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Abstract
In this work, a promising fully coupled meshfree numerical approach is extended and implemented for the first time in
the field of linear static thermoelasticity. A real meshfree method, the so-called finite pointset method (FPM), is applied
and implemented in order to solve the strong/classical form of the governing partial differential equations for static linear
thermoelasticity. Several benchmark problems are numerically solved in order to show the proposed coupled FPM numerical
performance. The presented FPMmeshfree approach shows excellent behavior for 2D linear static thermoelasticity problems
even for complex geometries.

Keywords Linear thermoelasticity · Thermal expansion · Finite pointset method · Meshless method · Generalized finite
difference method

List of symbols
Ai PDE coefficient (·)
B PDE coefficient (·)
Ci PDE coefficient (·)
E Young’s modulus Pa)
F PDE coefficient (·)
G Shear modulus (Pa)
J1 Boundary conditions matrix (·)
J2 Boundary conditions matrix (·)
J3 Boundary conditions matrix (·)
K Auxiliary matrix (·)
M Differences matrix (·)
M̃ Block differences matrix (·)
Q Auxiliary matrix (·)
T Temperature (◦C)
Tref Reference temperature (◦C)
X Set of nodes (·)
W Weight matrix (·)
a Unknown vector (·)
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aψ Unknown vector (·)
aT Unknown vector (·)
b Unknown vector (·)
e∞ Approximation error (·)
f Auxiliary vector (·)
h Smoothing length (m)
hi,k Spatial differences (·)
k Thermal conductivity ()
n Boundary normal vector (·)
t0 Surface traction (Pa/m)
u Displacement vector (m)
u0 Displacement at boundary (m)
w Weight function (·)
x Arbitrary node position (m)
xi i th node position (m)
�d Dirichlet boundary (·)
�n Neumann boundary (·)
�r Robin boundary (·)
˜� Unknown vector (·)
� A given fluid domain (·)
α Weight function parameter (·)
β Thermoelastic coefficient (Pa ◦C−1)
ψ Field variable (·)
ψ j j th unknown component (·)
γ Coefficient of thermal expansion (◦C−1)
δ Perturbation magnitude (·)
λ Lame’s first parameter (Pa)
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μ Lame’s second parameter (Pa)
ν Poisson’s ratio (·)
σ Stress tensor (Pa)
ε Strain tensor (Pa)
σi j Stress component (Pa)
σv von Mises stress (Pa)
ϕ Boundary condition value (·)
� Laplace operator (m−2)
∇ Gradient operator (m−1)

1 Introduction

Static linear thermoelastic problems take place in differ-
ent applications in engineering. Different works have been
carried out to numerically model thermomechanical phe-
nomena, such as forging [4], fatigue [12], welding [11] and
solidification of steel [24]. Finite element method is a com-
mon method used in these works [33]. However, practical
guidelines for dealing with large-scale problems involving
several variables are still missing and efforts have been made
to overcome computational limitations in the finite element
method [9]; in spite of this, meshfree methods have also been
developed to overcome these limitations, such as the simu-
lation of complex geometries and difficulties for remeshing.

Meshless methods can be classified in terms of the par-
tial differential equation (PDE) form, namely weak form
and strong form meshless methods [27]. In terms of weak
form methods, it can be said that one of the most used weak
form meshless method is the elementfree Galerkin method
(EFG). It has been reported that this method can be used to
analyze plates under mechanical loading as well as thermal
gradient [7] and solving edge crack problems with the effect
of crack interactions under thermal and mechanical loads
[36]. This method has also been used to study the thermal
buckling on different shaped plates with different boundary
conditions [21] as well as the thermomechanical flow of fric-
tion stir welding process, [46,49]. EFG can be used also to
solve classical thermoelastic problems [10,50], such as hol-
low cylinder and infinite plate with a circular hole which are
commonly used as benchmark problems. In [10], a combi-
nation between EFG and the improved moving least-squares
approximation is proposedwhere the essential boundary con-
ditions are imposed by the penalty method. Likewise EFG
has been used to simulate the thermal fracture in function-
ally graded materials [13]. This method has also been used
to analyze thermal–mechanical coupling of the orthotropic
structures, [52].

