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Abstract
From its inception, the combined finite discrete element method has used a distributed potential contact force algorithm to
resolve interaction between finite elements. The contact interaction algorithm relies on evaluation of the contact force potential
field. The problem with existing algorithms is that the potential field introduces artificial numerical non-smoothness in the
contact force. This work introduces a smooth potential field based on the finite element topology, and a generalized contact
interaction law is constructed on top of the smooth potential field. A number of validation cases for the proposed algorithm,
considering different shapes of discrete elements, are presented, and detailed aspects of the proposed contact interaction law
are tested with numerical examples.

Keywords Combined finite discrete element method · Finite element · Discrete element · Contact interaction · Contact
potential field

1 Introduction

Discrete element methods are effective tools for addressing
a variety of physics problems and are formulated in terms
of a large number of discrete entities interacting with each
other, as opposed to treating the material as a continuum. In
the combined finite discrete element method (FDEM) [1–5],
solid domains (called discrete elements) are discretized into
finite elements; the finite element discretization is used for
calculating material deformation and resolving contact inter-
action between discrete elements. Utilizing this approach,
discretized contact solutions can then be used for both con-
tact detection and contact interaction. Additionally, these
features can be coupled with discrete crack initiation and
fracture propagation models. In this way, FDEM bridges the
gap between finite element methods and discrete element
methods. As such, it has become amethod of choice for prob-
lems involving large material deformation, contact, fracture
and fragmentation [6–21].
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One advantage of FDEM is the ability to handle complex
contact/impact problems, especially under dynamic loading.
Figure 1 shows a typical problem that can be simulated using
FDEM. In this case, a raster of deformable particles with
irregular shapes are given some initial velocity and their
resultant collisions are simulated. Each particle can freely
move and rotate in space until it is in contact with other par-
ticles. As a result, random collisions take place between the
particles. Due to the complexity of the contact problem, con-
tact interaction algorithms for FDEM must be robust and
easy to implement while maintaining high computational
efficiency.

Since the inception of FDEM, the potential-based penalty
functionmethod has been utilized to resolvemechanical con-
tact [3]. Using this approach, the contact interaction force
is calculated as the gradient of a contact potential func-
tion. As a result, the amplitude of the contact force is a
function of the contact potential, while the direction of the
contact force is governed by the gradient of the contact poten-
tial. Thus, the definition of the contact potential field is a
fundamental aspect of the potential-based penalty function
method.

Munjiza first proposed the potential-based penalty func-
tion method in FDEM [3, 22]. In its original form, each
2-D contactor triangle was divided into three sub-triangles
while the contact potential was defined in terms of the
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Fig. 1 Temporal evolution of the contact and interaction between irregularly shaped, deformable particles

shape functions at the contact point in the corresponding
sub-triangle. As a result, the direction of the contact force
calculated using this method changes when the contact point
moves fromone sub-triangle to another.Moreover, the ampli-
tude of the contact force also changes when the contact
point moves from one finite element to another, even when
the amount of penetration is constant. To partially resolve
these issues, Munjiza et al. [4] further proposed an approach
where the boundary information of the discrete element was
incorporated into the process. In this approach the con-
tact potential was defined in terms of the shape functions
of the contact point inside the finite elements located on
the boundary of each discrete element [4]. This algorithm
resolved the problem with the variation in contact direc-
tion change. However, it still does not resolve the issue of
the contact force amplitude change. Yan and Zheng [23]
have modified Munjiza’s original formula for the contact
potential calculation. Instead of using shape functions, they
introduced a characteristic length of the mesh to calculate
the contact potential. This approach could reduce the influ-
ence of the mesh size on the contact force calculation in
some special cases. However, most of the issues observed
in Munjiza’s original approaches still exist. Recently, based
on Munjiza’s original concept, Zhao et al. [24, 25] proposed
another approach to define the potential over particles with
select shapes. However, this solution is limited to the dis-
crete element method and cannot be directly implemented in
FDEM.

In the aforementioned work, the contact potential func-
tion is defined locally according to the geometry of each
finite element. These approaches are satisfactory when each
discrete element is represented by a single finite element. The
main advantage of these approaches is their simplicity. How-
ever, the contact forces calculated experience a jump when
the contact points move from one finite element to another
finite element, as demonstrated in Fig. 2a where the contact
potential, togetherwith its contours as introduced byMunjiza
et al. [4], are plotted. In this work, we propose to construct

the contact potential function using the global geometrical
information of the discrete elements in order to overcome
the artificial numerical non-smoothness in the contact force,
as demonstrated in Fig. 2b.

