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Abstract
By utilizing numerical models and simulation, insights about the fracture process of brittle heterogeneous materials can be
gainedwithout the need for expensive, difficult, or even impossible, experiments. Brittle and heterogeneousmaterials like rocks
usually exhibit a large spread of experimental data and there is a need for a stochastic model that can mimic this behaviour. In
this work, a new numerical approach, based on the Bonded Discrete Element Method, for modelling of heterogeneous brittle
materials is proposed and evaluated. The material properties are introduced into the model via two main inputs. Firstly, the
grains are constructed as ellipsoidal subsets of spherical discrete elements. The sizes and shapes of these ellipsoidal subsets
are randomized, which introduces a grain shape heterogeneity Secondly, the micromechanical parameters of the constituent
particles of the grains are given by the Weibull distribution. The model was applied to the Brazilian Disc Test, where the
crack initiation, propagation, coalescence and branching could be investigated for different sets of grain cement strengths and
sample heterogeneities. The crack initiation and propagation was found to be highly dependent on the level of heterogeneity
and cement strength. Specifically, the amount of cracks initiating from the loading contact was found to be more prevalent
for cases with higher cement strength and lower heterogeneity, while a more severe zigzag shaped crack pattern was found
for the cases with lower cement strength and higher heterogeneity. Generally, the proposed model was found to be able to
capture typical phenomena associated with brittle heterogeneous materials, e.g. the unpredictability of the strength in tension
and crack properties.
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1 Introduction

The fracture process of brittle heterogeneous materials is of
vital importance for several industries.While the mechanical
response of these materials is dependent on the mechanical
properties of its constituent minerals or materials, disconti-
nuities within the material significantly affects the response
as well. For example, on a micromechanical scale these dis-
continuities may consist of microcracks, pores and grain
boundaries cementing the different minerals together. Fur-
ther, the grains can exhibit geometrical heterogeneities due
to grain size, shape and orientation, but also mechanical
heterogeneity due to varying strengths and elastic proper-
ties. Apart from the effect on the mechanical response, the
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micromechanical discontinuities also influences the initia-
tion, propagation and coalescence of cracks, which are well
known to be key aspects of the fracture process. By utilizing
numerical models and simulation, these phenomena can be
studied in a controlled environment and give valuable insight
into aspects of the fracture process that would otherwise
be expensive, difficult or even impossible to obtain exper-
imentally. These insights based on numerical simulations
can increase the knowledge and understanding of processes
involving the fracture of brittle heterogeneous materials,
which in turn can aid for optimizing e.g. rock drilling in
geothermal applications or the comminution process in min-
ing industries.

Within the framework of the traditional Finite Element
Method (FEM), several recent publications with emphasis on
modelling of heterogeneous brittle materials can be found.
Saadati et. al. investigated the fracture of granite by combin-
ing a plasticity model of compression and a damage model
for tension [42]. Here, the closure of pores due to compres-
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sion was represented by an irreversible volumetric strain,
affecting the bulk modulus of the material and making the
material more compact. Further, by employing a weakest
link approach based on the Weibull distribution [51], defects
with different orientations and dimensions were distributed
within the model, and a cohesive model was employed to
capture the residual strength at the crack. Using the edge-
on impact test, the authors found that the model was in
agreement with experimental results with regards to crack
density and fracture pattern. This model approach has later
been applied to investigate the effects of preexisting cracks
on tensile strength of granite subjected to high strain rates
[41] and the contact-induced damage from cyclic and mono-
tonic indentation of granite [34]. Amicromechanical fracture
model of a heterogeneous ceramic composite was developed
by Zhai and Zhou [56]. Here, the arbitrary microstructure
was explicitly accounted for and the authors were able to
analyse the crack propagation and branching. Saksala et. al.
investigated the applicability of polygonal finite elements
for 2D for rock mechanics where the mesostructure of the
rockwas represented by assigningmaterial properties of con-
stituentminerals to different elements [43]. Although lacking
of predictability, the authors concluded that themodel is suit-
able for rockmechanics. A statistical approach for modelling
heterogeneous concrete, where the different phases were rep-
resented by a statistical distribution of constituent phases,
has previously been developedwithin the framework of FEM
[36]. For heterogeneousmaterial a combinedFEMand a non-
linear cohesive model to simulate compacted metal powder
was presented and validated in [21]. Furthermore, a devel-
oped version of themodel including a nonlinear elasticmodel
was reported in [22].

Even though some insight can be gained by using a
continuum method, this approach is inherently limited for
describing the fracture process of a discontinuous material,
such as rock [38]. In contrast to the continuum methods,
the damage onset of direct methods are modelled directly
by tracking the formation and propagation of each microc-
rack. One such directmethod is theDiscrete ElementMethod
(DEM), originally formulated by Cundall and Strack [7,8]
for modelling of granular assemblies. Here, the assembly is
represented by a set of rigid spheres that interact through con-
tact laws at their contact interface. This method has found
a widespread application for simulations of industrial pro-
cesses involving granular media, such as for wet stirred mills
[26,27], tumbling mills [20,23], and other large-scale indus-
trial processes [5]. An extension to the conventional DEM
is the Bonded-Particle Model (BPM) [38], where, in paral-
lel with the DEM contact, a set of linear elastic springs, or
parallel-bonds, are distributed between the particles. These
bonds can transmit force and moment between two con-
tacting particles and if the corresponding stress exceeds the
pre-described strength, the bond breaks. Spontaneous crack

initiation occurs on a micromechanical scale with a broken
bond, propagates through the media through more broken
bonds and coalesce with other cracks to form larger fracture
planes. In this way, the BPM is able to naturally describe
the initiation, propagation and coalescence of cracks within
brittle heterogeneous materials.