The radial point interpolation method (RPIM) has been
used in order to analyze thermoelastic problems with mov-
ing concentrated heat sources [23] where theKronecker delta
property is satisfied by its shape function. Thismethod is also
suitable to simulate thermomechanical crack growth, [34].

Several thermal and mechanical material properties have
been identified simultaneously by using RPIM, [6]. Since
this method requires background cells for numerical integra-
tion, efforts have been made to improve it such as the use
of the Cartesian transformation method (CTM) where basi-
cally numerical integration is donewithout using background
cells. In this sense, RPIM can be considered a truly meshfree
method.

Another commonly used method is the local Petrov–
Galerkin method that has been used to analyze thermome-
chanical shock fracture and heat conduction with residual
stress due towelding in [31,32], respectively.Directmeshless
local Petrov–Galerkin (DMLPG) is used as a way to solve
the coupled thermoelasticity problem in [19]. This method
is based on the weak solution of the governing equation,
and all those methods have been found to be more efficient
than FEM as we expected. Finally, the particle finite ele-
ment method (PFEM) has been introduced in [39] to solve
thermomechanical problems involving large strains, multi-
ple contacts, rotations and large boundary surface changes
and it was later used in the modeling of chip formation
and metal cutting problems [40,41]. Besides good precision
and stability, weak methods naturally satisfy Neumann-type
boundary conditions. Moreover, these methods are compu-
tationally expensive due to the use of mandatory background
meshes; therefore, strong form/truly meshfree methods as
simpler alternatives are attractive.

With regard to the strong form methods, smoothed par-
ticle hydrodynamics (SPH) proposed by Lucy in [28] and
Monaghan in [14] was the starting point of meshless meth-
ods. Nowadays, this method can be used to analyze a brake
including thermomechanical coupling in [2], modeling of
metal forging in [5] and large deformation problems in [1]. In
[8], a numerical comparison between SPH and FEM in ther-
momechanical coupled problems has been made. Although
the same numerical results were obtained with bothmethods,
SPH overcomes the limitations of FEM as it was expected.

In the scientific literature, there are some works that use
local radial basis function collocation method (LRBFCM)
as a way to solve thermomechanical problems such as hot
rolling simulation [15–18,43], linear thermoelasticity in two
dimensions [29], bending analyses of quasicrystal plates [3],
analysis of transient coupled thermoelasticity [30] and sim-
ulation of thermal field in mass concrete structures with
cooling pipes [20].

Meshless local strong form method (MLSM) has been
used in order to solve linear elastic problems under fretting
contact conditions [25], a comparison between commercial
software,weak and strong formmethods has beenmade. This
comparison shows that MLSM provides an accurate result
with a significantly lower number of nodes. This method can
also be used to solve the Cauchy–Navier equation [44]. This
study reveals that MSLM can handle computations in com-
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plex domains which is important in solving more complex
real engineering problems. Other strong form methods that
have been applied to elasticity problems include the finite
point method [35] and the meshless finite difference method
[22].

The finite pointset method is a meshfree method proposed
by Kuhnert in [26]. This is a Lagrangian-type strong form
method that has been used for modeling flows [48], for PDEs
on evolving surfaces [45], heat transfer with moving heat
sources in welding [37], fluid flow coupled with heat trans-
fer considering phase changes [38] and recently, for solving
static linear elasticity problems [42], among others. In fact,
this is an efficient and versatile truly meshless method that is
extended in thiswork and presented for the first time in a fully
coupled form to numerically solve static linear thermoelastic
problems.

The structure of the paper is as follows: Sect. 2 introduces
the governing partial differential equations of static linear
thermoelasticity, Sect. 3 shortly describes the main ideas
behind the taken meshfree approach and a new fully coupled
FPM discretization in detail for the involved PDEs is worked
out. The corresponding numerical results and some compar-
isons with respect to analytical solutions are discussed in
Sect. 4 followed by some conclusions and possible future
work in last section.