The rest of the paper is organized as follows: The algo-
rithm for the contact distancefield calculation is introduced in
Sect. 2, where the solution for a general case and two special
cases are presented. In Sect. 3, a new generalized contact
interaction law, which is constructed based on the contact
distance field introduced in Sect. 2, is derived in detail; con-
tact forces together with the energy dissipation mechanisms
are discussed. Some numerical validations are introduced in
Sect. 4, demonstrating the robustness of the proposed algo-
rithm for discrete elements of complex shapes. In Sect. 5,
three numerical examples are presented to test the accuracy
of the proposed algorithm. Finally, conclusions are given in
Sect. 6.

2 The contact distance field

InFDEM, solid bodies (i.e., discrete elements) are discretized
into a grid of simplex shapes (i.e., finite elements) such as
triangles in 2-D, Fig. 3. The finite element discretization of
solid domains is used to resolve the contact between dis-
crete elements. The finite element discretization contains
two types of objects: nodes and elements. In order to speed
up contact processing, both nodes and elements can be fur-
ther classified into either boundary nodes/elements or inner
nodes/elements, as shown in Fig. 3. The boundary nodes are
the nodes on the boundary of the discrete element, while the
rest of the nodes are defined as the inner nodes. Similarly, the
boundary elements are those that are connected with at least
one boundary node. In the potential-based penalty function
method, only the boundary nodes and boundary elements
participate in contact detection and contact interaction, thus
improving CPU efficiency.

123



Computational Particle Mechanics (2020) 7:807–821 809

Fig. 2 The contact potential field together with its contour defined in
a previous work [4] and b current work. The amplitude of the contact
force is usually a function of the contact potential, while the direction of
the contact force is perpendicular to the contour of the contact potential
field. Both the jump in the amplitude and direction of the contact force

calculated in the previous work can be observed when the contact point
moves from one finite element to another finite element. The contact
force calculated in the current work is smooth both in terms of ampli-
tude and direction as the contact point moves from one finite element
to another

Fig. 3 Discretization of the
discrete element: the solid
domain is discretized with a
group of finite elements and
nodes

Boundary of the Discrete Element

Inner Node

Inner Element

Boundary Element

Boundary Node

2.1 Finite element

In this paper, the 6-noded composite element proposed by
the authors in [26] is used to demonstrate the algorithm. The
6-noded composite finite element features a multiplicative,
decomposition-based, selective integration approach that
avoids volumetric locking issues associated with constant
strain triangular elements. Moreover, the 6-noded compos-
ite element works well with some robust contact interaction
algorithms since the low order sub-element is used for defor-

mation and stress calculation. Following the same logic as
in [26], each composite finite element is divided into four
sub-elements (3-noded triangles), as shown in Fig. 4. The
contact potential, as well as the contact interaction, is calcu-
lated using these sub-elements.

It is worth noting that the implementation of the proposed
algorithm on the simpler constant strain triangular finite ele-
ment is straightforward since both elements have similar
topology. In fact, the principle introduced in this paper can
be applied to any type of finite element.
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Fig. 4 The composite element
and its sub-elements
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2.2 Nodal contact distance

For each inner node, the shortest distance between that node
and the boundary is calculated. In the following text, that
shortest distance for each node is referred to as the nodal con-
tact distance, which is used to construct the contact potential.
Obviously, the nodal contact distance for the boundary nodes
is zero, while the nodal contact distances for the inner nodes
are calculated by looping over all boundary elements.

For a specific inner node, the nodal contact distance can
be calculated from

do � 2A

l
(1)

where A is the surface area of the sub-element that has two
boundary nodes, while l is the length of the edge on the
boundary, as shown in Fig. 5a. However, in some cases, the
nodal contact distance of an inner node depends on the tri-
angle used for its calculation, as shown in Fig. 5b. In this
case, the nodal contact distance of the inner node is defined
as the minimum value over the contact distance calculated
from different triangles, thus

do � min(di , d j ) (2)

2.3 Contact distance field

Once the nodal contact distance is obtained, a continuous
scalar field defining the distance from the boundary of the
discrete element to every point within the boundary triangle
is built. In this work, the distance field across a boundary
triangle �123 is calculated as

d � N1d1 + N2d2 + N3d3 (3)

where d1, d2, and d3 are the nodal contact distances at nodes
1, 2, and 3, respectively, which are calculated using Eqs. (1)
and (2), while the shape functions are defined as

N1 � A1

A
; N2 � A2

A
; N3 � A3

A
(4)

where A � A1 + A2 + A3 is the surface area of the boundary
triangle while A1, A2, and A3 are the surface areas of the
sub-triangles shown in Fig. 6.

