematical elastic bonds. This model has revealed a good
level of accuracy for modeling the mechanical behavior of a
single RBC in response to static and dynamic loads. When
coupledwith the fluidflowsolver, thismodel has shown a rea-
sonable performance by predicting the drag force on a single
RBC in a channel flow compared with experimental mea-
surements [21]. It has to be noted this coupling is established
by adopting the resolved CFD-DEM methodology, which
is technically an immersed boundary method with fictitious
domain for the flow where the DEM describes the particle
interactions.

In the present study, we employ this reduced-order model
in a more complex situation where multiple RBCs are
involved. The inter-cellular interactions are modeled using a
Hertz–Mendelian model with the attractive forces enforced
utilizing a cohesive force based on the Morse potential. We
investigate the performance of this reduced-order approach
in predicting the blood flow characteristics in amicrochannel
such as the blood velocity profile, the formation of the CFL,
the non-Newtonian macroscopic viscosity (also referred to
as apparent viscosity) and the Fahraeus effect.

The paper is structured as follows. In Sect. 2, the math-
ematical concept for developing the reduced-order model
and the coupled solver is described including the details of
resolved CFD-DEM and the immersed boundary method.
Additionally, the interaction model for inter-cellular interac-
tions and the cohesion model will be discussed. Section 3
presents the description of the simulation setup as well as a
detailed discussion on the results. The paper ends with the
conclusion in Sect. 4.

2 Mathematical model description

The classical Navier–Stokes equations describe the flow of
an incompressible, viscous fluid as given by

∇ · u = 0 (1)
∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇ p + μ∇2u + Fg + FB (2)

where u is the fluid velocity field, ρ is the fluid density, μ is
the dynamic viscosity of the fluid, p is the pressure, Fg is the
body force due to gravity and FB is the momentum source
term acting on the fluid. The motion of particles is governed
by Newton’s laws of motion, which read
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In this systemof equations, g is the gravitational acceleration,
mp is themass of the particle, F f

p is the hydrodynamic forces
acting on the particle and F p

p and Fw
p are the particle–particle

and particle–wall interaction forces, respectively. Fext
p is the

external force acting on the particle which comes from cohe-
sion, adhesion and other interaction forces. Ip is the second
moment of inertia of the particle, ωp is the angular velocity,
and r is the distance between the particle centroid and a point
on the surface of the particle. For a sphere, the moment of
inertia can be calculated as I = 2mr2

5 .
Coupling between the fluid phase and the discrete particle

phase is performed in the context ofCFD-DEMmethodology
[22]. There exist two primary classes of CFD-DEM based
on their scale of resolution. In the unresolved CFD-DEM,
the particle size is much smaller than the finite volume cell.
The fluid–particle interactions are not fully resolved and the
hydrodynamic forces are calculated from mathematical cor-
relations, whereas in resolved CFD-DEM, the particle size is
larger than the finite volume cell as schematically depicted
in Fig. 1a. This allows to achieve a fully resolved description
of the particle–fluid interactions. The present reduced-order
model is also developed based on the resolved CFD-DEM
approach to account for RBC deformation. Thus, this tech-
nique is briefly introduced in the following section.

2.1 Resolved CFD-DEMmethod

The resolved CFD-DEM is technically a combination of
the immersed boundary (IB) method [23] with the DEM.
In this technique, the particle is assumed as an immersed
body in the fluid domain and its influence on the fluid is
considered in a coupled manner. There are two common
approaches to account for the interactions between fluid and
immersed particle. A direct forcing method can be used to
correct thefluidflowwith the particle velocitywhich enforces
a no-slip boundary condition [24,25]. This methodology is
severely dependent on the spatial discretization since an addi-
tional immersed boundary flux has to be calculated to keep
the velocity field divergence-free. The continuous forcing
approach is to introduce a momentum source in the contin-
uous momentum equation before discretization [24]. This
method requires no body-conforming moving mesh and this,
in turn, reduces the computational cost and complexity sig-
nificantly. Following the latter,wehave incorporated a porous
media approximation,wherein the source term in themomen-
tum equation is calculated by considering the particle region
as a low permeability porous medium (also known as the
penalization method [26–28]).