2 Governing equations

The thermoelastic behavior in an isotropic and homogeneous
conducting solid can be described once the temperature,
stress and displacement fields are computed. For the study
considered in this work, the displacement field obeys the
Navier–Cauchy equations coupled with the stationary heat
equation which can be written as:

(λ + μ)∇(∇ · u) + μ∇2u − ∇(β(T − Tref)) = 0 (1)

∇(k∇T ) = 0 (2)

For a two-dimensional problem, these equations could be
expressed as follows:

(λ + μ)
∂

∂x

(

∂u

∂x
+ ∂v

∂ y

)

+ μ

(

∂2u

∂x2
+ ∂2u

∂ y2

)

− ∂(β(T − Tref))

∂x
= 0 (3)

(λ + μ)
∂

∂ y

(

∂u

∂x
+ ∂v

∂ y

)

+ μ

(

∂2v

∂x2
+ ∂2v

∂ y2

)

− ∂(β(T − Tref))

∂ y
= 0 (4)

∂

∂x

(

k
∂T

∂x

)

+ ∂

∂ y

(

k
∂T

∂ y

)

= 0 (5)

where λ and μ denote the Lamé coefficients and k is the
thermal conductivity. The coefficient β is given by β =
(3λ+2μ)γ , where γ denotes the linear coefficient of thermal
expansion.

The types of boundary conditions considered in this work
are mainly essential or Dirichlet conditions which repre-
sent some prescribed displacement, denoted as u = u0 and
some prescribed temperature T = T0 on some portions
of the defined boundary. In a similar manner, traction or
natural boundary conditions, denoted as σn = t0, which
represent some prescribed surface traction in a specified
boundary region as well as some temperature gradient or
heat flux denoted by (k(x)∇T ) · n = q0, prescribed on a
given boundary. σ denotes the stress tensor which for a lin-
ear thermoelastic problem could be expressed as

σ = [λtr(ε) − β(T − Tref)]I + 2με, ε = ∇u + (∇u)t

2
(6)

where I and ε are the identity and strain tensors, respec-
tively. t0 = (t01, t02)t is the traction vector and n = (n1, n2)t

denotes the unit normal vector. If a thermoelastic problem
with essential boundary conditions is considered, the bound-
ary conditions can be written as follows

t01 = μn2
∂u

∂ y
+ λn1

∂v

∂ y
+ (2μ + λ)n1

∂u

∂x

+ μn2
∂v

∂x
− β(T − Tref)n1 (7)

t02 = μn1
∂u

∂ y
+ (2μ + λ)n2

∂v

∂ y
+ λn2

∂u

∂x

+ μn1
∂v

∂x
− β(T − Tref)n2 (8)

q0 = n1k(x)
∂T

∂x
+ n2k(x)

∂T

∂ y
(9)

With all these definitions, it is possible to model the static
linear thermoelastic problem correctly.

3 FPM discretization for general elliptic
partial differential equations

In this section, a short description on FPM discretization
for elliptic partial differential equations in a general form is
describedwhich has been already presented in [42]. Consider
the numerical solution of an elliptic PDE with the form:

A1ψ + B · ∇ψ + C1�ψ − F = 0 (10)
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with prescribed boundary conditions, where Ai ,B,Ci , F and
ϕ are known. Thus, the corresponding FPM discretization
under this setting and considering the general casewithRobin
boundary conditions is shortly sketched.

Consider the Taylor expansion of ψ(xi ) around a point
x ∈ �r

ψ(xi ) = ψ(x) +
3

∑

k=1

∂ψ

∂xk
(xk,i − xk)

+1

2

3
∑

j,k=1

∂2ψ

∂xk∂x j
(xk,i − xk)(x j,i − x j ) + e1,i

for i = 1, . . . ,m, where e1,i denotes the truncation error of
the Taylor series expansion and m is the number of points
inside the neighborhood of x which is defined through a
Gaussian weight function w whose form is given by

w(x − xi ) =
{

e−α‖x−xi‖2/h2 , if ‖x−xi‖
h ≤ 1

0 else
(11)

where h defines the interaction length between nodes and it
is called the smoothing length.