Fig. 5 The nodal contact
distance for node no: a general
case, b special case when the
contact distance is calculated
from two triangles

(a) (b)
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Fig. 6 Interpolation of the distance to the closes boundary using the
shape functions of the triangle

2.4 Special cases for defining the contact distance
field

Depending on the number of boundary edges contained in a
discrete element, two special cases for the calculation of the
continuous contact distance field are considered:

Case 1 only two edges of the boundary finite element
are on the boundary of the discrete element. As shown in
Fig. 7, the shadowed composite element, defined by nodes
n1 − n2 − n3 − n4 − n5 − n6, contains two boundary edges
(n1 − n2 − n3 and n5 − n6 − n1) and one inner edge (n3 −
n4−n5). In this case, the three nodes defining the sub-element
n1 −n2 −n6 are on the boundary. Thus, the standard method

1

Inner edge

4

3

2

5

6

Boundary edge

Boundary node

Fig. 7 Special case 1: two edges are on the boundary while the other
one is inner

introduced in Sect. 2 does notwork for this case. To overcome
this issue, two approaches are proposed, as shown in Fig. 8,
where the basic idea is to introduce additional “inner nodes”
for each sub-element. In one approach, as demonstrated in
Fig. 8a, the composite element is split into ten sub-elements
by introducing three inner nodes (n7, n8 and n9). Thus, there
are four inner nodes (i.e., n4, n7, n8, and n9) which can be
used to calculate the contact distance field, while each sub-
element has more than one inner node. Another approach, as
demonstrated in Fig. 8b, divides the composite element into
four sub-elements that share inner node n4.

Case 2 all edges of the boundary finite element are on the
boundary of the discrete element, as shown in Fig. 9. In this
case, the discrete element contains only one finite element
and all of the nodes in the discrete element are on the bound-
ary. Thus, the standard method introduced in Sect. 2 does not
work. To overcome this issue, two approaches are proposed,
as shown in Fig. 10. Again, the basic idea is to introduce
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Fig. 8 Two possible solutions that handle the exception for special case 1: a divide the composite finite element into then sub-elements and introduce
three inner nodes n7, n8 and n9, b divide the composite finite element into four sub-elements without introducing any inner node
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Fig. 9 Special case 2: all nodes/edges are on the boundary

some additional “inner nodes” for each sub-element. In one
approach, as demonstrated in Fig. 10a, the composite ele-
ment is split into ten sub-elements by introducing three inner
nodes (i.e., n7, n8, and n9). Thus, each sub-element has more
than one inner node. In another approach, as demonstrated
in Fig. 10b, an inner node n7 is created at the center of the
composite element. The composite element is then divided
into six sub-elements that share the temporarily created inner
node.

3 Generalized contact interaction law

In FDEM, the potential-based penalty function method
enables many different implementations in terms of contact
kinematics. In earlier FDEM work, a “triangle-to-triangle”

Contact point

Target point

Target triangleContactor triangle

Fig. 11 Triangle to point: contactor triangle and contact force integra-
tion points (target points). The target points are distributed on the free
boundary lines of the target triangle

contact interaction was implemented in 2-D [3, 22]. The
“triangle-to-triangle” approach exactly considered the geom-
etry of both the contactor and the target triangles and the
integration of the contact forces distributed along the edges
of the discrete elements was done analytically. Since this
approach integrated contact forces exactly, it was quite time
consuming. To simplify the calculation and improve the com-
putational efficiency, recent versions of FDEM employed
“triangle-to-point” contact interaction kinematics [4]. In this
case, the contactor triangles also interactwith target triangles.
However, in order to integrate the distributed contact forces,
the target triangles are represented as a series of points dis-
tributed on the free boundary lines of the discrete elements
[12], as shown in Fig. 11.