Ever since its formulation, the BPM has been a widely
popular tool for investigating problems involving brittle frac-
ture. Examples where the BPM has been applied to industrial
processes can be found for rock indentation [15,58], drilling
of soil [48] and rock [45] and rock cutting [16,39]. The BPM
has also been proven to be a suitable framework for virtually
reproduce the fracture process of brittle materials for com-
mon experimentalmethods, such as the uniaxial compression
test of concrete [49] and granite [55] as well as the Brazilian
disc test of transversely isotropic rock [53]. The calibration
process is often conducted by trial-and-error; however, more
intelligent methods have been utilized, e.g. using a local
constitutive model [33], employing a dimensional analysis
of the micromechanical parameters [40] or using calibra-
tion schemes based on uniaxial and triaxial tests [50]. Some
simulations based on the BPM have been found to exhibit
unrealistically low compression to tension ratios, making
it impossible to match both the compressive and tensile
strength for some cases. As the authors stated in the orig-
inal formulation of the BPM [38], this mismatch is probably
due to the use of spherical grains and could be reduced by uti-
lizing more complex-shaped and highly interlocked grains.
This has been explored by other authors, such as increas-
ing the interlocking of particles by increasing the interaction
range [44] and utilizing clumped particles to represent irreg-
ular grains [4]. It has also been shown that employing a
displacement-softening contact law [31] reduces this issue.
Another solution to this issue is the Grain-Based Model
(GBM) [37], where the irregular grains are represented by
polygonal elements, filled with parallel-bonds, that are con-
nected to each other through smooth-joint interfaces [18].
This approach has been used to evaluate phenomena con-
nected to damage evolution and microcracking of granite
[14] and the effect of pre-existing cracks [57] and grain size
heterogeneity effect [35] of crystalline rocks.

In the original formulation of the BPM, the heterogeneity
of the rock material is introduced by the particle size distri-
bution. Other approaches for introducing heterogeneity with
the BPM is the use of irregular grain shapes and statistical
distributions of themicromechanical parameters of the BPM,
both of which have been used before in the literature, see e.g.
the grain-based approaches in [14,29].However, no study can
be found regarding the repeatability of results, such as crack
properties and macromechanical strength, when using these
approaches. To this end, the present study uses the BPM to
evaluate the effects that variations of grain properties have
on the macroscopic repeatability. A new approach for rep-
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Fig. 1 A schematic view of the Brazilian disc test

resenting the heterogeneous brittle materials is presented,
where the grains are randomly assigned to the rock model
as irregular ellipsoids throughout the body. Compared to the
aforementioned grain-basedmethods, the currentmodel does
not consider specific constituent minerals. Instead, a more
holistic approach is used, where each grain obtains its mean
micromechanical parameters from the Weibull distribution.
The model is applied to the Brazilian disc test, where the
initiation, propagation and coalescence of cracks as well as
macroscopic tensile strength are evaluated for different het-
erogeneities and intergranular cementing strengths.

2 Materials andmethods

This section covers the methodology used in this study.
This includes a description of the Brazilian Disc Test (BDT)
and fundamental theory about the Discrete Element Method
(DEM) and Bonded-Particle Method (BPM). The proposed
model is also described in this section, i.e. the grain genera-
tion process and grain cementing. Lastly, the numerical cases
investigated in this study are described.

2.1 Brazilian disc test

The diametral compression test, or Brazilian Disc Test
(BDT), is an experimental method for measuring the indi-
rect tensile strength of brittle materials, such as concretes [3]
and rocks [6,28], but also for compact powders [21]. In this
test, a circular disc is compressed diametrically over a finite
arc of length 2α, see Fig. 1, which induces tensile stresses to
a zone close to the vertical centre line of the specimen. For a

distributed compressive load F, applied to a disc of diameter
D and thickness t, Hondros showed that the induced tensile
stress at the centre of the disc is given by [2,13]

σt = 2F

πDt
(1)

It is important to note that the indirect tensile strength
obtained from Eq. (1) is only an estimation of the tensile
strength as obtained from direct testing methods. Further,
the splitting crack has to initiate at the centre of the disc in
order for the test to be accurate. This is seldom the case,
however, as the initiation point is known to deviate from the
centre [10] and even initiating from the loading plates [46].
Cracks initiating from loading plates are more prevalent for
versions of the test that uses flat loading plates, such as the
version suggested by ASTM [1], due to the stress concentra-
tion associated with the point load. The curved loading jaws
reduces the stress concentrations at the loading point [32]
and is the ISRM recommended method. The suggested jaw
radius is 1.5 times the radius of the sample, i.e. RP = 1.5RS ,
which results in a contact arc of approximately 2α = 10◦,
see Fig. 1.

Even though the BDT has inherent challenges, it is still
the preferred method for measuring the tensile strength of
heterogeneous brittle materials due to its simplicity com-
pared to direct methods. The crack initiation and propagation
of the BDT, as well as the validity and applicability of the
method, is still researched today [28]. In the presentwork, the
quasi-static BDTwas simulated in order to evaluate the capa-
bilities of the suggested numerical model. Further, in order
to increase the knowledge about the test itself, the crack ini-
tiation, propagation and coalescence of cracks as well as the
predicted tensile strength were evaluated.