A linear system of m + 2 equations is obtained when the
m Taylor series expansions forψ(xi ) are taken together with
the elliptic partial differential equation and the corresponding
boundary conditions. This linear system can be written in
matrix form as

e = Maψ − b (12)

where

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 h1,1 h2,1 h3,1
1
2h

2
1,1 h1,1h2,1 h1,1h3,1

1
2h

2
2,1 h2,1h3,1

1
2h

2
3,1

1 h1,2 h2,2 h3,2
1
2h

2
1,2 h1,2h2,2 h1,2h3,2

1
2h

2
2,2 h2,2h3,2

1
2h

2
3,2

...
...

...
...

...
...

1 h1,m h2,m h3,m
1
2h

2
1,m h1,mh2,m h1,mh3,m

1
2h

2
2,m h2,mh3,m

1
2h

2
3,m

A1 B1 B2 B3 C1 0 0 C1 0 C1

A2 C2n1 C2n2 C2n3 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

with h1, j = (x1, j − x1), h2, j = (x2, j − x2) and h3, j =
(x3, j − x3),

aψ =
(

ψ,
∂ψ

∂x1
,

∂ψ

∂x2
,

∂ψ

∂x3
,

∂2ψ

∂x12
,

∂2ψ

∂x1∂x2
,

∂2ψ

∂x1∂x3
,

∂2ψ

∂x22
,

∂2ψ

∂x2∂x3
,

∂2ψ

∂x32

)t

(14)

b = (ψ1, ψ2, . . . , ψm, F, ϕ)t (15)

e = (e1, e2, . . . , em, em+1, em+2)
t (16)

and n = (n1, n2, n3)t denotes the unitary normal vector to
the boundary. The unknown vector aψ is obtained trough the
weighted least-squares method as

aψ = (MtWM)−1(MtW )b, (17)

where W is

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w(x − x1) 0 · · · 0 0 0
0 w(x − x2) · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · w(x − xn) 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(18)

Depending on where the point lies, that is, if xi ∈ �d ,
xi ∈ �n or xi ∈ �, some rows in M must be carefully
replaced or deleted. Details can be found in [42].

Considering the following solution

aψ = Q(MtW )b, (19)

and taking q = (q1,1, q1,2, . . . , q1,10) as the first row of Q,
the following linear system of equations arises

ψ j −
m j
∑

i=1

w ji

(

q1,1 + q1,2h1,i + q1,3h2,i + q1,4h3,i

+q1,5
h21,i
2

+ q1,6h1,i h2,i + q1,7h1,i h3,i

+q1,8
h22,i
2

+ q1,9h2,i h3,i + q1,10
h23,i
2

)

ψ ji
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= (q1,1A1 + q1,2B1 + q1,3B2 + q1,4B3 + q1,5C1

+ q1,8C1 + q1,10C1)F

+ (q1,1A2q1,2C2nx + q1,3C2ny + q1,4C2nz)ϕ (20)

whereψ j denotes the unknown function values at point j and
m j the number of j th-neighboring nodes inside its neigh-
borhood defined by the weight function. It explicitly couples
each point with its neighbor nodes which leads the coupling
between inner and boundary points. Since Eq. (20) is valid
for j = 1, 2, . . . , N , this can be arranged in a global sparse
system of linear equations K �̃ = f which can be solved by
iterative methods.