In this work, similar to the “triangle-to-point” approach,
a “triangle-to-node” scheme is proposed. In this case, the
interaction points of the target triangles are assigned to
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Fig. 10 Two possible solutions that handle the exception for the special
case 2: a divide the composite finite element into ten sub-elements and
introduce three temporarily created inner nodes n7, n8, and n9, b divide

the composite finite element into six sub-elements and introduce one
temporarily created inner node n7
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Contact point

Target point

Target triangleContactor triangle

Fig. 12 Triangle to node: contactor triangle and contact force integration
points (target points). The target points are defined at the nodes of the
target triangle

their nodes as shown in Fig. 12. Thus the “triangle-to-node”
approach belongs to the concentrated contact force approach
in the penalty functionmethod. In contrast to the well-known
“node-to-surface” approach widely implemented in the finite
element codes [27], the contact force in the “triangle-to-
point” is calculated using the contact potential constructed
from the nodal distance field, which avoids the “dead zone”
issue observed in the “node-to-surface” approach. Moreover,
since the principles are similar, the fundamental equations
proposed in this work can also work, with minor mod-
ifications, with the “triangle-to-point” contact interaction
approach.

In the contactor, the contact potential field ϕ is defined as
a function of the distance field d introduced in Sect. 2, which
yields

ϕ � ϕ(d) (5)

where ϕ can be constructed with a certain amount of free-
dom. For example, one can assume that ϕ is a power function
of d, such as ϕ � dn . It is worth noting that n should
be always greater than one to represent reasonable physi-
cal responses. In this case, the contact force calculated using
the contact potential field increases with the distance field
d. More specifically, if ϕ � d2, the contact force is linearly
proportional to the distance field d.

It is further assumed that the normal contact force acting
on the target point (node of the target triangle) is proportional
to the gradient of the potential function as

fn � −kn∇ϕ(d) � −kng(d)∇d (6)

where kn is the normal penalty parameter, while ∇ is the
gradient operator. The function

g(d) � ∂ϕ(d)

∂d
(7)

defines the relationship between the contact force and the
distance field d.
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Face normal vector

Contactor triangle

1

2

3

Fig. 13 The face normal vectors of the contactor triangle

The gradient of the distance field ∇d, which defines the
direction of the normal contact force and is always parallel
to the normal of the contours of the distance field, is given
by

∇d � ∇N1d1 + ∇N2d2 + ∇N3d3

� −
( n1
2A

d1 +
n2
2A

d2 +
n3
2A

d3
)

(8)

where A is the surface area of the contactor, while n1, n2,
and n3 are the face normal vectors shown in Fig. 13 which
can be calculated from

n1 � (x3 − x2) × o

n2 � (x1 − x3) × o

n3 � (x2 − x1) × o (9)

where x1, x2, and x3 are the global coordinates of the nodes
1, 2, and 3 in the contactor triangle, respectively, while o is
a unit vector defined as

o � (x2 − x1) × (x3 − x1)
|(x2 − x1) × (x3 − x1)| (10)

In its original form, the potential-based penalty func-
tion method features a path independent function g(d). In
this case, assuming the target node penetrates the contactor
through any arbitrary path defined by end points A and B,
the total work of the contact force calculated from Eq. (6)
only depends on the contact potentials at the end points A
and B, which yields

W �
∫ B

A
fn · dr � kn(ϕ(dA) − ϕ(dB)) (11)
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Unloading

Loading

Fig. 14 Path dependent contact interaction law

which indicates that the energy balance during the contact
process is always preserved as long as ϕ(dA) � ϕ(dB). The
preservationof energybalance is oneofmain advantages over
some other implementations of penalty function methods.

One way to construct a dissipative contact interaction
law is to define a path dependent function g(d) as shown
in Fig. 14, where the energy dissipation due to contact is
dominated by the area between the loading and unloading
curves. Since g(d) can be defined in any form, it is conve-
nient to define different functions for loading and unloading.
For example, one can assume that

g(d) �
{
dα (loading)
dβ (unloading)

(12)

where α ≤ β, and α and β are the parameters that control
the shape of the loading and unloading curves.

In addition, one can also introduce contact damping as
a mechanism to dissipate energy. In this case, the damping
contact force acting on the target node is calculated from

fd � γ vr (13)

where γ is the contact damping coefficient, vr � vc − vt is
the relative contact velocity between the contactor and the
target at the contact point, vt is the velocity of the target node
while vc is the velocity at the corresponding contact point in
the contactor.