Thus, the source term is added directly to the momen-
tum equation before discretization, and hence, the approach
is independent of the spatial discretization. Therefore, the

Fig. 1 a Schematics of an immersed body in a fluid domain. Ω f and
Ωs are the fluid and solid domain, and Γ f and Γs are the boundary
surfaces of the fluid and solid domains, respectively. b Illustration of
the solid volume fraction α within a finite volume grid cell

momentum source term in Eq. 2 reads

FB = ρα
(
up − u

)

κΔt
(5)

where u and up are the fluid and particle velocity vectors,
respectively, and α is the solid volume fraction determining
the cells that are fully occupied by the particle (α = 1), by the
surrounding fluid (α = 0) and at the interface (0 < α < 1)
as shown in Fig. 1b. The dependency to α ensures that
the momentum forcing term is only imposed at the parti-
cle regions. κ is the permeability of the solid region which
enforces the rigid body constraint. In this method, the fluid is
allowed to penetrate the particle and the degree of penetration
is controlled by κ . For solid regions 0 < κ � 1, and in this
study κ = 10−7 is employed [27,28]. It is worth mentioning
that this permeability concept is the essence of our current
continuous forcing implementation, which was not adopted
in our previous work [21].

It has to be noted that the IBmethod itself has been widely
used for modeling cell-loaded blood flow [10,18,29–31], but
the original contribution of the present study is to employ this
concept in combination with our DEM-based for deformable
particles as briefly presented in the following section.
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Fig. 2 a A reduced-order RBCmodel with 10 constituent spheres. The
black lines are the bonds between the spheres, and the dotted white
circle shows the constituent sphere. b The flexible bond between two
adjacent constituent sphere with the imposed forces and moments

2.2 Description of the reduced-order RBCmodel

A reduced-order model for the deformable particles has been
proposed in our previous work [21] based on the dynam-
ics of RBC. The model consists of overlapping constituent
spheres which represent the contour of an RBC as schemat-
ically depicted in Fig. 2a. The deformability is introduced
using flexible bonds between the centroids of the constituent
sphere (Fig. 2b).

The bonds can translate and rotate based on the forces and
torques acting on the constituent spheres. The bond forces
and moments are calculated incrementally [32]

dFb = Kbvrδt (6)

dMb = Sbωrδt (7)

Kb = EbAb

lb
(8)

Sb = GbAb

lb
(9)

where Fb and Mb are the bond forces and moments, vr and
ωr are the relative translational and angular velocities, and
Kb and Sb are the normal and bending stiffness of the bonds,
respectively. Eb and Gb are the Young’s and Shear modulus
of the bond that can be related to the material properties of
the body. Ab and lb are the cross-sectional area and the length
of the bond. The flexible bonds behave similar to cantilever
beams; thus, under no damping, they undergo free oscillation
under external loads. Thus, it is required to counter this oscil-
lation through damping forces. Furthermore, the damping
forces must account for dissipation of energy due to the elas-
tic force propagation within the bonds. Velocity-dependent
damping forces and moments are considered as

Fb
d = 2β

√
mKbvr (10)

Mb
d = 2β

√
I Sbωr (11)

where vr and ωr are the relative translational and angular
velocities, respectively, and β is the damping coefficient.
These forces and moments are added to equations 3 and 4 as
the external particle force to preserve the viscoelastic behav-
ior of RBC. It has to be noted that a calibration study based
on the viscoelastic behavior was conducted in our previous
work [21].

2.3 Inter-cellular interactionmodel

The hydrodynamic interactions of RBC with the plasma as
well as the inter-cellular interactions, such as aggregation
of RBCs, affect the blood viscosity significantly. Adjacent
RBCs interact with each other and form coin-like stacked
configurations known as rouleaux, which is a reversible pro-
cess [33]. Due to the formation of rouleaux, the viscosity of
blood increases at low shear rate flows and hence can cause
problems like a blockage in microfluidic channels at low
shear rates.

In numerous studies, the interaction between RBCs is
modeled using the Morse potential force [34,35]. Accord-
ingly, the RBCs have two interaction regimes—a weak
far-field attractive force and a repulsive force in the collision
regime. This provides a model by which the aggregation and
disaggregation of RBCs can be simulated at low and high
shear rates. In the low-dimensional model by [19], this inter-
action between RBCs was modeled by computing the forces
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between the center-of-masses of RBCs and considering their
orientation with respect to each other [35].