3.1 FPM discretization for static linear
thermoelasticity equations

The procedure to obtain the global system of equations
described in the last section can be extended for the two-
dimensional static linear thermoelasticity equations as it is
shown along this section. Consider the Taylor expansions
for the two approximating solution functions of the coupled
system of PDE equations,

ui = u +
3

∑

k=1

∂u

∂xk
(xk,i − xk)

+ 1

2

3
∑

j,k=1

∂2u

∂xk∂x j
(xk,i − xk)(x j,i − x j ) + e1,i

vi = v +
3

∑

k=1

∂v

∂xk
(xk,i − xk)

+ 1

2

3
∑

j,k=1

∂2v

∂xk∂x j
(xk,i − xk)(x j,i − x j ) + e2,i

Ti = T +
3

∑

k=1

∂T

∂xk
(xk,i − xk)

+ 1

2

3
∑

j,k=1

∂2T

∂xk∂x j
(xk,i − xk)(x j,i − x j ) + e3,i

where e1,i , e2,i and e3,i denote the errors of the Taylor series
expansion. As in the previous section, together with these
equations, (3), (4) and (5) with the corresponding boundary
conditions should be also considered. u = u0 = (u0, v0)
and T = T0 in case of Dirichlet boundary conditions for
displacement and temperature, or Eqs. (7), (8) and (9) in
case of Neumann boundary conditions which is the most
involved case explained next. If x ∈ �n , a linear system of
m + 6 equations is obtained which in terms of the truncation

error can be written as,

e = M̃a − b

where

M̃ =

⎛

⎜

⎜

⎝

M 0 0
0 M 0
0 0 M
J1 J2 J3

⎞

⎟

⎟

⎠

and

e = (e1,1, . . . , e1,m, e2,1, . . . , e2,m, e3,1, . . . ,

e3,m, 0, 0, 0, 0, 0, 0)t

b = (u1, . . . , um, v1, . . . , vm, T1, . . . , Tm, 0, 0, 0, t0,1

− βn1Tref , t0,2 − βn2Tref , q0)
t

a = (au, av, aT )t

au =
(

u,
∂u

∂x1
,

∂u

∂x2
,
∂2u

∂x21
,

∂2u

∂x1∂x2
,
∂2u

∂x22

)t

av =
(

v,
∂v

∂x1
,

∂v

∂x2
,
∂2v

∂x21
,

∂2v

∂x1∂x2
,
∂2v

∂x22

)t

aT =
(

T ,
∂T

∂x1
,

∂T

∂x2
,
∂2T

∂x21
,

∂2T

∂x1∂x2
,
∂2T

∂x22

)t

M is of the same formas in the original FPMdiscretization for
elliptic PDEs. Moreover, matrices J1, J2 and J3 are defined
as follows,

J1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 2μ + λ 0 μ

0 0 0 0 λ + μ 0
0 0 0 0 0 0
0 (2μ + λ)n1 μn2 0 0 μ

0 λn2 μn1 0 0 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

J2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 λ + μ 0
0 0 0 μ 0 2μ + λ

0 0 0 0 0 0
0 μn2 λn1 0 0 0
0 μn1 (2μ + λ)n2 0 0 0
0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

J3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −β 0 0 0 0
0 0 −β 0 0 0
0 0 0 k 0 k

−βn1 0 0 0 0 0
−βn2 0 0 0 0 0
0 n1 n2 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Following the procedure in the previous section, the cor-
responding solution for the linear system can be written as

a = (M̃tW M̃)−1(M̃tW )b (21)

Therefore, for the computation of the displacements and
temperature fields, only the first, seventh and thirteenth com-
ponents in a are really needed. Consequently if

qi = (qi,1, qi,2, . . . , qi,18)
t

denotes the i th row in (M̃tW M̃)−1, Eq. (21) can be slightly
worked out and the following linear system arises for the
elements of the displacement vector u and T ,

u j −
m j
∑

i=1

w
[(

qk,1 + h1,i qk,2 + h2,i qk,3

+1

2
h21,i qk,4 + h1,i h2,i qk,5 + 1

2
h22,i qk,6

)

ui

+ (

qk,7 + h1,i qk,8 + h2,i qk,9

+1

2
h21,i qk,10 + h1,i h2,i qk,11 + 1

2
h22,i qk,12

)

vi

+ (

qk,13 + h1,i qk,14 + h2,i qk,15

+1

2
h21,i qk,16 + h1,i h2,i qk,17 + 1

2
h22,i qk,18

)