2.2 Discrete element method

In the Discrete Element Method (DEM), the granular mate-
rial is modelled using a set of rigid discrete spheres [7,8].
A key feature about the DEM is the individual treatment of
each element—themotion of each sphere is resolved through
the integration of Newton’s second law,

mi
dvi
dt

= Fi (2)

wheremi andvi are themass andvelocity of particle i, respec-
tively. The total force acting on particle i may be expressed
as

Fi = Fext
i +

n j∑

j=1

Fi j (3)
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where Fext
i are the external forces, such as gravity, n j is

the number of neighbouring particles and Fi j are the con-
tact forces between particles i and j. The angular motion is
governed by

I i
dωi

dt
=

∑

j

M i j (4)

where I i andωi is themoment of inertia and angular velocity
of particle i , respectively, and M i j is the applied torque from
particle j .

In the present study, the contact forces between particles
are represented by a linear spring-dashpot model for both the
normal and tangential direction [24,30]. In total, there are
five governing parameters for particle-particle interaction,
namely normal and shear spring constants, kn and ks , normal
and tangential damping coefficients, cn and ct , as well as
the sliding friction μ. In order to obtain the velocities from
Eqs. (2) and (4), an explicit time integration schemewas used
in the present study.

In order to model a solid body of rock material, the DEM
was extended to the BPM by Potyondy and Cundall [38].
Here, the rock is described as an assembly of cemented par-
ticles. This cementing, or bonding, of the particles work in
parallel with the standard DEM formulation. These bonds
can break and the failure criteria are expressed as

σ̄max = −F̄n

A
+

∣∣M̄s
∣∣ R̄
I

≥ σc (5)

τ̄max =
∣∣F̄ s

∣∣
A

+
∣∣M̄n

∣∣ R̄
J

≥ τc (6)

where A is the bond area and I and J are the moment and
polar moment of inertia of the bond. The radius of the bond
between two particles A and B is given as the minimum
of the bonding particles radii, i.e. R̄ = λ̄ min(RA, RB). In
this study, a homogeneous particle radius was used and the
radius multiplier λ̄ was set to unity. The tensile and shear
bond strengths are represented by σc and τc, respectively,
and the bond breaks permanently and instantaneously once
either the tensile stress or shear stress exceeds its limit value.
The bond forces (F̄n and F̄ s) and moments (M̄n and M̄s) are
calculated incrementally each time step according to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�F̄n = k̄n A�Un

�F̄ s = −k̄s A�Us

�M̄n = −k̄s J�θn

�M̄s = −k̄n I�θ s

(7)

where k̄n and k̄s is the normal and shear bond stiffness,
respectively. The relative displacement and rotation in Eq. (7)

Fig. 2 A two-dimensional representation of the interaction range β̄

are represented by�Un/s and�θn/s . In Eqs. (5–7) the upper
index n and s denotes the normal and shear direction, respec-
tively. The BPM also utilize a local non-viscous damping ᾱ

in order to account for the energy dissipation from e.g. inter-
nal friction. The damping force applied to each particle is
given by [38]

Fd
i = −α|Fi | sign(vi ) (8)

Lastly, the amount of particle interlocking is controlled via
the interlocking range β̄. In other words, β̄ is the perimeter
to perimeter distance that allow for bonding between two
discrete element spheres, see Fig. 2.

To conclude, apart from the particle radius, the BPM has a
total of 11 input parameters, whereof five of them are related
to the original DEM formulation, kn , ks ,cn , cs and μ, and
five of them are related to the bonds between the particles,
k̄n , k̄s , σ̄c, τ̄c, β̄ and ᾱ. The parameter values used in this
study are presented and motivated in Sect. 2.5.

2.3 Grain generation process

In the proposed numerical model for brittle heterogeneous
materials, the heterogeneity properties was introduced into
the BPM in two ways. Firstly, the grains are constructed
as ellipsoidal subsets of spherical discrete elements. The
sizes and shapes of these ellipsoidal subsets are random-
ized, which introduces a grain shape heterogeneity, see
Fig. 3. Secondly, the intragranular structure was constructed
using parallel bonds with mean micromechanical param-
eters chosen according to the Weibull distribution. Four
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Fig. 3 The grain generation process of samples for the Brazilian disc
test, where the grains are represented by ellipsoidal subsets of discrete
element spheres. The different greyscale colouring represents the mean
micromechanical strength of the grains, where a darker colour cor-
responds to weaker grains. The yellow particles corresponds to grain
boundaries. Initial node distribution (a), an example of a sample with

equal grain radii distributions for x , y and z (b), an example of an
anisotropic samplewith a preferred grain direction, i.e. the radii distribu-
tion of the x-direction is larger than for the other directions (c), example
of a regular ellipsoidal subset of discrete spheres (d) and examples of
irregular ellipsoidal subset of discrete spheres (e–f)

micromechanical parameters were governed by the Weibull
distribution: the normal and shear stiffness and the tensile
and shear strengths. The probability density function for a
micromechanical parameter η is given by [51]

f (η, η0,m) = m

η0

(
η

η0

)m−1

e−(η/η0)
m

(9)

where η0 is the scale parameter andm is the shape parameter
(or heterogeneity index). A larger variation is obtained for
a smaller shape parameter, i.e. a smaller value of the shape
parameter corresponds to a more heterogeneous distribution
of the microparameter. For the case of a very large value of
the shape parameter, above 106, the distribution is practically
constant. The cumulative Weibull distribution function for
different shape parameters is shown in Fig. 4.

For a given sample geometry discretizedwith rigid spheres
of uniform size, such as the one in Fig. 3a, the grains were
distributed throughout the body by performing the following
steps:

1. A parent discrete element sphere was randomly selected
within the domain and the mean grain micromechanical
properties were obtained from the Weibull distribution.