In the framework of DEM, the interaction between two
spherical particles is based on the soft-sphere approach
[36,37], where small overlaps between spheres are allowed
to calculate the interaction forces. The elastic forces are
dependent on the material properties of the spheres such as
the Youngs modulus (E), Poissons ratio (ν) and the degree
of overlap that is permitted. The contact between two soft
spheres is modeled mainly according to the linear Hooke’s
law or based on the nonlinear Hertz theory given as [36,37]

Fn,contact = 4

3

Ei E j

Ei
(
1 − ν j

) + E j (1 − νi )
R(2−a)
i j hai jni j (12)

where subscripts i and j are the two adjacent spheres,
and a is the parameter to switch between a linear relation
(a = 1) and a nonlinear one (a = 3/2). In this study, a
non-linear Hertzian model is used for modeling the inter-
action between the constituent spheres. E and ν are the
Young’s modulus and the Poisson’s ratio, respectively. Ri j is

the reduced radius (Ri j = Ri R j
Ri+R j

) and hi j denotes the overlap
between the spheres. Fn,contact is one of the major particle–
particle interaction forces that contributes to the summation
of particle–particle interaction forces (term F p

p in Eq. (3)).
In this study, Fn,contact is only computed for the constituent
spheres interacting from two different RBCs and is switched-
off between constituent spheres that belong to the sameRBC.

Besides, RBC aggregation is an important phenomenon
that has been observed in hemorheology. Attractive poten-
tials exist between RBCs and this leads to the formation of
rouleaux at low shear rates which breaks down as the shear
rate increases. The Morse potential has been implemented to
model RBC aggregation and reads [38–42]

VM (r) = De

[
e2β(r0−r) − 2eβ(r0−r)

]
(13)

where r is the distance between the centroids of the spheres,
r0 is the zero force distance, De is the interaction energy,
and β is the scaling factor. To provide an accurate depic-
tion of the inter-cellular interactions, we incorporate the
non-linear Hertzian contact model to determine the contact
forces between the constituent spheres of the RBCs and the
Morse potential that computes the weak attractive forces (at
far distances) and strong repulsive forces (at short distances)
between the RBCs. The combination of these two forcemod-
els is essential for determining the formation of coin-like
stack formation of RBC (rouleaux), which becomes criti-
cal at low shear flows. In the present study, the zero force
distance was taken to be 20 nm and the scaling factor as
2.0 µm−1. [43] conducted double-beam optical tweezers
experiments on RBC aggregates and measured the interac-
tion force to be 8.4±1.1 pN. The interaction force is obtained

by FM = −∂VM/∂r . Thus, the interaction energy was found
to be in the range of 10 − 35 µJ/m2.

3 Results and discussions

In order to perform numerical simulation, the herein pro-
posed reduced-order RBC model is implemented in the
open-source DEM software LIGGGHTS� [22] based on the
flexible bond model [32]. Then, this RBC model is coupled
with a modified version of the resolved CFD-DEM solver
cfdemSolverIB from the libraries of the open-source soft-
ware package CFDEMcoupling� [22,44]. In the remainder
of the paper, we present the simulation results using the
resolved CFD-DEM approach. First, two validation cases
for single-RBC and multiple-RBC scenarios are carried out.
Then, the method is employed for an industrial application
of CFL enhancement for plasma separation. We also analyze
the computational efficiency of the method.

3.1 Single RBC dynamics in shear flow

To investigate the performance of proposed method in pre-
dicting the deformability of RBC a Wheeler test is carried
out. According to the experimental study by Yao et al. [45], a
single RBC is positioned in a shear flow and its deformation
is tracked under different shear rates. A square channel with
a length of 90 µm and height and depth of 45 µm is chosen
as the simulation domain. A constant velocity at different
directions is applied to the top and bottom of the channel to
produce the shear flow with intended shear rates. Periodic
conditions are applied in other directions. The domain was
discretized with a grid resolution of d/Δ = 6. The RBC is
placed at the center of the domain such that its axis of sym-
metry lies in the shear plane of the flow. Simulations were
performed for shear rates ranging from 17 to 200 s−1 and the
initial RBC diameter D0 = 7.82 µm. The initial setup and
the deformed shapes of the RBC at shear rates γ̇ = 17 s−1

and 200 s−1 are shown in Fig. 3.
It has to be noted that the deformation of a single RBC

in shear flow is important since it is closely related to the
accuracy of the fluid-particle coupling [18]. For a quantitative
validation, we use the deformation index (DI) which reads