Ti

]

= [(2μ + λ)n1qk,2 + μn2(qk,3 + qk,8)

+ λn1qk,9 − βn1qk,13](t0,1 − βn1Tref)

+ [λn2qk,2 + μn1(qk,3 + qk,8)

+ (2μ + λ)n2qk,9 − βn2qk,13](t0,2 − βn1Tref)

+ [n1qk,14 + n2qk,15]q0 (22)

for the component u. A similar expression can be obtained for
the component v and T on the j th point. This is valid for all
u j , v j , Tj ∈ �n where k = 1, 7, 13. Furthermore, an homo-
geneous linear system in (22) is obtained for internal domain
points where in such case the last three rows in M̃ and ele-
ments inbmust bedeleted. Finally, using this last formulation
for the displacement and temperature fields, a coupled sparse
linear system, K �̃ = f , can be obtained which is numeri-
cally solved by iterative methods. Once these displacements
and temperatures are computed, the stress can be obtained
locally from the moving least-squares solution (21) with a
updated vector b and the corresponding deformation values.
Thus, the numerical solution of another sparse system for the
computation of these quantities is not necessary.

Fig. 1 Problem configuration

4 Numerical examples

In order to test the numerical performance of the proposed
FPM coupled discretization, four examples are presented in
this section. These examples have been taken from [29] and
[51], and they were computed on a AMD A10-7400P CPU
2.5GHz processor runningWindows 10Home operating sys-
tem with 12 GB of RAM. The physical difficulty of the
presented examples is gradually increasing.

In order to measure the approximating solution error
regarding the obtained displacements, vonMises stresses and
the corresponding temperatures, the following relative error
norms are used,

e∞(u) = maxx∈X {max{|u(x) − û(x)|, |v(x) − v̂(x)|}}
maxx∈X {|u(x)|, |v(x)|}

(23)

e∞(σv) = maxx∈X |σv(x) − σ̂v(x)|
maxx∈X |σv(x)| (24)

e∞(T ) = maxx∈X |T (x) − T̂ (x)|
maxx∈X |T (x)| (25)

e2(u) =
∥

∥u(x) − û(x)
∥

∥

∥

∥û(x)
∥

∥

(26)

e2(σv) = |σv(x) − σ̂v(x)|
|σ̂v(x)| (27)

e2(T ) = |T (x) − T̂ (x)|
|T̂ (x)| (28)

where X denotes the set of nodes.
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Fig. 2 Left: FPM solution error
with respect to the exact
solution. Right: error
comparison. n is the number of
support nodes and σ̂ is a
Gaussian weight shape
parameter

4.1 Bending of an isothermal square

The first benchmark problem is geometrically described in
Fig. 1 together with the corresponding boundary conditions.
In this case a linearly increasing force is applied on the top
boundary in order to deform the isothermal square. The cor-
responding analytical solution for the displacements reads,

u = −λ

8μ(λ + μ)

(

x1 − 1

2

)2

− (λ + 2μ)

8μ(λ + μ)
x22 (29)

v = (λ + 2μ)

4μ(λ + μ)

(

x1 − 1

2

)

x2 (30)

The reported numerical results in this case were obtained
considering λ = 0.4, μ = 0.4, γ = 1 using a discretization
of 1681 points with a mean spacing of 0.025 m, α = 16.25
and a smoothing length of 0.075 m.

Figure 2 shows the magnitude of the obtained displace-
ment on the deformed square and the corresponding error
with respect to the analytical solution. The displacement has
been scaled by a factor of 0.5 for visualization purposes. As
it can be observed, the highest value in the numerical error is
of the order of 10−8 which is valid for several configurations
regarding the number of points and their distribution. This
shows an excellent numerical behavior of FPM in this case.