2. A randomized ellipsoid was created around the parent
discrete element sphere by generating the radii uniformly,
i.e.
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Fig. 4 The cumulative Weibull distribution for different shape param-
eters m

Rx , Ry, Rz ∼ U (Rmin, Rmax) (10)

whereU (Rmin, Rmax) is the uniform distribution between
Rmin and Rmax.

3. All particles within the ellipsoid were bound together
within±10% of the mean grain values and then excluded
from future grain bonding.

4. Steps (1)–(3) were repeated until no particles were left.
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An example of a generated sample for the Brazilian disc test
can be seen in Fig. 3b. Here, a particle radius of 0.1 mm and
(Rmin, Rmax)x,y,z = (0.9, 2.9) mm were used, resulting in a
grain size distribution of 0.5–4 mm. This sample configura-
tion was used for the main part of the study. A few samples
with anisotropic grains were also evaluated. These samples
were created by allowing the grains to be slightly elongated
within the x direction, (Rmin, Rmax)x = (0.9, 5) mm, and
slightly shorter along the y and z direction, (Rmin, Rmax)y,z
= (0.9, 1.55) mm.

The first few grains generatedwere likely to be ellipsoidal,
as seen in Fig. 3d. As more particles were excluded from
bonding, more irregular grain shapes were obtained, such as
the ones seen in Fig. 3e, f. It should be noted that, due to
limitations of the software used in this study, no possibility
for continuousWeibull distribution of the grain microparam-
eters was possible. Instead, 1500 values of each parameter
were considered sufficient and were distributed to the grains.
Further, the normal and shear bond strengths were coupled,
with the consequence that a lower normal strength is followed
by a lower shear strength, and vice versa. For the generated
samples in Fig. 3, and throughout this work, the greyscale
colouring denotes the average strengths of the grains, with
black denoting the weakest grains.

2.3.1 Grain cementing model

In order to obtain a statistical variation for the intergranu-
lar binding, a cementing model with properties based on the
grains being bound was used. Given a rock body with dis-
tributed subsets of discrete spheres (or grains), the cementing
process is as follows. First, one of the subsets in the rock body
is selected at random. Let this random subset be denoted by
Gi . The neighbouring subsets G j are then identified as the
subsets that have discrete spheres within interaction range β̄

of the discrete spheres of subset Gi . In other words, G j is a
neighbour of Gi if, for all sets of distances di j between con-
stituent discrete spheres of the two subsets, any di j ≤ β̄.
The particles of G j within interlocking range of Gi are
then cemented together using parallel bonds with normal and
shear strengths according to

{
σ̄
i j
c = C f · σ̄ i

c

τ̄
i j
c = C f · τ̄ ic

(11)

where σ̄
i j
c and τ̄

i j
c are the normal and shear bond strength of

the cement, σ̄ i
c and τ̄ ic are the mean normal and shear bond

strengths of grain Gi and C f is the cement scaling param-
eter. The process is repeated until all grain pairs have been
identified and cemented together. Within this work, the grain
boundaries are highlighted by yellow discrete spheres, e.g.

Fig. 5 The sample and loading jaw configuration used for the simula-
tions of the Brazilian disc test. The samples have a diameter of 25 mm
and a thickness of 5 mm. The jaws have radius 18.75 mm

as in Fig. 3; however, only half of the boundary nodes (the
ones associated with the grain Gi , see above) are visible for
clarity. It should be noted that, using this cementing proce-
dure, some of the discrete spheres represents pure cement
between two grains instead of the grain itself.

2.4 Numerical setups

For the numerical setup of the BDT, the standard proce-
dures established by ISRM [2] were employed. However,
the standard suggests a sample diameter of at least 10 times
the largest grain size. The largest grain size of the samples
generated within this study is roughly 4 mm, which would
require a sample diameter of at least 40 mm. For the sake of
computational efficiency, a sample diameter of 25 mm was
used instead. The thickness of all the samples was 5 mm,
which is the smallest allowed thickness for a diameter of 25
mm.

The radius of the loading jaws was set to 1.5 times the
sample radius (18.75 mm), which should keep the contact
arc between 5◦ and 10◦ (depending on the deformability of
the jaws and sample) [28]. The numerical setup can be seen in
Fig. 5. The compressive loading was applied via a prescribed
velocity of the upper jaw. In order to select an appropriate
loading jaw velocity, with regards to computational time and
the explicit time integration scheme, the effects that the veloc-
ity had on the mechanical response and predicted strength
was evaluated, see Fig. 6. As can be seen from this test, apart
from the oscillations, there was almost no impact from load-
ing jaw velocity due to the high amount of damping present in
themodel (see Sect. 2.5). A velocity of 0.3mm/s gave a stable
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Fig. 6 The loading jaw velocity effect on the mechanical response of
the numerical setup of the Brazilian disc test. The black curves are
examples of Brazilian disc tests of granite [52]

loading and was used for all simulations. The BDT samples
were discretized with particles of uniform radii R = 0.1mm,
resulting in roughly 313,000 particles. For each loading jaw,
a linear elastic FEM representation of approximately 3,000
solid hexagonal elementswere usedwith elasticmodulus 210
GPa and Poisson’s ratio 0.3.