DI =

((
Dmax
D0

)2 − 1

)

((
Dmax
D0

)2 + 1

) (14)

where D0 is the equilibrium RBC diameter and Dmax is the
maximum diameter of the deformed RBC under the shear
flow. The deformation index obtained from the present sim-
ulations is compared with those obtained from experiments
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Fig. 3 a Initial condition of RBC in the shear flow, and the deformed
shapes of the RBC at shear rates, b γ̇ = 17 s−1 and (c) 200 s−1

[45] and simulations [18,46] in Fig. 4. For low shear rates, the
simulations predict the DIs that match tightly with the results
from the literature. As the shear rate increases, the defor-
mation index also increases, showing the largely deformed
configuration of RBCs at high shear rates.

3.2 Blood flow inmicro-tubes

To verify themethod performance for modelingmany RBCs,
blood flow in micro-tubes of diameters 20 µm, 30 µm and
40 µm are simulated. Blood is modeled as a suspension of
biological cells (mostly RBCs) in a Newtonian carrier fluid

Fig. 4 RBC deformation index for different shear rates

(blood plasma). The density and kinematic viscosity of the
plasma are 1025 kg/m3 and 0.0012 Pa.s, respectively. A
cylindrical computational domain (as illustrated in Fig. 5a)
is considered with periodic boundary conditions in the flow
direction and no-slip conditions at the walls. The Poiseulle
flow is driven by a momentum source accounting for the
average bulk velocity of the fluid (ū). Themean bulk velocity
is calculated based on the pressure gradient for the flow. The
ratio between the constituent spheres and the finite volume
cell size is 4 (d/Δ = 4). The near-wall cell size is refined to
resolve the flowbetween the particles and thewall accurately.
As an example, the initial distribution of RBCs in a tube of
D = 40 µm for Ht = 0.3 is shown in Fig. 5b. The number
of RBCs for each tube hematocrit value is obtained by

NRBC = HtV

Vr
(15)

where Ht is the tube hematocrit, V is the volume of the tube
and Vr is the volume of a single RBC. The details of the com-
putational domain and the simulation setup are provided in
Table 1. Figure 6 demonstrates two instantaneous snapshots
of the RBCs for the largest tube at different hematocrits after
the steady-state condition is reached.At this stage, the forma-
tion of RBC core is evident, and the RBCs are mostly in the
slipper-shape. Now, we present more quantitative analysis of
the simulations.

3.2.1 Red blood cell core characteristics

Themigration ofRBCs toward the center of the channel plays
a vital role in the formation of the CFL near the tube walls.
Figure 7 shows the radial distribution profiles of RBCs for
various tube hematocrits in the smallest and largest tubes. The
profile has been temporally-averaged after the steady-state
has been achieved. The steady-state condition is observed
after 0.9 s of physical time. For Ht = 0.15, the RBC profile
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Fig. 5 a Schematics of the
computational domain, and b
initial distribution of RBCs in a
tube of D = 40 µm for
Ht = 0.3

Fig. 6 Instantaneous snapshots
of the RBCs in the tube of
D = 40 µm for a Ht = 0.15,
and b Ht = 0.45, after the
steady state has been achieved
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Table 1 Simulation parameters
of the blood flow in micro-tubes.
NFVM denotes the number of
finite volume cells

Diameter (µm) Length (µm) NFVM Ht NRBC ū (mm/s)

20 60 44,702 0.15 20 1.37

0.3 40 1.37

0.45 60 1.37

30 120 165,435 0.15 90 2.05

0.3 180 2.05

0.45 270 2.05

40 120 259,899 0.15 160 2.74

0.3 320 2.74

0.45 480 2.74

ismostly concentrated at the center of the tube. This ismainly
due to the lower number of RBCs at this low hematocrit. As
the tube hematocrit increases, the distribution profile widens
further reflecting the formation of a larger RBC core at the
center of the flow.

For a better understanding, the temporally averaged con-
tours plots at the outlet and themid-plane sections of D = 20
and 40 µm for various tube hematocrits are depicted in
Figs. 8 and 9. The concentration profile shows a larger accu-
mulation of RBCs near the center-line of the tube. Two
factors affect the migration of RBCs to a large extent: (i) the
hydrodynamic interaction between the blood plasma and the
RBCs and (ii) the attractive–repulsive interaction between
the RBCs. At lower hematocrits, the hydrodynamic interac-
tions play a major role, and with increasing hematocrits, the
concentrationofRBCs increases, increasing the inter-cellular
interactions. Thus, the width of the RBC core increases with
increasing hematocrit and the region near the tube wall with
lower RBC concentration becomes narrower.