4.2 Thermal expansion of a square

The second tested problem consists of a thermal expansion of
a square with a temperature profile defined by T (x1, x2) =
sin(2πx1). The geometry and the boundary conditions are
depicted in Fig. 3. The exact analytical solution correspond-
ing to the displacements reads,

u = −γ (3λ + 2μ)[cos(2πx1) − 1]
2π(λ + 2μ)

(31)

v = 0 (32)

The reported numerical results in this case were obtained
considering λ = 0.4, μ = 0.4, γ = 1 using a discretization

Fig. 3 Problem configuration

of 1681 points with a mean spacing of 0.025 m, α = 16.25
and a smoothing length of 0.075 m.

Figure 4 shows the magnitude of the obtained displace-
ment on the thermal expanded square and the corresponding
error with respect to the analytical solution. As it can be
observed, the maximum computed error is of the order of
10−3. The value of α in the shape function is used to empha-
size the effect of the closest neighbors, such that neighbor
particles with the smallest distance to the central node have
the highest weight. Thus, it is dependent on the nature of the
case being analyzed. For example, for solving the incom-
pressible Navier–Stokes equations values around 6 have
shown good results [47], for coupled fluid flow and heat
transfer values around 5 were selected [38], and for solid
mechanics problems, values around 12 were chosen [42].
Therefore, the influence of α on the numerical accuracy for
this example is described in Fig. 5 in order to select a suitable
value for thermoelasticity problems. This figure suggests that
a suitable value for α should be higher than 15 since from
this value, the error no longer significantly decreases with the
increase of α, and therefore, for the numerical examples pre-
sented in this work a value of 16.25 was chosen. In a similar
manner, the number of neighboring points has been chosen
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Fig. 4 Left: Displacement
magnitude. Right: Pointwise
displacement relative error
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Fig. 5 Displacement relative error in L∞-norm with respect to alpha

according to the reported error in Fig. 6, where the displace-
ment relative error with respect to the number of neighboring
points increases as the number of points in the shape func-
tion support also increases. Stability dispersion is shown in
Fig. 7 with respect to several degrees of increment on the
perturbation parameter δ which defines the distortion of the
uniform distribution, see [44] for more details. It shows that
thismeshfree formulation is independent of the uniformity of
the nodes discretizing the domain since, for a uniformly dis-
tributed distribution and a very distorted one, this proposal is
able to get results with the same level of accuracy. For com-
pleteness, Fig. 8 shows the displacement error behavior with
respect to the total number of points and Fig. 9 reports the
FPM spent total time when solving the problem with respect
to the number of discretization nodes. They indicate a good
convergence behavior and an efficient computational strategy
with respect to the increasing discretization points.
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Fig. 6 Displacement relative error in L∞-norm with respect to number
of neighboring points
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Fig. 9 Total computation time with respect to total number of points

4.3 Ring plate

The third benchmark problem consists in the simulation of
the thermoelastic state of a ring. The corresponding prob-
lem configuration and geometrical description are shown in
Fig. 10.

The analytical solution for the involved variables is
defined in polar coordinates as follows [51]:

– The analytical expression for temperature,

T (r) = 1 − ln(r)

ln(2)
(33)

Fig. 10 Problem configuration

– The displacement of the ring,

ur (r) = − r ln(r)

2 ln(2)
(34)

uθ (r) = 0 (35)

– The strain,

εr (r) = ∂ur
∂r

= − ln(r) + 1

2 ln(2)
(36)

εθ (r) = 1

r

∂uθ

∂θ
+ ur

r
= − ln(r)

2 ln(2)
, (37)

εrθ (r) = 1

2

(

1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r

)

= 0 (38)

– The plane stress,

σr (r) = E

1 − ν2
[εr + νεθ − (1 + ν)γ (T − Tref)]

= εr (r) − T (r), (39)

σθ (r) = E

1 − ν2
[εθ + νεr − (1 + ν)γ (T − Tref)]

= εr (θ) − T (r), (40)

σrθ (r) = E

1 + ν
εrθ = 0 (41)