Another mechanism for energy dissipation in contact is
frictional forces. For instance, frictional forces could be cal-
culated based on Coulomb’s friction law

ft � min(μ|fn|, kts)t (14)

where μ and kt are the friction coefficient and tangential
penalty parameter, respectively. t is a unit vector defining the
contact tangential direction

t � o × n (15)

where n is a unit vector defining the normal direction

n � ∇d

|∇d| (16)

The relative tangential contact displacement between the
contactor and the target is calculated using an incremental
formula

s � ŝ + (vr · t)�t (17)

where ŝ is the relative tangential contact displacement
between the contactor and the target in the previous time
step, while �t is the time step size.

The total contact force due to the penetration, damping,
as well as friction acting on the target node is then given by

f � fn + fd + ft (18)

The contact force calculated from Eq. (18) would still
yield a contact force jump, specifically for cases where re-
meshing (e.g., nodes splitting) is necessary during fracture
processes. To overcome this issue and ensure the continuity
of the contact force, Eq. (18) is modified as

f � m

m̄
(fn + fd + ft) (19)

wherem is the mass of the target node, m̄ is the characteristic
mass of the systemwhich is a constant during the simulation.
In this work, m̄ is set to be themass of the smallest element in
the system. Because of the conservation of mass in FDEM,
the conservation of the contact force is naturally enforced
even when re-meshing is conducted (say in problems with
fracture).

The contact force is distributed to the nodes of the con-
tactor through

f1 � −N1f

f2 � −N2f

f3 � −N3f (20)

4 Validation of contact distance field

In this section, the proposed algorithm is demonstrated by
means of examples, where the contact distance field of
discrete elements is calculated. The proposed algorithm is
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Fig. 15 A triangular discrete
element: a the finite element
mesh, b handling exception, and
c the distance field

(a) (b) (c)

Fig. 16 A triangular discrete
element: a the finite element
mesh, b handling exception, and
c the nodal distance field

(a) (b) (c)

validated in an incremental fashion, starting from the sim-
plest cases and building in complexity. Figures 15 and 16
show the contact distance field together with its contours
(defined in two different ways introduced in Sect. 2) in a
single 6-node composite finite element. The contact distance
fields are smooth in both cases and the contours exactly rep-
resent the shape of the triangle.

Figures 17 and 18 show the contact distance field together
with its contours (defined in two different ways introduced
in Sect. 2) for a diamond-shaped discrete element. In both
cases, the diamond discrete element is discretized into two
6-node composite finite elements. Obviously, the contact dis-
tance fields are smooth in both cases and the contours exactly
represent the shape of the discrete element.

In the rest of the section, the contact distance fields of
more general shaped discrete elements are shown. Figure 19
illustrates the nodal distance field for a rectangular discrete
element. In this case, the rectangular discrete element is
discretized into four structured 6-node composite finite ele-
ments. Only the contact distance field in the sub-triangles
that define the boundary of the discrete element is plotted.
The contact distance fields are smooth and the contours of the
contact field follow the same shape of the discrete element.

Figure 20 shows the contact distance field for an elliptic
discrete element. In this case, the discrete element is dis-
cretized into unstructured 6-node composite finite elements.
Only the contact distance field in the sub-elements that define
the boundary of the discrete elements is plotted. The contact
distance fields are smooth and the contours of the contact
field follow the same shape of the discrete element.

Figures 21 and 22 show the contact distance field for L-
shaped and V-shaped discrete elements. In this case, both
discrete elements are discretized into unstructured 6-node
composite finite elements. Only the contact distance field
in the sub-triangles that define the boundary of the discrete
elements is plotted. The contact distance fields are smooth,
and the contours of the contact field follow the same shape
of the discrete element.

5 Numerical examples

In this section, the proposed algorithm is validated through
three numerical examples. In the first example, the influence
of the contact viscosity introduced in Sect. 3 on the energy
dissipated during the contact processes is demonstrated.