3.2.2 Cell-free depletion layer

The red blood cells migrate towards the center of the tube
and form two specific regions within the blood flow: a RBC-
populated core, and a region of lower concentration of RBCs
near the walls, known as the CFL. The CFL has a lower vis-
cosity compared to theRBCcore thus producing a lubricating
effect on the RBC core. This, in turn, has an important role
in the rheological behavior of RBCs and its shear thinning
property. The effect of the CFL is more significant in tubes
of lower diameter compared to larger tubes, where the CFL
thickness becomes negligible.

In the present study, the CFL thickness is measured after
the steady-state flow condition has been achieved. It is cal-
culated after the flow has achieved a migration-free, steady
state. In our study, the thickness of the CFL is calculated as

δCFL = ‖D − δRBC‖
2

(16)

where δCFL is the CFL thickness, δRBC is the thickness of
the RBC core and D is the diameter of the micro-tube. The
RBC core edge and the computed CFL thickness are shown
in Fig. 10.

For better comparison with the literature data, the instan-
taneous CFL thickness values are averaged over time as

δ̄CFL = 1

t f − ti

ˆ t f

ti
δCFL dt (17)

Accordingly, Fig. 11 presents the temporally averaged CFL
thickness from the simulations compared with existing mea-
surement and simulation literature data. For the same tube
hematocrit, the CFL thickness increases with increasing tube
diameter. A wider CFL is observed at lower hematocrits
indicating a higher migration of RBCs. With increasing
hematocrit, the migration is restricted by the inter-cellular
interactions, hence a smaller CFL thickness. A good agree-
ment is evident for D = 20 µm and 40 µm between the
present simulation and the results reported by [34].

Furthermore, the simulation results reveal a qualita-
tive agreement with experiments by [47,48], showing an
increasing trend as the tube diameter increases. The current
methodology can capture the trends observed with varying
hematocrits and tube diameters, both qualitatively and quan-
titatively.

3.2.3 Fahraeus effect

From in vitro experiments [3], it has been observed that for
blood flow in a glass tube, the discharge hematocrit at the
outlet of the tube (Hd )was higher compared to the tube hema-
tocrit. It can be attributed to the formation of the cell-free
layer near the tube walls and the cross-migration of RBCs to
the center of the tube forming an RBC-populated flow core.
The RBC core has a higher viscosity compared to the CFL
due to the larger concentration of RBCs, which in turn pro-
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(a) (b)

Fig. 7 Radial distribution profile of RBCs for different hematocrits in the tube of a D = 20 µm, and b D = 40 µm

Fig. 8 Temporally averaged contour of RBC concentration at the outlet and mid-plane for blood flow in a tube of D = 20 µm for a Ht = 0.15,
and b Ht = 0.45

duces a lubricating effect. Thus, the RBC core yields a higher
velocity compared to the blood flowwhich results in a higher
throughput of RBCs at the outlet.

The discharge hematocrit is the volume fraction of RBCs
at the exit of the tube. In the present study, it is defined as

Hd = QRBC

Q f
(18)

where QRBC is the volumetric flow rate of RBCs, and Q f is
the volumetric flow rate of blood at the outlet. Both quantities
have been calculated after the cross-migration of the RBCs
as well as the flow has achieved steady-state. The surface
integral of the flow over the outlet provides the volumetric
flow rate of RBCs and reads
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Fig. 9 Temporally averaged contour of RBC concentration at the outlet and mid-plane for blood flow in a tube of D = 40 µm for a Ht = 0.15,
and b Ht = 0.45

Fig. 10 RBC core edge for calculating the instantaneous CFL thickness
in a tube with D = 20µm and Ht = 0.3

QRBC =
‹

A

αu p(r) · dA (19)

where A is the cross-sectional area of the outlet face, and α

is the volume-fraction of RBC in the finite-volume cell. [3]

proposed an empirical relation for the discharge hematocrit
as a function of the tube diameter and the tube hematocrit,

Ht

Hd
= Hd + (1 − Hd )

(
1 + 1.7 exp−0.35D −0.6 exp−0.01D

)
(20)