The reported numerical results in this case were obtained
considering λ = 0, μ = 0.5, γ = 1 using a discretization of
2081 points with a mean spacing of 0.05 m, α = 16.25 and
a smoothing length of 0.15 m.
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Fig. 11 Left: Temperature profile. Middle: Displacement magnitude. Right: von Mises stress profile

Fig. 12 Left: Temperature relative error. Middle: Displacement relative error. Right: von Mises stress relative error
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Fig. 13 Relative error in L∞-norm with respect to alpha. Left: Temperature. Middle: Displacement. Right: von Mises stress
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Fig. 14 Relative error in L∞-norm with respect to number of neighboring points. Left: Temperature. Middle: Displacement. Right: von Mises
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Figure 11 shows the obtained displacement, tempera-
ture and von Mises stress profiles computed with this FPM
approach, and Fig. 12 shows the relative error of the obtained
displacement, temperature and von Mises stress with respect
to the analytical solution. As it can be observed the maxi-
mum computed error is of the order of 10−4 which shows an
excellent match of the computed solution.

Figure 13 shows the error behavior with respect to α in
the shape function for the three quantities. This one again
suggests and confirms that a suitable value for α should be
higher than 15. In a similar manner, the number of neighbor-
ing points has been chosen according to the reported error in
Fig. 14, where the displacement, temperature and von Mises
stress relative errorwith respect to the number of neighboring
points increase as the number of points in the shape function
support also increases. Finally, Fig. 15 shows the error behav-
ior with respect to the total number of points and Fig. 16
reports the FPM spent total time when solving the problem
with respect to the number of discretization nodes. As for the
previous example, they indicate a good convergence behavior
and an acceptable computational efficiency.

Fig. 17 Geometry of heat exchanging device

4.4 Heat exchanging device

The last andmore realistic example is depicted in Fig. 17. The
aim in this example is to compute the thermoelastic state in a
complex geometry. In this example, a hot medium heats the
device to 60◦ inside the boreholes. A surrounding medium
establishes a temperature of 35◦ on the outside.

The reported numerical results in this case were obtained
considering λ = 6.05 ·1010, μ = 2.59 ·1010, γ = 23 ·10−6,
k = 237 and Tref = 0 using a discretization of 4091 points
with a mean spacing of 0.3 m, α = 16.25 and a smoothing
length of 0.9 m.

The corresponding numerical results are reported in Fig.
18. The reached temperature profile distribution is shown at
the top of the figure, the magnitude of the displacement and
the corresponding deformation scaled by a factor of 50 (for
visualization purposes) are shown at themiddle of the picture
and the von Mises stress is also reported at the bottom of
this figure. This numerical example shows the generality of
the method for dealing with distorted and complex domains.
These results indicates the robustness and effectiveness of
this coupled formulation for dealingwith problems involving
linear thermomechanical processes.
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Fig. 18 Top: Temperature
profile. Middle: Displacement
magnitude. Bottom: von Mises
stress profile

5 Conclusions

A fully coupled FPM mathematical derivation for two-
dimensional static linear thermoelastic problems has been
presented in detail and numerically implemented for the first
time. Considering the numerical reported results, it can be
said that FPM is a powerful and versatile strong form mesh-
free approach for these kinds of solid mechanics problems.
The identification of the involved parameters for an efficient
FPM implementation has been done in a robust manner using
the corresponding relative error analysis. The easy-to-handle
boundary conditions in FPM are one featured that shall be
stood out and this can be observed in the excellent matching
with respect to the corresponding analytical solutions in the
numerical examples. Although a fully coupled approach has
been proposed in this paper, only one way coupling has been
of interest in this work, i.e., the temperature dependence of
the deformation is present; however, if a two-way coupling
is considered this formulation could also work in an efficient
manner with the correct form of the involved deformation
tensor and this can be considered as an natural extension

of this work in the near future. Furthermore, this approach
is a promising numerical tool which could be coupled with
mass transfer computations to achieve a fully coupled multi-
physics formulation. As a future research, the extension to
transient linear and nonlinear thermoelastic problems is of
particular interest.
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