In order to evaluate the proposedmodel, a large set of sam-
ples was generated and simulated. Two key parameters of the
model were varied simultaneously—the cement scale factor
C f and the Weibull shape parameter m—and 10 samples
were simulated for each pair of parameters. Three cement
scale factors,C f = 0.25,C f = 0.50 andC f = 0.75, were eval-
uated for three different shape parameters, m = 5, m = 15
andm = 30. Further, 10 anisotropic samples, withC f = 0.25
and m = 15, were generated and simulated twice (loaded
once along the z-direction and once along the x-direction).
In total, 100 samples were generated and 110 simulations
were conducted. A summary of the different cases can be
seen in Table 1. With regards to the BDT, the predicted ten-
sile strength and crack properties were evaluated in detail. It
should be noted that this study does not concern a specific
material. Instead, the results focus on the versatility of the
model and the complexity of the BDT.

2.5 Calibration

A challenge with the BPM is the extensive calibration pro-
cedure required to determine the set of microparameters that
describes the macroscopic behaviour of the target material.
This section describes the simplified calibration procedure
used to determine the 11 parameters of the DEM and BPM,
as described in Sect. 2.2. A common approach for deter-
mining the parameters is to simulate the BDT and Uniaxial

Table 1 The cement scaling factors of Eq. (13) and shape parameters
of Eq. (9) used for the different cases

Case Cement scale factor C f Shape parameter m

1 0.25 5

2 0.25 15

3 0.25 30

4 0.50 5

5 0.50 15

6 0.50 30

7 0.75 5

8 0.75 15

9 0.75 30

10∗ 0.50 15

∗The anisotropic sample configuration was used

Compression Test (UCT). Then, by trial-and-error, the set of
parameters that yields the correct macroscopic behaviour in
terms of compressive and tensile strength, elastic modulus
as well as failure mode are chosen. As this topic has been
explored extensively by other authors, see e.g. the local con-
stitutive model approach in [33] or the calibration scheme in
[50], the process of calibration was not in focus of this study.
Instead, a simplified calibration approachwas used. Since the
study is not focusing on a specific material, properties con-
sistent with a coarse grained granite [12] has been used. The
elastic modulus and the Poisson’s ratio were set to 60 GPa
and 0.2, respectively, and a tensile strength between 10 and
14 MPa was used. Since the bond stiffnesses and strengths
were governed by the Weibull distribution, the calibration
consisted of finding the corresponding scale parameters. A
zero subscript denotes these scale parameters, e.g. the scale
parameter for the bond normal strength is denoted σ̄c,0.

In an effort to minimize the amount of trial-and-error cal-
ibration, the set of unknown parameters was decreased by
utilizing analytical expressions and values from literature.
For the normal stiffness of the DEM, Potyondy and Cundall
[38] suggested

kn = 4REc (12)

where R is the particle radius Ec is the particle stiffness. In
this work, the particle stiffness was set equal to the macro-
scopic elastic modulus, i.e. Ec = 60 GPa. Using elastic
theory for the bulk and shear modulus [25], the ratio between
the shear and normal stiffness for both the DEM and BPM
was obtained as

ks
kn

= k̄s
k̄n

= 1

2(1 + ν)
(13)

where ν is the Poisson’s ratio.
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In the original BPM [38], two particles are bound together
only if they are in direct contact. By increasing the interlock-
ing range, however, the brittleness, i.e. tensile to compressive
strength ratio, can be increased. As pointed out by Scholtés
et. al [44], the interlocking range should be chosen with
care to minimize the amount of particles embedded between
interacting pairs of particles. In this study, using a uniform
particle size throughout the body, the particles were allowed
to be bounded with neighbouring particles within one parti-
cle diameter, i.e. by setting the interlocking range β̄ = 2R.
This ensured that, for a given direction, the parent particle did
not bound with more than one particle. Although some semi-
embeddingwas obtained, this interaction range resulted in an
almost perfectly brittle fracture and was used for all simula-
tions. In order to obtain quasi-static conditions, the damping
coefficients cn and cs of the DEM were both set to 0.99.
In accordance with the work conducted by Potyondy and
Cundall, a value of ᾱ = 0.7 was used for the BPM damp-
ing, which is considered to be representative of quasi-static
conditions for Lac du Bonnet granite [38]. For the particle-
particle contact, a frictional parameter of μpp = 0.50 was
used,whileμpj = 0.20was used for the particle-jaw contact.

With the above determined parameters, the mean normal
stiffness k̄n,0 was obtained by trial-and-error from the UCT.
The sample was generated using the approach described in
Sect. 2.3 with shape parameter m = 15. For each cement
strength ratio, a shape parameter m = 15 was used to cali-
brate the strength values σ̄c,0 and σ̄c,0 for each cement scaling
case. Following the approach used in [31], the mean bond
shear strength was selected slightly above the limit for which
shear failure at the loading jaws occurred. For the mean nor-
mal bond strength, several sets of 10 samples were simulated
until an average predicted tensile strength of roughly 12MPa
was obtained.

The final input parameters common for all three cement
scaling factors are presented in Table 2. The mean normal
bond strengths σ̄c,0 were set to 8.21, 6.26 and 5.31 MPa and
the mean shear bond strengths were set to 114, 87.0 and
73.8 MPa for C f = 0.25, C f = 0.50 and C f = 0.75,
respectively. In Fig. 6, two examples of BDT measurements
of a granite with elastic modulus 63 GPa [52] are shown.
Thus, the stiffness response of the current model, calibrated
towards an elastic modulus of 60 GPa, is comparable to what
can be seen for granitic rocks.