The model setup and the finite element mesh used in this
example are shown in Fig. 23. A 1.25 m×0.2 m rigid base
(target) is impacted by 1 m×1 m elastic block (impactor)
with an initial velocity of 10 m/s. All degrees of freedom of
the target are fixed. The material of the impactor is assumed
linear elastic with the parameters described by the Young’s
modulus E � 1.0 GPa, Poisson’s ratio ν � 0.0 and density
ρ � 1000 kg/m3. The total kinetic energy in the system as
a function of time was studied for four different cases. As
shown in Fig. 24, the energy balance during the contact pro-
cess is preserved when no damping is used. In addition, the
restitution of kinetic energy in the system decreases with the
increase in the contact viscosity.
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Fig. 17 A diamond discrete
element: a the finite element
mesh, b handling exception, and
c the distance field

(a) (b) (c)

Fig. 18 A diamond discrete
element: a the finite element
mesh, b handling exception, and
c the distance field

(a) (b) (c)

Fig. 19 The contact distance
field for a rectangle discrete
element discretized into
structured finite elements

In the second example, the influence of the loading and
unloading parameters introduced in Eq. (12) and Fig. 14 on
the energy dissipated during the contact processes is demon-
strated. The model setup and the finite element mesh used
in this example are shown in Fig. 25. In this case, the target

disk (the right one shown in Fig. 25) is impacted by another
disk (the left one in Fig. 25) with the same size and mate-
rial properties traveling at a speed of 10 m/s. The radius of
both disks is 1 m. The material is assumed linear elastic with
the parameters described by the Young’s modulus E � 1.0
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Fig. 20 The contact distance field for an elliptic discrete element dis-
cretized into unstructured finite elements

Fig. 21 The contact distance field for an L-shaped discrete element dis-
cretized into unstructured finite elements

Fig. 22 The contact distance field for a V-shaped discrete element dis-
cretized into unstructured finite elements

GPa, Poisson’s ratio ν � 0.0 and density ρ � 1000 kg/m3.
The obtained total kinetic energy in the system as functions
of time for four different cases was studied. As shown in
Fig. 26, the energy balance during the contact process is pre-
served when no damping is used. In addition, the restitution
of kinetic energy in the system decreases with the increase
in the unloading parameter β.

In the third example, a virtual experiment was designed
to examine the performance of the proposed algorithm. The

Fig. 23 The model setup and finite element mesh for the simulation of
impact between two blocks

Fig. 24 The total kinetic energy as a function of time, obtained using
different viscosity coefficients during the impact between two blocks

Fig. 25 The model setup and finite element mesh for the simulation of
impact between two elastic circular disks

results obtained from this approach are compared against
those calculated from the algorithm proposed by Munjiza
et al. [4] and its analytical solutions. In this case, the sliding
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Fig. 26 The total kinetic energy as a function of time, obtained using
different loading and unloading coefficients during the impact between
two circular disks

Fig. 27 The model setup and finite element mesh for the sliding friction
simulation

Fig. 28 The obtained sliding velocity as a function of time when vi �
8 m/s

friction behavior of a 1 m×1 m block, which is moving on
a 10 m long horizontal platform is simulated (as shown in
Fig. 27). To get rid of the influence of the deformation in
the platform, it is assumed to be rigid. The block is assumed
to be linear elastic with the parameters described a Young’s
modulus E � 1.0 GPa, Poisson’s ratio ν � 0.0 and density ρ

� 1000 kg/m3. The simulations are conducted in two steps:
In the first step, the system is allowed to relax in order to reach
the steady state of the normal contact force between the block
and platform; in step two, an initial velocity is assigned to
the block and its movement is simulated.

Fig. 29 The obtained sliding displacement as a function of time when
vi � 8 m/s

Fig. 30 The obtained maximum sliding displacement as a function of
initial velocity

The Coulomb’s friction force is

fs � (mg)μ � 4900 N (21)

where m � (
1 m3

) × (
1000 kg/m3

) � 1000 kg, g �
9.8 kg/m3 andμ � 0.5 are the mass of the block, the gravita-
tional acceleration and the friction coefficient, respectively.