Figure 12 compares the discharge hematocrit obtained
from simulations with the values obtained from the empirical
relation in Eq. 20. For each tube hematocrit, it was observed
that the discharge hematocrit decreased as the tube diameter
increases, and it follows the trend observed from the empiri-
cal relation [3] and literature [19,34]. The decreasing trend in
the discharge hematocrit with increasing tube diameter can
be attributed to the formation of larger CFL in larger tubes.
This, in turn, leads to an increase in the lubricating effect of
the CFL due to which the RBC core has higher throughput.
Small discrepancies can be observed for Ht = 0.15 which
can be attributed to the shape transition of the RBCs. As the
flow progresses and achieves steady-state, the RBCs attain
a slipper configuration aligned to the flow direction. This
reduces the fluid resistance on the RBCs leading to a higher
flow rate of the RBCs. This in turn increases the discharge
hematocrit of the flow.
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(a)

(b)

Fig. 11 Cell-free depletion layer for different tube diameters and hema-
tocrits from present simulations compared against a experimental and
b simulation literature data

Fig. 12 Discharge hematocrit (Hd ) as a function of tube diameter and
tube hematocrit (Ht ) comparedwith empirical relation from experiment
[3]

3.2.4 Relative apparent viscosity

Another key characteristic of the blood flow in microchan-
nels is that the apparent viscosity of blood increased with
increasing tube diameter and tube hematocrit [3]. This char-
acteristic of blood flow is known as the Fahraeus–Lindqvist
effect [4]. As the hematocrit increases, the density of RBCs
increases leading to higher flow resistance. Additionally, the
CFL thickness decreases with increasing hematocrit, which
results in a decrease in the lubricating effect on the flow. The
relative apparent viscosity is the quantitative parameter used
to measure the effect of tube diameter and tube hematocrit
on blood viscosity. It is defined as

μrel = Qp

Q f
(21)

where Qp is the volumetric flow rate of pure plasma, and
Q f is the volumetric flow rate of blood from the simula-
tions. It has to be noted that to achieve a buoyancy-free
configuration for the RBCs in the present simulations, the
blood flow is driven by a mean flow velocity based on an
equivalent pressure gradient. Therefore, it is important to
consider the volume fraction of the RBC in the finite volume
cells to accurately calculate the flow rate of the carrier fluid.
In Fig. 13, we compare the relative apparent viscosity from
the simulations with the corresponding experimental values
from literature [3]. The model reveals reasonable agreement
with the experiment for the D = 20 and 30 µm. It can
capture the increasing trend in the relative apparent viscos-
ity with increasing tube diameter. However, we observed a
large discrepancies between the simulation and experiment
for D = 40 µm. This is mainly attributed to the model limi-
tation in capturing the RBC shape transition, which reduces
the flow resistance of RBC-populated core at larger channel
diameters, leading to lower apparent viscosity. This short-
coming could be partially overcome by using higher RBC
resolution that is planned for future work.

In fact, the RBCs transition from a discoid shape to a
parachute form but does not maintain the shape stability and
transform into a slipper-shape (as shown in Fig. 7). This,
in turn, reduces the flow resistance due to the RBC shape.
Thus, the lubricating effect of the CFL is more influential,
as opposed to the flow resistance due to the RBC crowding.
As a result, the flow throughput increases producing a lower
apparent viscosity. For D = 40 µm, the relative apparent
viscosity follows the trend from experiment [3]; however,
the values obtained are lower compared to those obtained
from the correlation. The thickness of the CFL increases
with increasing tube diameter (see Fig. 11). The CFL has
a lubricating effect on the RBC core due to which the appar-
ent viscosity of blood decreases. With the slipper-like shape
attained by the RBCs as well as the lubricating effect of the
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Table 2 Computational load
statistics for each case based on
the number of RBCs (NRBC),
number of constituent particles
(Np), number of finite volume
cells (NFVM) and number of
cores for 11,000,000 time steps
computation

Diameter (µm) NRBC Np NFVM Ncores Execution time (hrs)

20 60 600 44,702 8 8

30 270 2700 165,435 24 16

40 480 4800 259,899 32 20

Fig. 13 Relative apparent viscosity for different tube diameters and
hematocrits from simulations as well as literature data [3]

CFL on the RBC core, reduction in the apparent viscosity is
higher than those obtained from experimental correlation.