3 Results and discussion

In this section, the results from the numerical simula-
tions of the generated samples are presented and discussed.
The results originates from 10 samples per defined case, see
Table 1. The performance of the proposed rock model is
discussed and the crack initiation, propagation, coalescence

Table 2 Micromechanical parameters common for all simulations

Parameter Units Value

kn [kN/mm] 24.0

ks/kn [kN/mm] 0.417

k̄n,0 [GPa] 7.01

k̄s,0/k̄n,0 [GPa] 0.417

cn [–] 0.99

cs [–] 0.99

ᾱ [–] 0.70

μpp [–] 0.50

μpj [–] 0.20

β̄ [mm] 0.20

and branching as well as predicted tensile strength of the
BDT is evaluated. The simulations were conducted using
the LS-DYNA software, version R12. A total of 110 simula-
tionswere conducted of the 100 samples, with the anisotropic
samples being simulated twice (once per load direction). The
simulations were conducted using two Xeon Gold 6248R 3
GHz (96 total cores), resulting in a computational time of
roughly 7 h per sample.

3.1 Predicted tensile strength

The tensile stress at the centre of the disc, as predicted by
Eq. (1), versus loading jaw displacement is shown in Fig. 7.
As can be deduced from Fig. 7a–c, a larger spread of pre-
dicted tensile strength was obtained for smaller values of
the shape parameter. From the relative tensile strength stan-
dard deviation (σ/μ) presented in Table 3, it is also evident
that, for a given shape parameter, weaker grain cementing
tended to result in larger variations with regards to predicted
tensile strength. In fact, this is true for all cases except for
case 5 (C f = 0.50) which has a smaller spread than case 8
(C f = 0.75).

Also evident for all the cases in Fig. 7 is the high level
of brittleness obtained, which is consistent with the choice
of a rather large interlocking range β̄ [44]. Further, some of
the samples continued to carry load after the main fracture
point due to the post-fracture loading of the two remaining
semi-discs. Also, some of the samples exhibited a pre-failure
load drop. This is most evident for case 3 in Fig. 7c, where
one sample showed a significant load drop. By observing the
damage patterns of these samples, it was concluded that these
load drops were due to shear failure close to the loading jaws.

The predicted tensile strength and stiffness response, eval-
uated as k = σt/d f , where d f is the displacement at failure,
was found to increase with the shape parameter. This is rea-
sonable since an increase in the shape parameter not only
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Table 3 Mean tensile strengths and relative standard deviation, mean failure displacement and stiffness for each of the nine cases

Case 1 2 3 4 5 6 7 8 9

Mean tensile strength μ

[MPa]
9.38 12.23 13.29 9.43 12.19 12.8 8.89 12.56 13.12

Relative tensile strength
standard deviation SD
[%]

14.48 6.82 4.90 11.17 3.72 4.35 8.85 3.93 2.73

Mean failure
displacement d f [μm]

47.77 54.47 57.03 48.24 54.31 54.79 45.32 55.34 55.59

Stiffness k [kN/μm] 196.15 224.37 232.85 195.04 224.38 234.04 195.93 227.00 236.05

(a) Case 1: Cf = 0.25, m = 5. (b) Case 2: Cf = 0.25, m = 15. (c) Case 3: Cf = 0.25, m = 30.

(d) Case 4: Cf = 0.50, m = 5. (e) Case 5: Cf = 0.50, m = 15. (f) Case 6: Cf = 0.50, m = 30.

(g) Case 7: Cf = 0.75, m = 5. (h) Case 8: Cf = 0.75, m = 15. (i) Case 9: Cf = 0.75, m = 30.

Fig. 7 The tensile stress at the centre of the disc, as predicted from Eq. (1), versus loading jaw displacement for the nine combinations of cement
scale factors C f = 0.25, 0.50, 0.75 and shape parameters m = 5, 15, 30
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(a) Cf=0.25. (b) Cf=0.50. (c) Cf=0.75.

Fig. 8 Crack initiation points for the three cement scale factors C f and heterogeneity indices m. Markers enclosed by a circle denotes initiation
from damage originating from loading jaws

decreases the heterogeneity, but also increases themeanvalue
of the normal and shear stiffnesses.

3.2 Crack initiation and propagation

In this subsection, results regarding the effects that the shape
parameter and cement strength have on the initiation and
propagation of cracks of the BDT are presented and dis-
cussed. In the first subsection, the initiation point and the
consequent validity of the BDT is evaluated and discussed. In
the second subsection, the crack propagation of the radial and
through-thickness directions is presented for a few selected
samples.

3.2.1 Initiation

In Fig. 8, the initiation points for the three cement factors
are shown. These points were defined as the point at which
the rapid propagation of the splitting crack started. Further,
the samples where the main crack initiated from damage,
originating from the loading jaws were identified. Although
these cracks originate from the loading jaws, the initiation
points were placed at the point at which rapid propagation
initiated.

As evident fromFig. 8 andTable 4, there exists a clear pos-
itive correlation between the cement strength and the amount
of cracks initiating from the loading jaws. For the cement
strength C f = 0.25, 16.7 % of the cracks initiated from
the loading jaws. The same is true for 30 % and 63 % of
the samples for C f = 0.50 and C f = 0.75, respectively.
By visual inspection of the damage onset, these cracks were
found to initiate from a crushed zone directly underneath the
loading jaws, which is consistent with experimental obser-
vations [17]. For the stronger cement strengths, this crushed
zone tended to be more severe and prevalent, which could
explain the positive correlation between cement strength and
the amount of loading jaw cracks. Representative examples
of the accumulated damage right before failure for the three
cement strengths are shown in Fig. 9a–c. As observed from
these figures, the crushed zones are more severe for stronger
cement strengthswheremultiple cracks can be observed radi-
ating from these zones. For the weaker cement strengths,
cracks initiating from grain boundaries tended to be spread
out around the vertical centre line of the disc.