The sliding velocity as a function of time is given by

v � vi −
(mgμ

m

)
t � vi − (gμ)t (22)

where vi and t are the initial velocity and time.
The sliding displacement as a function of time yields

d � vi t − gμ

2
t2 (23)
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Fig. 31 Comparison of the friction force as a function of sliding distance
when vi � 8 m/s for the results obtained using the approach proposed
by Munjiza et al. [4] and the analytical results

The maximum sliding displacement, which is defined as
the sliding displacement at the moment that the block stops
moving, is calculated as

dmax � v2i

2gμ
(24)

The comparison of the sliding velocity as a function of
time, sliding displacement as a function of time, as well as
the maximum sliding displacement as a function of initial
velocity for the numerical results and the analytical solutions
are presented in Figs. 28, 29 and 30. In all cases, the results
obtained from the proposed approach and from the approach
introduced in [4] are in very good agreement with the ana-
lytical solutions. However, due to the reason explained in
Sect. 1, the noise in the friction forces calculated using the
approach introduced in [4] can be observed during the whole
sliding process, as demonstrated in Fig. 31. The friction force
calculated from the present algorithm is shown in Fig. 32.
At the beginning of the simulation, oscillations of the fric-
tion force are seen due to the transition from its static state
to dynamic state. Once the block reaches its steady state, a
constant friction force that matches the analytical solution is
obtained.

In order to further demonstrate the advantage of the pro-
posed algorithm, another set of tests were conducted wherein
the vertical degree of freedom of the block is fixed in the sec-
ond step. In this way, the amount of the penetration is kept
constant during the sliding process seen in step two. Thus, the
change of the friction force reflects the change of the normal
contact force aswell as the potential field, and the influence of
any artificial numerical non-smoothness can now be readily
identified.

The comparison of the sliding velocity as a function of
time, the sliding displacement as a function of time as well
as the maximum sliding displacement as a function of ini-

Fig. 32 Comparison of the friction force as a function of sliding distance
when vi � 8 m/s for the results obtained using the proposed algorithm
and the analytical results

Fig. 33 The obtained sliding velocity as a function of time when vi �
8 m/s. In this case, the vertical degree of freedom of the block is fixed
in the second step

tial velocity for the numerical results and analytical solutions
are presented in Figs. 33, 34 and 35. In all cases, the results
obtained from the proposed approach are in very good agree-
ment with the analytical solutions. However, we can see
a large difference between the results calculated from the
approach introduced in [4] and the analytical solutions. This
difference is more obvious in the friction force calculated
from the approach introduced in [4], as shown in Fig. 36.
However, the proposed approach produces a constant fric-
tion force with the same amount of penetration, as shown in
Fig. 37. This example further demonstrates the robustness
and accuracy of the proposed approach.

Our previous studies indicated that the accuracy of the
contact forces calculated from earlier algorithms introduced
in [3, 4] are greatly reliant upon the mesh used to discretize
the discrete elements. To improve the accuracy of the contact
force calculation, one has to be very careful when generating
the mesh for contact surface interactions, such as the earth-
quake rupture modeling in [16]. The examples introduced
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Fig. 34 The obtained sliding displacement as a function of time when
vi � 8 m/s. In this case, the vertical degree of freedom of the block is
fixed in the second step

Fig. 35 The obtained maximum sliding displacement as a function of
initial velocity. In this case, the vertical degree of freedom of the block
is fixed in the second step

in this paper demonstrate that the proposed smooth contact
potential can rectify the artificial numerical non-smoothness
seen in other existing approaches.

6 Conclusions

Traditionally, it was “a priori” assumed that the potential
attached to the finite element mesh necessarily leads to non-
smooth contact interaction. In this work, it has been proven
that it is possible to calculate the contact potential in such a
way that a smooth contact evolution for a smooth surface is
recovered. The algorithm proposed calculates contact poten-
tial at nodes of the finite element mesh by taking into account
nodal connectivity and existing discrete element boundaries.
The proposed algorithm is relatively easy to implement and
it has been demonstrated in this paper that it leads to rela-

Fig. 36 Comparison of the friction force as a function of sliding distance
when vi � 8 m/s for the results obtained using the approach proposed
by Munjiza et al. [4] and the analytical results. In this case, the vertical
degree of freedom of the block is fixed in the second step

Fig. 37 Comparison of the friction force as a function of sliding distance
when vi � 8 m/s for the results obtained using the proposed algorithm
and the analytical results. In this case, the vertical degree of freedom of
the block is fixed in the second step

tively smooth potential for both concave and convex bodies
of complex shapes.

It is worth noting that the proposed algorithm is not the
only one that can yield smooth potentials and it is possible
that future research in the field may produce an alternative
or similar algorithmic solutions for distributed contact force
approaches.

In principle, it is possible to expand the traditional com-
bined finite discrete element method to problems where
interaction between smooth particle surfaces is simulated
accurately. Of course, this may require application of higher
order finite elements.
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