3.2.5 Computational efficiency

To evaluate the efficiency of the proposed approach, the
computational load for each blood flow simulation has been
measured. Table 2 presents the computational details for dif-
ferent micro-tubes. With increasing domain size, the number
of CPUs required for running the simulation increased due
to an increase in the finite volume mesh size. Thus, the major
factor that determines the number of CPUs is the size of the
finite volume mesh.

The contributions from various components of the solver
to the computational time are shown in Fig. 14. It consists
of DEM loop time to update the particle position and veloc-
ity, the communication time for various sub-domains, the
Lagrangian-to-Eulerian field conversion time and the solver
time for the finite volume method. Majority of the com-
putational time is consumed in converting or mapping the
Lagrangian DEM data to a Eulerian field. This step is crucial
in the immersed boundary method, where the solid velocity
is required to perform the continuous forcing.

For many industrial applications, a mathematical model
with reasonable computational demands is of great inter-
est. Therefore, the model performance in the absence of

large computational clusters should be evaluated. The pro-
posed approach for blood flow simulation with the highest
number of RBCs reveals a reasonable accuracy with an
acceptable computational cost (maximum 32 CPUs for 480
number of RBCs in the domain). Furthermore, improving the
Lagrangian-to-Eulerian mapping algorithm will reduce the
overall computational time, increasing computational effi-
ciency. This will enable to simulate a larger population of
RBCs in larger domains, and pave the path to large-scale
simulations for microfluidic chips.

Finally, for the state-of-the-art solvers for cellular flows,
scalability has been demonstrated very well. According to
Zavodszky et al. [49], who employ a lattice Boltzmann
method-based approach, the simulation of a cellular flow in
a tube of D = 128 µm and Ht = 0.46 has been performed
in 51 h (2.1 days) for 2 million simulation time-steps exe-
cuted on 1024 cores. For the identical simulation setup, the
present model is expected to perform the computation in 20
h for 11 million time-steps using 250 cores. The expected
computational advantage of the present model is estimated
to be one order of magnitude, which can be even further
increased after improving the Lagrangian-to-Eulerian map-
ping algorithm. However, a detailed analysis of the accuracy
and computational efficiency using a larger number of RBCs
is planned for future work.

3.3 Application to a CFL enhancement technique

One important application of microfluidics is blood sepa-
ration into its components. If hydrodynamic characteristics
of blood are properly exploited, the blood plasma can be
separated from the cellular structures in a passive manner.
One essential characteristic is the CFL formation which
could facilitate plasma extraction close to the confiningwalls.
Faivre et al. [50,51] have shown in a set of experiments that
the presence of geometrical constrictions in blood micro-
channels can increase the CFL thickness and enhance the
potentials for plasma extraction. We perform numerical sim-
ulations using the proposed method to investigate this effect.
To this end, a similar numerical setup to their experimental
setup is considered as shown in Fig. 15.

The upstream and downstream channel lengths are LU =
225 µm and LD = 200 µm. The channel width and height
are W = 100 µm and H = 75 µm [50]. The tube hema-
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Fig. 14 Computational load
distribution for different
components of the solver

Fig. 15 Schematics of the
simulation domain. LU and LD
are the length upstream and
downstream of the constriction,
and W is the width of the
channel. LC and WC are the
constriction length and width,
respectively

W

LU LD

LC

WC

Fig. 16 a Velocity contour, and
b RBC distribution along with a
constriction with LC = 200 µm
for Q = 250 µL/h
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tocrit is equivalent to a discharge hematocrit of 2.6%. The
density and the dynamic viscosity of the suspending fluid are
1025 kg/m3 and 0.02 Pa.s, respectively. A fixed flow-rate
inlet velocity and zero-gradient velocity boundary condi-
tions are applied at the inlet and outlet, respectively. The
no-slip velocity boundary condition is imposed on the chan-
nel walls. Local mesh refinement is employed to remove the
requirement of a significantly fine mesh in large domains.
The assumption of periodic boundary condition fails in this
simulation, as this can lead to a double-focusing effect on the
red blood cells. Thus, for each simulation, a separate simula-
tion was performed with periodic BC only for the upstream
flow until the steady-state conditions were reached. Then, the
spatial distribution of RBCs is used as the initial condition
for each simulation. It has to be noted that in the experiments
[50], the solution was prepared such that no aggregation of
red blood cells can occur. Hence, in the present simulations,
the Morse potential interaction is not considered.