In order for the BDT to be a valid method for measur-
ing the tensile strength, the crack should initiate close to the
central part of the disc, meaning that samples should be dis-
regarded if the crack initiated from the loading jaws [6,28].

Table 4 Proportion of jaw
cracks and normalized mean
distance of initiation point from
centre

Case Jaw cracks mean(|x |)/D [–] mean(|z|)/D [–] (
√
x2 + z2)/D [–]

1 2/10 0.030 0.095 0.104

2 3/10 0.034 0.105 0.116

3 0/10 0.034 0.075 0.094

4 4/10 0.043 0.112 0.122

5 3/10 0.041 0.107 0.119

6 2/10 0.031 0.120 0.128

7 5/10 0.049 0.140 0.152

8 6/10 0.022 0.144 0.146

9 8/10 0.042 0.093 0.102
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(a) Before failure Cf = 0.25, m = 5. (b) Before failure Cf = 0.50, m = 5. (c) Before failure Cf = 0.75, m = 30.

(d) After failure Cf = 0.25, m = 5. (e) After failure Cf = 0.50, m = 5. (f) After failure Cf = 0.75, m = 30.

Fig. 9 Examples of accumulated damage right before failure for dif-
ferent heterogeneity indices and cement scale factors C f = 0.25 (a),
C f = 0.25 (b) and C f = 0.25 (c), and the corresponding final crack

paths (d–f). Particle colour represents the loss of bonds, i.e. a red par-
ticle has loss all of its bonds while the bonds of a blue particle remains
intact

Further, the distance from the centre where the crack initiates
should not be too large. Although no clear distinctions are
available regarding the allowed deviation from the centre,
the distance speaks to the validity of the test. To this end,
the mean distance from the centre at which the crack initi-
ated were evaluated for each case (with tests where cracks
initiated from loading jaws being disregarded), see Table 4.
Note that the distances in Table 4 are normalized with sam-
ple diameter D. If case 9 is disregarded (due to only having
2 valid tests), the normalized initiation distance increases
slightly with increased cement strength. This suggests that
the BDT is more appropriate, i.e. Eq. (1) yields a more accu-
rate prediction of the tensile strength, for samples with lower
cement strengths.

3.2.2 Propagation

As mentioned in the previous section, damage accumulates
around the vertical centre line of the sample for the lower

cement strength,. This is further shown in Fig. 10, where a
few stages of the crack propagation for C f = 0.25 (case
2) are shown. The main crack initiates from this accumu-
lated damage on the sample surface (Fig. 10a, b), and tends
to propagate along the direction giving the shortest dis-
tance to a free surface [54]. As there are two free surfaces,
i.e. the sample perimeter and the opposite flat sample sur-
face, one would expect the crack to propagate along these
directions. This hypothesis is supported by the propagation
path in Fig. 10b–d, where the crack propagates along the
vertical direction towards both the loading jaws and along
the through-thickness direction. Further, the zigzag pattern
observed for this case was typical for the cases with low
cement strength as the crack tended to branch and propa-
gate through the weak grain boundaries. Another case of
C f = 0.25 (case 1), with a lower shape parameter m = 5, is
shown in Fig. 9d. As can be seen from this case, which can be
considered heavily heterogeneous, the amount of zigzag and
branching of the crack path ismore severe. This is a trend that
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Fig. 10 Crack propagation of the vertical and through-thickness direc-
tion at four selected stages of jawdisplacements froma sample fromcase
2 (cement scaling factor C f = 0.25 and heterogeneity index m = 15).
The crack initiates slightly above and to the right of the centre of the
disc (a), rapid crack propagation through-thickness and towards both
loading jaws (b, c) and the fully propagated primary crack (d)

Fig. 11 Crack propagation of the vertical and through-thickness direc-
tion at four selected stages of jawdisplacements froma sample fromcase
5 (cement scaling factor C f = 0.50 and heterogeneity index m = 15).
The crack initiates slightly below and to the left of the centre of the
disc (a), rapid crack propagation through-thickness and towards both
loading jaws (b, c) and the fully propagated primary crack (d)
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Fig. 12 Crack propagation of the vertical and through-thickness direc-
tion at four selected stages of jawdisplacements froma sample fromcase
8 (cement scaling factor C f = 0.75 and heterogeneity index m = 15).
The crack initiates from surface cracks originating from the loading jaw
(a), rapid crack propagation through-thickness and towards the top jaw
(b, c) and the fully propagated primary crack (d)

was observed for all cement strength cases, i.e. that amount
of zigzag and branching increased with heterogeneity.

In contrast, for the higher cement strength C f = 0.50
(case 5) in Fig. 11, the crack path did not experience as severe
of a zigzag pattern. Further, the pre-failure accumulated dam-
age is also less severe. From Fig. 11a, it can be seen that two
major cracks initiated close to the centre of the disc. Both
of the cracks can then be seen to propagate and coalesce in
Fig. 11b, c. After coalescing, the leftmost crack becomes
dominating, halting the propagation of the rightmost crack
which produces the final crack path in Fig. 11d.

The two aforementioned cases are examples of valid tests,
i.e. the main cracks initiated close to the centre part of the
disc. An example of an invalid test from C f = 0.75 (case
8) can be seen in Fig. 12. Aside from the crushed zones at
the loading jaws, no other damage was accumulated within
this sample. The crack initiated from the crushed zone at
the lower jaw, Fig. 12a, and propagated along the vertical
direction towards the upper jaw, Fig. 12b-c. Here, a case of
crack branching can be observed close to the centre part of
the disc, which then coalesce with themain crack in Fig. 12d.