The volume flow rate Q and constriction length LC are
varied to explore their effects on CFL thickness enhance-
ment. First, simulations for four flow rates of Q =
100, 250, 500 and 1000 µL/h were carried out. Figure 16
shows the velocity and spatial distribution of the RBC along
with the constriction. As expected, the geometrical change
results in a high-velocity region inside the constriction. Also,
a thinnerRBC-populated core is evident downstream the con-
striction. For a quantitative analysis, we compared the ratio
of CFL thickness at upstream (W1) and downstream (W2) the
constraint with the measurement data in Fig. 17.

Then,with a fixed flow rate of Q = 250 µL/h, the LC was
varied from 50 to 300 µm. Similarly, the CFL thickness ratio
is compared with experimental data in Fig. 18. The W2/W1

yields a decreasing trend as the constriction length increases.
When LC increases, the focusing effect on the red blood cells
is enhanced, resulting in a thicker cell-free layer, because
the red blood cells follow a high-velocity region in the con-
striction for a longer duration with increasing constriction
length. Furthermore, it is observed that the maximum veloc-
ity in the constriction is inversely related to the constriction
length (not presented here). Thus, as the red blood cells exit
a shorter constriction, it has higher inertia. This, in turn,
leads to higher collision energy between the RBCs causing
the RBCs to disperse more. Having lower inertia upon exit-
ing a longer constrict, the RBCs can follow the streamlines
more strictly, and a better CFL enhancement is achieved.
Based on these simulation results, it can be concluded that
the present numerical method is able to simulatemicrofluidic
applications where the key characteristics of blood flow are
the central mechanism for blood flow manipulation.

Fig. 17 Variation of W2/W1 with the flow rate. The simulation results
are compared with experimental data from [50]

Fig. 18 Variation of W2/W1 with the constriction length for flow rate
of 250 µL/h. The simulation results are compared with experimental
data from [50]

4 Conclusion

An approach for modeling blood flow with several sus-
pended red blood cells is presented in the context of resolved
CFD-DEM. In this approach, the mechanical behavior of
the deformable RBCs in interaction with each other as well
as with the carrier plasma liquid is accounted by a DEM-
based reduced-order model for deformable particles [21].
This RBC model is coupled with a fluid flow solver based
on the immersed boundary method with continuous forcing.
This model for deformable red blood cells considers an indi-
vidual RBC as a cluster of constituent spheres interconnected
by flexible mathematical bonds. The bonds can translate and
rotate with the spheres and this helps in reproducing the RBC
deformability in a low-costmanner. Additionally, a potential-
based force model has been implemented to compute the
inter-cellular interactions.
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The coupled solver has been used to simulate micro-scale
flows with single andmultiple RBCs for validation purposes.
The dynamics of a single RBC in shear flow is tested against
literature data. Then, the flow of blood plasma with sus-
pended RBCs in a micro-tube at various hematocrits and
diameters is similar to the benchmarks in the literature. The
blood flow characteristics such as the formation of the RBC
core and the cell-free layer near the tube wall as well as the
increase in the relative apparent viscosity and the Fahraeus
effect were investigated. This approach is capable of pictur-
ing the overall hydrodynamics of blood flow and the CFL
formation in a good agreement with other benchmark sim-
ulations. Also, it shows consistency with the experimental
results for discharge hematocrit and the relative apparent vis-
cosity. The computational requirements for the presentmodel
have been shown to be rather low and do not require large
clusters of CPUs to simulate the flow of significant popula-
tions of RBCs within a reasonable time. However, it should
be noted that the present approach reveals limitations in cap-
turing more complex behavior of the RBC membrane such
as tank-treading rotational motions. This can be explained
by the reduced-order nature of our RBC model. Finally, we
simulated an industrial application of blood separation based
on the CFL thickness enhancement. The model shows excel-
lent performance in reproducing experimental data indicating
its capability to simulate microfluidic applications for blood
flow manipulation.

In future, wewill focus on improvements on both physical
and computational aspects. An extension to the mathemati-
cal bond model to include RBC rupture is planned for future
work. In order to further improve the computational perfor-
mance, we plan to optimize the solver implementation and
will explore a combination between resolved and unresolved
CFD-DEM.We expect that such a hybridization would boost
the computational performance by a least one order of mag-
nitude, enabling the simulation of very large populations
of RBCs (in the order of ten-thousands) in bio-microfluidic
devices.
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