Although a few samples hadmajor cracks initiatingwithin
the sample, such as the rightmost crack in Fig. 11, the vast
majority of samples had major crack initiation at one of the
flat free surfaces. Given a surface crack on one of the free,
flat surfaces of the sample, it would be reasonable to assume
that the crack will propagate straight through the sample and
appear at a position coinciding with the initiation position
since this is the shortest path to a free surface. This was the
case for the majority of cases, examples being the samples in
Figs. 11 and 12. However, the through-thickness propagation
path was found to deviate from a straight through-thickness
path for a few cases, as can be seen in Fig. 10. This fact
suggest that both sample surfaces should be observed when
conducting a BDT, as to not mistake a surfacing through-
thickness crack with the initiation point.

By loading a sample after the main splitting crack has
fully propagated, the initiation of secondary cracks as well as
branching and coalescence of these cracks can be evaluated.
In Figs. 13 and 14, a few selected stages of the post-failure
crack propagation of two samples are shown. As soon as
the main splitting crack has fully propagated, secondary
cracks are initiated at the loading jaws. The amount of sec-
ondary cracks varied due to inhomogeneities, but typically
four secondary cracks could be observed at each loading jaw.
Further, the path of these secondary cracks tended to exhibit
a parabolic form and be fairly symmetrical across the vertical
direction, e.g. as shown in Fig. 13, which is consistent with
experimental and numerical observations [6,9,11,19]. How-
ever, unsymmetrical secondary cracks were also observed,
such as the case in Fig. 14. Here, the secondary cracks on
the right side coalesce early on with the main crack and does
not propagate far throughout the sample, while the secondary
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Fig. 13 The post-failure crack propagation of the sample from case 8 (cement scaling factor C f = 0.75 and heterogeneity index m = 15). The
initiation of secondary cracks main splitting crack has fully propagated (a) and the propagation, branching and coalescence of these secondary
cracks (b–d)

Fig. 14 The post-failure crack propagation of a sample from case 5 (cement scaling factor C f = 0.50 and heterogeneity index m = 15). The
initiation of secondary cracks main splitting crack has fully propagated (a) and the propagation, branching and coalescence of these secondary
cracks (b–d)

cracks on the left side does not coalesce with the main crack
at all. A reasonable explanation to this has to do with the
fact that the crack tends to propagate along paths that yields
the shortest distance to a free surface [54]. For the secondary
cracks on the right side, the main splitting crack corresponds
to the free surface towards which the crack propagates.

3.3 Anisotropy

The force versus displacement of the 10 anisotropic samples
(case 10) is shown inFig. 15.The sampleswere simulated two
times, once with loading applied along the z-direction, per-
pendicular to the preferred grain direction, and once with the
load applied along the x-direction, parallel to the preferred
grain direction. Clearly, the predicted tensile strength when
loading within the x-direction is lower than the predicted
strength when the load is applied along the z-direction. On
average, the predicted tensile strength when loading parallel
to the preferred grain direction is 79.10 % of the strength
of the other direction. This can be explained by the fact that
the crack is more likely to propagate along the weak grain
boundaries when the loading is applied parallel to the pre-
ferred grain direction [47]. An example of this can be seen in
Fig. 16, where the final crack paths of both loading directions

Fig. 15 Force versus jaw displacement for each loading direction of
the five anisotropic samples

for one of the anisotropic samples are shown. When loading
parallel to the preferred grain direction, the majority of the
crack path coincides with the weak grain boundaries since
the crack tends to propagate along a path of least resistance.
In contrast, when loading perpendicular to the preferred grain
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(a) Loading parallel to the preferred grain direction. (b) Loading perpendicular to the preferred grain direction.

Fig. 16 The resulting splitting crack for one of the anisotropic samples when loading within the z-direction (a) and loading along the x-direction
(b)

direction the crack path propagates across grains more fre-
quently.

4 Conclusion

In this study, a new approach for modelling brittle heteroge-
neousmaterials was proposed and used to study the Brazilian
Disc Test. The heterogeneity of the material was introduced
by random, irregular grain shapes and micromechanical
parameters that were governed by the Weibull distribution.
By generating and simulating a large set of samples, the vari-
ations introduced by the stochastic nature of the model was
evaluated in terms of predicted tensile strength as well as
crack initiation, propagation, coalescence and branching. In
conclusion:

– The proposed numericalmodel is able to capture different
levels of unpredictability of brittle heterogeneous mate-
rials. This is true for the predicted tensile strength and
stiffness as well as the crack properties, all of which can
be governed with the model parameters.

– The results show that a wide range of behaviours con-
sistent with literature can be obtained with the proposed
numerical approach.

– The model gave new insights regarding the initiation
and propagation of cracks of the Brazilian disc test. The
results indicate that the crack does not always propagate

along the shortest path to a free surface and the test is less
suitable for materials with a high cement strength.

– The results show that the cement strength greatly affects
the results in the Brazilian disc test. This is true regarding
the initiation and propagation of the main splitting crack
aswell as the spread of the results. Furthermore, the crack
paths are governed by the orientation and shape of the
grains, more so for lower cement strengths.

– The grain generation process is able to generate irregu-
lar and anisotropic grain shapes that yield significantly
different results along different loading directions.

– Although the present study was conducted on a micro-
scopic scale, the proposedmodel can be applied to model
brittle heterogeneousmaterials at a larger scale, for exam-
ple in order tomodel the varying groundmaterials of rock
drilling.
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